Responsive image
博碩士論文 etd-0529115-160857 詳細資訊
Title page for etd-0529115-160857
論文名稱
Title
準直反射曲面設計用於曝光系統與表面電漿共振感測器
Design of Collimated Reflective Curved Surface for Exposure System and Surface Plasmon Resonance Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-06-30
關鍵字
Keywords
橢圓曲面、曝光系統、表面電漿共振感測器、發光二極體、幾何光學
surface plasmon resonance sensor, exposure system, light-emitting diode, geometrical optics, elliptical curve
統計
Statistics
本論文已被瀏覽 5717 次,被下載 0
The thesis/dissertation has been browsed 5717 times, has been downloaded 0 times.
中文摘要
本論文以發光二極體(light-emitting diode, LED)取代傳統汞燈做為光源;以幾何光學及反射定律等基礎,在三维座標系中建立系统模型,設計出準直反射曲面,並結合橢圓曲面達到補償均光之效果。將此設計應用在高科技電子產業中佔有重要地位的曝光系統,達到系統之規格且符合目前環保綠能的趨勢;以及應用在波長調變式表面電漿共振即時感測器,有效縮減系統體積及成本,並提高檢測之訊號強度。根據光學模擬軟體之模擬結果可得,在直徑12 cm之曝光區域,平均照度約17.60 mW/cm2、均勻度為93.28 %、光半角在± 2.2˚內,且不會因工作高度不同而有太大改變。以CNC銑床加工出曲面並鍍上鋁為反射層,利用照度計及光譜儀測量其實際出光情形。根據實際量測的結果,曝光系統之平均照度約16.11 mW/cm2、均勻度為93.49 %、光半角在± 2.5˚內,符合模擬之結果,且實際曝光線寬能達到5 μm;表面電漿共振感測器之訊號強度提升了約9%,證明本文設計之可行性。
Abstract
In this thesis, light-emitting diode(LED)is applied to replace the halogen lamp. Based on geometrical optics and reflection law, a module of collimated reflective curved surface is established in coordinate system. An additional elliptic reflective curved surface is combined with collimated surface to enhance the uniformity of illumination. This design can be used in exposure system, which plays an important role in hi-tech industry, and not only meet the system specification but also keep up with trend of environmental protection. Besides, the size and cost of wavelength modulation surface plasmon resonance(SPR)sensor can be reduced significantly by using this design, and the signal strength can be improved as well. According to the result of simulation, the average irradiance is about 17.60 mW/cm2, the uniformity is about 93.28 % and the half-angle is in ± 2.2˚. Besides, these results vary little with different working heights. Computer numerical control(CNC)milling machine was used to fabricate the curved surface, illuminometer and spectrum were applied to measure the actual emission results. According to the measurement result, the average irradiance is about 16.11 mW/cm2, the uniformity is about 93.49 %, and the collimation half angle is in ± 2.5˚, respectively. The measurement result is consistent with the simulation’s. The critical dimension of actual exposure can reach 5 μm. The signal of SPR sensor is enhanced about 9 %, it shows the feasibility of the thesis.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 1
1.4 文獻回顧 2
1.5 本文架構 6
第二章 理論基礎 7
2.1 幾何光學理論 7
2.1.1 發光點 7
2.1.2 光線概念 7
2.1.3 光線之折射現象 8
2.1.4 光線之反射及全反射現象 9
2.1.5 平行光 10
2.2 光度學與輻射度量學 10
2.2.1 通量 11
2.2.2 亮度 12
2.2.3 強度 13
2.2.4 照度 14
2.3 表面電漿共振簡介 14
2.3.1 電磁學理論 16
2.3.2 介電常數 16
2.3.3 折射率 17
2.3.4 吸收係數 19
2.3.5 橫向電磁波 19
2.3.6 Lorentz模型(諧振子模型) 21
2.3.7 電磁波在金屬中之傳導 23
2.3.8 表面電漿波之共振條件 25
2.3.9 色散關係 28
2.3.10 表面電漿波激發方式 29
2.3.11 檢測調變系統 33
第三章 實驗步驟與架構 35
3.1 研究流程 35
3.2 均光透鏡建構 37
3.2.1 設立裸光光源之光場函數 37
3.2.2 微分幾何 37
3.2.3 坐標系選取及向量表達式 39
3.2.4 司乃耳定律 41
3.2.5 能量守恒 41
3.2.6 常微分方程初值問題 42
3.2.7 均光透鏡成形 44
3.3 雙反射曲面建構 44
3.3.1 平行光反射曲面設計 44
3.3.2 橢圓反射曲面設計 46
3.3.3 雙反射曲面成形 47
3.3.4 光學模擬參數設定 49
3.4 表面電漿共振實驗 51
3.4.1 金膜樣本之製作 51
3.4.2 波長調變檢測 53
3.4.3 系統架構 54
3.5 實驗設備介紹 55
第四章 結果與討論 59
4.1 均光透鏡及雙反射曲面模擬比較 59
4.1.1 單顆LED模擬 59
4.1.2 均光透鏡模擬 61
4.1.3 雙反射曲面模擬 64
4.1.4 模擬曝光能力比較 69
4.2 曝光系統建構與量測 72
4.2.1 反射曲面成型與系統建構 72
4.2.2 實際曝光結果 79
4.3 表面電漿共振實驗 93
4.3.1 表面電漿檢測模擬 96
4.3.2 實驗結果比較 99
第五章 結論與展望 100
5.1 結論 100
5.2 未來展望 101
參考文獻 102
參考文獻 References
[1] N. Holonyak, and S. F. Bevacqua, “Coherent (Visible) Light Emission from Ga (As1-Xpx) Junctions,” Applied Physics Letters, Vol. 1, pp. 82-83, 1962.
[2] M. George, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” International Society for Optics and Photonics, pp. 594101-594101-10, 2005.
[3] S. Sakai, A. Mori, K. Ishiguchi, K. Kobayashi, T. Kokogawa, T. Sakamoto, and T. Yoneda, “A Thin LED Backlight System with High Efficiency for Backlighting 22-in TFT-LCDs,” SID Symposium Digest of Technical Papers, Vol. 35, pp. 1218-1221, 2004.
[4] R. S. West, H. Konijn, S. Kuppens, N. Pfeffer, Q. V. Vader, Y. Martynov, T. Heemstra, J. Sanders, T. Yagi, and G. Harbers, “LED backlight for large area LCD TV's,” 10th International Display Workshops (IDW), 2003.
[5] K. R. Hardy, M. S. Olsson, J. R. Sanderson, K. A. Steeves, B. P. Lakin, J. E. Simmons, and P. A. Weber, “High Brightness Light Emitting Diodes for Ocean Applications,” OCEANS, pp. 1-4, 2007.
[6] K. R. Hardy, M. S. Olsson, B. P. Lakin, K. A. Steeves, J. R. Sanderson, J. E. Simmons, and P. A. Weber, “Advances in High Brightness Light Emitting Diodes in underwater applications,” OCEANS, pp. 1-5, 2008.
[7] J. F. V. Derlofske, “Computer modeling of LED light pipe systems for uniform display illumination,” International Symposium on Optical Science and TechNology, pp. 119-129, 2001.
[8] A. Tagaya, S. Ishii, K. Yokoyama, E. Higuchi, and Y. Koike, “The advanced highly scattering optical transmission polymer backlight for liquid crystal displays,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol. 41, pp. 2241-2248, 2002.
[9] F. Zhao, and J. V. Derlofske, “Side-Emitting Illuminators Using LED Sources,” International Society for Optics and Photonics, pp. 33-43, 2003.
[10] F. Keppler, I. VigaNo, A. McLeod, U. Ott, M. Früchtl, and T. Röckmann, “Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere,” Nature, Vol. 486, pp. 93-96, 2012.
[11] M. Widel, A. Krzywon, K. Gajda, M. Skonieczna, and J. Rzeszowska-Wolny, “Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species,” Free Radical Biology and Medicine, Vol. 68, pp. 278-287, 2014.
[12] T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade, “Study on UV-LED/TiO2 process for degradation of Rhodamine B dye,” Chemical Engineering Journal, Vol. 169, pp. 126-134, 2011.
[13] T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, “Energy Efficient UV-LED Source and TiO2 NaNotube Array-Based Reactor for Photocatalytic Application,” Industrial & Engineering Chemistry Research, Vol. 50, pp. 7753-7762, 2011.
[14] http://www.litrax.com.tw/products_detail.php?proitem=15.
[15] P. Liu, B. Yang, and K. Lu, “Design and research on the uniform illumination system of UV exposure machine,” Optical Instruments, Vol. 2, pp. 007, 2012.
[16] 「中國第一台UV LED新型平行光曝光機問世」http://www.uvdeng.com/news/19489530.html, 2012.
[17] http://www.nichia.co.jp/en/about_nichia/index.html.
[18] A. L. Timinger, J. A. Muschaweck, and H. Ries, “Designing tailored free-form surfaces for general illumination,” in Optical Science and Technology, SPIE's 48th Annual Meeting, pp. 128-132, 2003.
[19] A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing Uniform Illumination Systems by Surface-Tailored Lens and Configurations of LED Arrays,” Journal of Display Technology, Vol. 5, pp. 94-103, 2009.
[20] Y. Ding, P. F. Gu, and Z. R. Zheng, “The freeform reflector for uniform rectangular illumination,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Vol. 46, pp. 7771-7773, 2007.
[21] Y. Ding, and P. F. Gu, “Realization of uniform illumination through free-form reflector,” Journal of Optics, Vol. 27, 2007.
[22] Y. Ding, P. F. Gu, W. Lu, and Z. R. Zheng, “Construction of freeform reflector through numerical solutions to differential equations,” Journal of Zhejiang University, Vol. 41, 2007.
[23] Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Optics Express, Vol. 16, pp. 12958-12966, 2008.
[24] A. Domhardt, U. Rohlfing, K. Klinger, K. Manz, D. Kooß, and U. Lemmer, “Optical design of LED-based automotive tail lamps,” Optical Engineering+ Applications, pp. 66700L-66700L-10, 2007.
[25] A. Domhardt, U. Rohlfing, S. Weingaertner, K. Klinger, D. Kooß, K. Manz, and U. Lemmer, “New design tools for LED headlamps,” Photonics Europe, pp. 70032C-70032C-10, 2008.
[26] N. Shatz, J. Bortz, J. Matthews, and P. Kim, “Advanced optics for LED flashlights,” in Proceedings of SPIE, the International Society for Optical Engineering , pp. 70590D. 1-70590D-12, 2008.
[27] M. C. Simon, “Ray Tracing Formulas for Monoaxial Optical-Components,” Applied Optics, Vol. 22, pp. 354-360, 1983.
[28] M. C. Simon, and R. M. Echarri, “Ray tracing formulas for monoaxial optical components: vectorial formulation,” Applied Optics, Vol. 25, pp. 1935-1939, 1986.
[29] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” ACM SIGGRAPH Computer Graphics, pp. 137-145, 1984.
[30] P. Shirley, C. Y. Wang, and K. Zimmerman, “Monte Carlo techniques for direct lighting calculations,” Acm Transactions on Graphics, Vol. 15, pp. 1-36, 1996.
[31] Y. Gu, and N. Narendran, “Design and Evaluation of an LED-based Light Fixture,” Optical Science and Technology, SPIE's 48th Annual Meeting, pp. 318-329, 2004.
[32] J. Chen, Q. Zhu, Q. Chen, Q. Luo, X. Zhu, and B. Yu, “Reflector Design of Light Emitting Diode for Uniform Illuminance,” Photonics and Optoelectronics (SOPO), 2012 Symposium on, pp. 1-4, 2012.
[33] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proceedings of the Physical Society of London, pp. 269-275, 1902.
[34] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review, Rev. 106, pp. 874-881, 1957.
[35] C. J. Powell, and J. B. Swan, “Effect of oxidation on the characteristics loss spectra of aluminum and magnesium,” Physical Review, Rev. 118, pp. 640-643, 1960.
[36] A. Otto. “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, Vol. 216, pp. 398-410, 1968.
[37] E. Kretschmann, and H. Raether, “Radiative decay of Nonradiative surface plasmons excited by light,” Zeitschrift für Naturforschung A, Vol. 23, pp. 2135-2136, 1968.
[38] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B: Chemical, Vol. 54, pp. 16-24, 1999.
[39] R. D. Harris, and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, Vol. 29, pp. 261-267, 1995.
[40] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, Vol. 54, pp. 3-15, 1999.
[41] R. Janmanee, A. Baba, S. Phanichphant, S. Sriwichai, K. Shinbo, K. Kato, and F. Kaneko, “Detection of human IgG on poly(pyrrole-3-carboxylic acid) thin film by electrochemical-surface plasmon resonance spectroscopy,” Japanese Journal of Applied Physics, Vol. 50, pp. 01BK02, 2011.
[42] S. Kishimoto, S. Ohshio, H. Akasaka, and H. Saitoh, “Detection of protein adsorption on silica surface using surface plasmon resonance sensor,” Japanese Journal of Applied Physics, Vol. 47, pp. 8106-8108, 2008.
[43] J. Y. Lee, and S. K. Tsai, “Measurement of refractive index variation of liquids by surface plasmon resonance and wavelength-modulated heterodyne interferometry,” Optics Communications, Vol. 284, pp. 925-929, 2011.
[44] J. Castillo, H. Gutierrez, J. ChiriNos, and J. C. Perez, “Surface plasmon resonance device with imaging processing detector for refractive index measurements,” Optics Communications, Vol. 283, pp. 3926-3930, 2010.
[45] J. MJ. Santillan, L. B. Scaffardi, D. C. Schinca, and F. A. Videla, “Determination of naNometric Ag2O film thickness by surface plasmon resonance and optical waveguide mode coupling techniques,” Journal of Optics, Vol. 12, pp. 045002, 2010.
[46] J. ML. Higuera, A. Cobo, J. Echevarria, F. J. Madruga, and J. L. Arce, “Simultaneous temperature and acceleration optical fiber sensor system for large structures monitoring,” IEEE Lasers and Electro-Optics Society, Vol. 2, pp. 462-463, 2000.
[47] B. Guldimann, P. A. Clerc, and N. F. D. Rooij, “Fiber-optic accelerometer with micro-optical shutter modulation and integrated damping,” IEEE Optical MEMS, pp. 141-142, 2000.
[48] B. JC Deboux, E. Lewis, P. J. Scully, and R. Edwards, “A Novel Technique for Optical Fiber pH Sensing Based on Methyllene Blue Adsorption,” Journal of lightwave technology, Vol. 13, No. 7, 1995.
[49] M. Kamiya, and H. Ikeda, “Simultaneous transmission of vibration sensor position control data and measured vibration data in opposite directions through single plastic optical fiber,” IEEE Emerging Technologies and Factory Automation, Vol. 1, pp. 82-86, 1996.
[50] M. Kimura, and K. Toshima, “A new type optical fiber vibration-sensor,” Solid State Sensors and Actuators, Vol. 2, pp. 1225-1228, 1997.
[51] C. Horn, W. Little, and E. Salter, “Relation of Distance to Candle-Power Distribution from Fluorescent Luminaires,” Illuminating Engineering, Vol. 47, pp. 99, 1952.
[52] W. B. Robert, “Radiometry and the detection of optical radiation,” Wiley-Interscience, 1983.
[53] S. Wallis, “Electromagnetic Surface Excitations,” 1985.
[54] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” 1988.
[55] 邱國斌、蔡定平,「金屬表面電漿簡介」,物理雙月刊,第28卷,第2期,2006年。
[56] D. J. Griffiths, and Reed College, “Introduction to electrodynamics,” Upper Saddle River, NJ: Prentice Hall, Vol. 3, 1999.
[57] D. R. Tilley, K. Welford, J. R. Sambles, A. D. Boardman, T. Twardowski, and R. A. Innes, surface plasmon-polaritations, IOP Publishing Ltd, 1988.
[58] 何符漢、蔡定平、劉威志,「什麼是左手系(left-handed)介質?」,物理雙月刊,第4卷,第24期,2002年。
[59] 邱國斌、蔡定平,「左手材料奈米平板的表面電漿量子簡介」,物理雙月刊,第3卷,第25期,2006年。
[60] N. W. Ashcroft, and N. D. Mermin, “Solid State Physics,” Introduction to Solid State Physics, 1987.
[61] 許峰銘,「表面電漿共振影像系統於DNA微陣列雜交探測」,國立中央大學機械工程研究所碩士論文,2002年。
[62] B. Chadwick, and M. Gal, “An optical temperature sensor using surface plasmons,” Japanese Journal of Applied Physics, Vol. 32, No. 6, pp. 2716-2717, 1993.
[63] I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance -transducers with spectral readout for biosensing applications,” Sensors and Autuators B, Vol.54, No.1 pp. 98-105, 1999.
[64] J. S. Yuk, and K. S. Ha, “Analysis of Immunoreactions on Protein Arrays by Using Wavelength-Interrogation-Based Surface Plasmon Resonance Sensors,” Journal of the Korean Physical Society, Vol. 45, No, 4, pp.1104-1108, 2004.
[65] M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Applied Optics, Vol. 47, No. 33, pp. 6177-6182, 2008.
[66] J. B. Beusink, A. M. Lokate, G. A. Besselink, G. J. Pruijn, and R. B. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosensors and Bioelectronics, Vol. 23, No. 6, pp. 839-844, 2008.
[67] 李振華、張穎穎,「SPR相位檢測方法及應用」,中國光學期刊,第27卷,第4期,220 ~ 223頁,2007年。
[68] S.G Nelson, K.S Johnston, and S.S Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Autuators B, Vol. 35, No. 1, pp. 187-191, 1996.
[69] Synopsys, Inc., RSoft. http://www.rsoftdesign.com/.
[70] International Intellectual Group, Inc., PCGrate. http://www.pcgrate.com
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.6.77
論文開放下載的時間是 校外不公開

Your IP address is 3.15.6.77
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code