Responsive image
博碩士論文 etd-0529116-155910 詳細資訊
Title page for etd-0529116-155910
論文名稱
Title
可撓式快速溶解微針貼片應用於DNA疫苗經皮輸送和增強穩定性
Flexible and Rapidly-Dissolvable Microneedle Patches for Transdermal Delivery and Stability Enhancement of DNA Vaccine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-18
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
聚乙烯醇、經皮免疫、可溶式微針、可撓式貼片、DNA疫苗
Transcutaneous immunization, Dissolving microneedle, DNA vaccine, Flexible patches, Polyvinyl alcohol
統計
Statistics
本論文已被瀏覽 5691 次,被下載 1413
The thesis/dissertation has been browsed 5691 times, has been downloaded 1413 times.
中文摘要
本論文為研發一種可撓式快速溶解微針 (MN) 貼片應用於 DNA 疫苗經皮輸送和增強穩定性之微針系統,是由可快速溶解、生物相容性、成膜性極好的聚乙烯醇 (Polyvinyl alcohol, PVA) 作為微針的主材料,此微針穿刺皮膚後,能夠藉由體內的組織液將微針結構快速溶解釋放出疫苗,通過改變 PDMS 親疏水性質,可以讓疫苗更均勻的塗佈在 PDMS 模具上,微針包覆 PCV2 疫苗,藉由微針製程上的不同,其包覆率最高可到達 87.8 %,包覆量最高可達 22.4 μg,我們由穩定性試驗得知,疫苗包覆在微針中儲存在37 ℃ 下可維持 111 天而不會有任何損壞。由體外試驗證實我們所設計之微針型態具有足夠之機械強度穿刺於角質層,且微針在 10 分鐘內即可溶解於皮膚中讓疫苗釋放在富含抗原呈現細胞之表皮層,且微針穿刺皮膚之痕跡可在 40 分鐘內迅速癒合,避免傷口感染之風險。動物試驗證實在接種後 3 週,微針相較於肌肉注射 (IM) 產生之抗體效價量相差 10 倍,此結果證實微針在人體中可誘發高抗體濃度反應,引發免疫後的最強免疫反應
Abstract
This study developed a flexible and rapidly-dissolvable microneedle (MN) patch for transdermal delivery and stability enhancement of DNA vaccine. The MN patch is made by polyvinyl alcohol (PVA) with the properties of rapid dissolution, biocompatibility and film-forming. Besides, the vaccine encapsulated in MN would be rapidly released after insertion of the MN patch to the skin. We were able to encapsulate 22.4 μg of PCV2 plasmid DNA vaccine in MNs per patch with a loading rate of 87.8 wt % when casting the PCV2 plasmid DNA vaccination the PDMS mode surface. We also done the stability study, the activity of vaccine encapsulated in MNs can be maintained exceed 111 days without any damage at 37 ℃ of storage. The ex vivo study demonstrated that the MNs have excellent mechanical strength to puncture the stratum corneum and needles can be dissolved within 10 minutes to release the vaccine in epidermis then the hole can be quickly healed within 40 minutes to avoid the infection risk. The Animals studies showed that the induced antibody titers via MN patch administration were about 10-time higher than intramuscular (IM) administration after 3 weeks of vaccination. The results confirmed that the MNs can induce high antibody concentration in body to induce the strongest immune responses after immunization.
目次 Table of Contents
論文審定書……………………………………………………………i
誌謝……………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要………………………………………………………………iv
目錄……………………………………………………………………v
圖目錄…………………………………………………………………ix
表目錄…………………………………………………………………xii
第一章 介紹……………………………………………………………1
1.1.一般藥物輸送劑型……………………………………………1
1.1.1.口服劑型………………………………………………1
1.1.2.注射劑型………………………………………………3
1.1.3.經皮輸送劑型…………………………………………5
1.2.經皮藥物輸送與微針貼片……………………………………6
1.2.1.經皮藥物輸送…………………………………………6
1.2.2.微針貼片………………………………………………8
1.3.疫苗……………………………………………………………13
1.3.1.疫苗起源………………………………………………13
1.3.2.不活化疫苗……………………………………………13
1.3.3.減毒疫苗………………………………………………14
1.3.4.DNA疫苗………………………………………………14
1.3.5.VLP 疫苗………………………………………………15
1.4. PCV2 介紹…………………………………………………15
1.5.經皮免疫機制………………………………………………16
1.7.研究目的……………………………………………………17
第二章 實驗材料與方法……………………………………………19
2.1.實驗藥品、耗材與動物……………………………………19
2.2.材料…………………………………………………………20
2.2.1.聚乳酸………………………………………………20
2.2.2.聚乙烯醇……………………………………………21
2.2.3.螢光染劑羅丹明 B (Rhodamine B) ………………21
2.2.4.蔗糖 (Sucrose) …………………………………22
2.3.儀器設備……………………………………………………22
2.4.可溶式微針貼片……………………………………………24
2.4.1.聚乙烯醇微針貼片之製備…………………………24
2.5.包覆 Rhodamine B 染劑之可溶式微針貼片………………26
2.5.1. 聚乙烯醇 / Rhodamine B 溶液配製………………26
2.5.2.包覆 Rhodamine B 微針貼片之製備………………26
2.5.3.包覆率測試……………………………………………27
2.6.包覆 DNA 疫苗之可溶式微針貼片…………………………28
2.6.1.GFP-plasmid DNA 之製備……………………………28
2.6.2.包覆 GFP-plasmid DNA 之可溶式微針貼片製備…29
2.6.3.包覆 GFP-plasmid DNA 之可溶式微針貼片包覆率
測試…………………………………………………………30
2.6.4.包覆 GFP-plasmid DNA之可溶式微針貼片生物
活性…………………………………………………………31
2.6.5.細胞培養與後續將 GFP-plasmid DNA 轉染進細胞
表現…………………………………………………………32
2.6.6.包覆GFP-plasmid DNA可溶式微針貼片儲存穩定性
測試…………………………………………………………33
2.6.7.PCV2-plasmid DNA 疫苗之製備……………………34
2.6.8.包覆DNA疫苗之聚乙烯醇微針貼片之製備…………35
2.6.9.包覆DNA疫苗之聚乙烯醇微針貼片包覆率實………35
2.6.10.包覆DNA疫苗之聚乙烯醇微針貼片生物活性……37
2.6.11.包覆DNA疫苗之聚乙烯醇微針貼片穩定性測試…37
2.6.12.Western blotting…………………………………38
2.7.微針穿刺能力測試……………………………………………39
2.7.1.微針機械強度試驗……………………………………39
2.8.皮膚穿刺試驗及後續組織切片染色…………………………40
2.8.1.聚乙烯醇微針針尖溶解時間與百分比測試…………40
2.8.2.體外豬皮穿刺…………………………………………40
2.8.3.活體小鼠穿刺…………………………………………41
2.8.4.皮膚組織切片…………………………………………42
2.8.5.固定組織與染H&E (Hematoxylin & Eosin) …………42
2.9.皮膚穿刺傷口癒合測試………………………………………43
2.10.小鼠免疫試驗………………………………………………44
第三章 結果與討論……………………………………………………46
3.1. PDMS 模具改性實驗…………………………………………46
3.2.可溶式聚乙烯醇微針貼片………………………………47
3.3.微針機械性質…………………………………………………49
3.4.微針針尖溶解時間與百分比分析……………………………50
3.5.微針穿刺能力分析……………………………………………52
3.6.皮膚穿刺傷口癒合分析…………………………………53
3.7.包覆染劑之可溶式微針貼片…………………………………54
3.7.1.包覆 Rhodamine B 染劑微針貼片…………………54
3.7.2.包覆率分析……………………………………………56
3.8.裝載 Plasmid DNA 之可溶式微針貼片製備………………56
3.8.1.包覆 GFP-plasmid DNA 之可溶式微針貼片…………56
3.8.2.包覆率分析……………………………………………58
3.8.3. 生物活性分析…………………………………………59
3.8.4.儲存穩定性分析………………………………………62
3.9.裝載 PCV2 疫苗之可溶式微針貼片製備…………………65
3.9.1.包覆 PCV2-plasmid DNA 疫苗之可溶式微針貼片…65
3.9.2.包覆率分析……………………………………………66
3.9.3.生物活性與儲存穩定性………………………………67
3.10.小鼠免疫試驗結果…………………………………………69
第四章 結論…………………………………………………………72
參考文獻……………………………………………………………74
圖目錄
圖1-1皮膚構造示意圖………………………………………………7
圖1-2固體與塗佈型微針……………………………………………9
圖1-3中空型微針……………………………………………………10
圖1-4高分子聚合物微針……………………………………………12
圖1-5應變性免疫反應的發展階段簡圖……………………………16
圖1-6可溶式微針製作示意圖………………………………………17
圖1-7可溶式微針應用示意圖………………………………………18
圖2-1聚乳酸化學結構圖……………………………………………20
圖2-2聚乙烯醇化學結構圖…………………………………………21
圖2-3 Rhodamine B 化學結構圖……………………………………21
圖2-4蔗糖 (Sucrose) 化學結構圖…………………………………22
圖2-5Rhodamine B 微針包覆率試驗簡圖……………………………27
圖2-6包覆DNA疫苗之聚乙烯醇微針貼片包覆率實驗簡圖…………36
圖2-7微針機械強度試驗簡圖………………………………………39
圖2-8體外豬皮穿刺簡圖……………………………………………41
圖2-9皮膚穿刺傷口癒合測試簡圖…………………………………43
圖2-10小鼠免疫試驗流程簡圖………………………………………45
圖3-1利用聚乙烯醇來改善 PDMS 表面的疏水性…………………47
圖3-2聚乙烯醇可溶式微針及不同倍率之 SEM 影像……………48
圖3-3機械強度測試…………………………………………………49
圖3-4微針針尖溶解影像圖、溶解時間與百分比……………………51
圖3-5包覆 Rhodamine B 聚乙烯醇微針穿刺豬皮之組織切片……53
圖3-6皮膚穿刺傷口癒合影像圖……………………………………54
圖3-7包覆 Rhodamine B 之聚乙烯醇微針陣列在立體顯微鏡下使用白光拍攝…………………55
圖3-8包覆 Rhodamine B 染劑之聚乙烯醇微針貼片包覆效率……57
圖3-9包覆 GFP plasmid DNA 聚乙烯醇微針陣列在立體顯微鏡下使用白光拍攝………………57
圖3-10包覆 GFP-plasmid DNA 之聚乙烯醇微針貼片包覆效率…58
圖3-11 GFP-plasmid DNA 包覆在聚乙烯醇微針與 Naked GFP-plasmid DNA 放置前與放置在 37 ℃ 烘箱中 6 天之凝膠電泳圖………………………………………………………………………60
圖3-12 GFP-plasmid DNA 包覆在聚乙烯醇微針與 Naked GFP-plasmid DNA 放置前與放置在 37 ℃ 烘箱中 6 天,觀察兩者轉染進細胞 (HEK-293) 之 GFP-plasmid DNA 之生物活性…………61
圖3-13 GFP-plasmid DNA 包覆在聚乙烯醇微針中放置在 37 ℃ 烘箱中進行儲存穩定性試驗……………………63
圖3-14包覆 PCV2-plasmid DNA 之聚乙烯醇微針陣列在
立體顯微鏡下使用白光拍攝…………………………………………65
圖3-15包覆 PCV2-plasmid DNA 之聚乙烯醇微針貼片包覆率……………………………………………66
圖3-16微針裝載 PCV2-plasmid DNA 與 Naked PCV2 plasmid DNA 放置於 37 ℃ 烘箱不同天數,藉由 Western blotting 觀察 PCV2 plasmid DNA 之儲存穩定性…………………………………………68
圖3-17小鼠以 PCV2-plasmid DNA 疫苗免疫試驗產生抗體之結果…………………………71
表目錄
表3-1小鼠免疫試驗之結果……………………71
參考文獻 References
[1] Scully C, Miller CS, Urizar JMA, Alajbeg I, Almeida OPD, Bagan JV, Birek C, Chen Q, Farah CS, Figueirido JP, Hasséus B, Jontell M, Kerr AR, Laskaris G, Muzio LL, Taylor AM, Nagesh KS, Nikitakis NG, Peterson D, Sciubba J, Thongprasom K, Tovaru Ş, Zadik Y. Oral medicine (stomatology) across the globe: birth, growth, and future. Or Surg or Med or Pa 2016, 121 (2), 149-157.
[2] Esteban-Fernandez A, Rocha-Alcubilla N, Munoz-Gonzalez C, Moreno-Arribas MV, Pozo-Bayon MA. Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure. Food Chem 2016, 205, 280-288.
[3] Brailo V, Firriolo FJ, Tanaka TI, Varoni E, Sykes R, McCullough M, Hua H, Sklavounou A, Jensen SB, Lockhart PB, Mattsson U, Jontell M. World Workshop on Oral Medicine VI: Utilization of Oral Medicine-specific software for support of clinical care, research, and education: current status and strategy for broader implementation. Or Surg or Med or Pa 2015, 120 (2), 172-184.
[4] 巫文玲。創新藥物傳輸系統發展趨勢。經濟部技術處,台灣 2012。
[5] Pattani A, McKay PF, Garland MJ, Curran RM, Migalska K, Cassidy CM, Malcolm RK, Shattock RJ, McCarthy HO, Donnelly RF. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J. Control. Release 2012, 162 (3), 529-537.
[6] Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, Kole PL, Mahmood TMT, McCarthy HO, Woolfson AD. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv Funct Mater 2012, 22(23), 4879-4890.
[7] Wanner M, Sakamoto FH, Avram MM, Chan HH, Alam M, Tannous Z, Anderson RR. Immediate skin responses to laser and light treatments Therapeutic endpoints: How to obtain efficacy. J Am Acad Dermatol 2016, 74 (5), 821-833.
[8] Luyten A, Hastor H, Vasileva T, Zander M, Petry KU. Laser-skinning colpectomy for extended vaginal intraepithelial neoplasia and microinvasive cancer. Gynecol Oncol 2014, 135 (2), 217-222.
[9] Nagelreiter C, Mahrhauser D, Wiatschka K, Skipiol S, Valenta C. Importance of a suitable working protocol for tape stripping experiments on porcine ear skin: Influence of lipophilic formulations and strip adhesion impairment. Int. J. Pharm 2015, 491 (1-2), 162-169.
[10] Hoppel M, Baurecht D, Holper E, Mahrhauser D, Valenta C. Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum. Int. J. Pharm 2014, 472 (1-2), 88-93.
[11] Klang V, Schwarz JC, Lenobel B, Nadj M, Aubock J, Wolzt M, Valenta C. In vitro vs. in vivo tape stripping: Validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Eur J Pharm Biopharm 2012, 80 (3), 604-614.
[12] Field T. Massage therapy research review. Complement Ther Clin 2014, 20 (4), 224-229.
[13] 李權益。分子生物學,合記圖書出版社,台灣 2004。.
[14] Hong XY, Wei LM, Wu F, Wu ZZ, Chen LZ, Liu ZG, Yuan W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Dev Ther 2013, 7, 945-952.
[15] Moga KA, Bickford LR, Geil RD, Dunn SS, Pandya AA, Wang YP, Fain JH, Archuleta CF, O'Neill AT, DeSimone JM. Rapidly-Dissolvable Microneedle Patches Via a Highly Scalable and Reproducible Soft Lithography Approach. Adv. Mater 2013, 25 (36), 5060-5066.
[16] 謝文欽。細胞與分子免疫學,合記圖書出版社,台灣 2005。
[17] Olatunji O, Das DB. Drug Delivery Using Microneedles, Elsevier B.V, UK 2011.
[18] Jin CY, Han MH, Lee SS, Choi YH. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed. Microdevices 2009, 11 (6), 1195-1203.
[19] Ami Y, Tachikawa H, Takano N, Miki N. Formation of polymer microneedle arrays using soft lithography. J Micro-Nanolith Mem 2011, 10 (1), 011503.
[20] Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng 2011, 88 (8), 1681-1684.
[21] Zhou CP, Liu YL, Wang HL, Zhang PX, Zhang JL. Transdermal delivery of insulin using microneedle rollers in vivo. Int. J. Pharm 2010, 392 (1-2), 127-133.
[22] van der Maaden K, Sekerdag E, Schipper P, Kersten G, Jiskoot W, Bouwstra J. Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination. Langmuir 2015, 31 (31), 8654-8660.
[23] Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO, Compans RW, Kang SM, Prausnitz MR. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 2012, 81 (2), 239-247.
[24] Luangveera W, Jiruedee S, Mama W, Chiaranairungroj M, Pimpin A, Palaga T, Srituravanich W. Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed 2015, 50, 77-81.
[25] Chen XF, Prow TW, Crichton ML, Jenkins DWK, Roberts MS, Frazer IH, Fernando GJ, Kendall MA. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J. Controlled Release 2009, 139 (3), 212-220.
[26] Vrdoljak A, McGrath MG, Carey JB, Draper SJ, Hill AVS, O'Mahony C, Crean AM, Moore AC. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Controlled Release 2012, 159 (1), 34-42.
[27] Larran˜eta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R 2016, 104, 1-32.
[28] Witting M, Obst K, Pietzsch M, Friess W, Hedtrich S. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int. J. Pharm 2015, 486 (1-2), 52-58.
[29] Lee K, Lee HC, Lee DS, Jung H. Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle. Adv. Mater 2010, 22 (4), 483-486.
[30] Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliver Rev 2012, 64 (14), 1547-1568.
[31] Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. NANOMED NANOTECH BIOL MED 2005, 1 (2), 184-190.
[32] Windmiller JR, Valdes RG, Zhou N, Zhou M, Miller PR, Jin CM, Brozik SM, Polsky R, Katz E, Narayan R, Wang J. Bicomponent Microneedle Array Biosensor for Minimally-Invasive Glutamate Monitoring. Electroanalysis 2011, 23 (10), 2302-2309.
[33] Vazquez P, Herzog G, O'Mahony C, O'Brien J, Scully J, Blake A, O’Mathuna C, Galvin P. Microscopic gel-liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sensor Actuat B-Chem 2014, 201, 572-578.
[34] Sun WC, Araci Z, Inayathullah M, Manickam S, Zhang XX, Bruce MA, Marinkovich MP, Lane AT, Milla C, Rajadas J, Butte MJ. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications. Acta Biomater 2013, 9 (8), 7767-7774.
[35] Martin CJ, Allender CJ, Brain KR, Morrissey A, Birchall JC. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012, 158 (1), 93-101.
[36] Chu LY, Prausnitz MR. Separable arrowhead microneedles. J. Controlled Release 2011, 149 (3), 242-249.
[37] Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater 2008, 20 (5), 933-938.
[38] Chen MC, Ling MH, Lai KY, Pramudityo E. Chitosan Microneedle Patches for Sustained Transdermal Delivery of Macromolecules. Biomacromolecules 2012, 13 (12), 4022-4031.
[39] Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 2013, 34 (12), 3077-3086.
[40] Donnelly RF, Mooney K, Mccrudden MTC, Vicente-Perez EM, Belaid L, Gonzalez-Vazquez P, Mcelnay JC, Woolfson AD. Hydrogel-Forming Microneedles Increase in Volume During Swelling in Skin, but Skin Barrier Function Recovery is Unaffected. J. Pharm. Sci 2014, 103 (5), 1478-1486.
[41] Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 2012, 33 (2), 668-678.
[42] Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG. Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Adv Funct Mater 2012, 22 (2), 330-335.
[43] Di J, Yao SS, Ye YQ, Cui Z, Yu JC, Ghosh TK, Zhu Y, Gu Z. Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. Acs Nano 2015, 9 (9), 9407-9415.
[44] Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: Novel dissolving microneedle fabrication. J. Control. Release 2013, 170 (3), 430-436.
[45] Yuqin qiua LG, Panyong Maob, Yunhua Gaoa. Dissolving microneedle arrays for intradermal immunization of hepatitis B virus DNA vaccine. PROCEDIA VACCINOL 2015, 9, 24-30.
[46] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008, 29 (13), 2113-2124.
[47] Chen MC, Lin ZW, Ling MH. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy. Acs Nano 2016, 10 (1), 93-101.
[48] Jacoby E, Jarrahian C, Hull HF, Zehrung D. Opportunities and challenges in delivering influenza vaccine by microneedle patch. Vaccine 2015, 33 (37), 4699-4704.
[49] Ling MH, Chen MC. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater 2013, 9(11), 8952-8961.
[50] Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J. control. release 2016, 225, 192-204.
[51] Zeng W, Wang Q, Wang Y, Zhao C, Li Y, Shi C, Wu S, Song X, Huang Q, Li S. Immunogenicity of a cell culture-derived inactivated vaccine against a common virulent isolate of grass carp reovirus. FISH SHELLFISH IMMUNOL 2016, 54, 473-480.
[52] Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wanga X, Zhua Y, Penga D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2016, 34 (3), 350-357.
[53] Vzorov AN, Wang L, Chen JJ, Wang BZ, Compans RW. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology 2016, 489, 141-150.
[54] Zeng Z, Dai S, Jiao Y, Jiang L, Zhao Y, Wang B, Zong L. Mannosylated protamine as a novel DNA vaccine carrier for effective induction of anti-tumor immune responses. Int. J. Pharm 2016, 506 (1-2), 394-406.
[55] 李忠明,張延齡,徐德啟,楊曉明。當代新疫苗,五南圖書出版股份有限公司,台灣 2003。
[56] Peng ZY, Ma T, Pang DX, Su D, Chen FW, Chen XR, Guo N, Ouyang T, Ouyang SH, Ren LZ. Expression, purification and antibody preparation of PCV2 Rep and ORF3 proteins. Int J Biol Macromol 2016, 86, 277-281.
[57] Bo RN, Zheng SS, Xing J, Luo L, Niu YL, Huang Y, Liu ZG, Hu YL, Liu JG, Wu Y, Wang DY. The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. Int J Biol Macromol 2016, 85, 294-301.
[58] Sno M, Cox E, Holtslag H, Nell T, Pel S, Segers R, Fachinger V, Witvliet M. Efficacy and safety of a new intradermal PCV2 vaccine in pigs. Trials in Vaccinology 2016, 5, 24-31.
[59] 林峰輝,白育綸,俞耀庭,張興棟。生物醫用材料,新文京開發出版股份有限公司,台灣 2004。
[60] 劉士榮,高宜娟。生醫材料,滄海書局,台灣 2010。
[61] Ghasemi E, Kaykhaii M. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples. SPECTROCHIM ACTA A 2016, 164, 93-97.
[62] Yahia IS, Jilani A, Abutalib MM, AlFaify S, Shkir M, Abdel-wahab MS, Al-Ghamdi AA, El-Naggar AM. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass. Physica B 2016, 490, 25-30.
[63] Kim YC, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J. Control. Release 2013, 172 (2), 579-588.
[64] Burnette WN. Western Blotting - Electrophoretic Transfer of Proteins from Sodium Dodecyl Sulfate-Polyacrylamide Gels to Unmodified Nitrocellulose and Radiographic Detection with Antibody and Radioiodinated Protein-A. Anal Biochem 1981, 112 (2), 195-203.
[65] Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 2014, 2014, 655-658.
[66] Lee D, Yang S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensor Actuat B-Chem 2012, 162 (1), 425-434.
[67] Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011, 32 (11), 3134-3140.
[68] Lee K, Kim JD, Lee CY, Her S, Jung H. A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials 2011, 32 (30), 7705-7710.
[69] Lee K, Jung H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials 2012, 33 (30), 7309-7326.
[70] Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, Allender CJ. Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur J Pharm Biopharm 2015, 89, 224-231.
[71] Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015, 33 (37), 4712-4718.
[72] Lahiji SF, Dangol M, Jung H. A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery. Sci Rep-Uk 2015, 5, 7914.
[73] Wu D, Quan YS, Kamiyama F, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Improvement of Transdermal Delivery of Sumatriptan Succinate Using a Novel Self-dissolving Microneedle Array Fabricated from Sodium Hyaluronate in Rats. Biol Pharm Bull 2015, 38 (3), 365-373.
[74] Donnelly RF, McCrudden MTC, Alkilani AZ, Larraneta E, McAlister E, Courtenay AJ, Kearney MC, Singh TRR, McCarthy HO, Kett VL, Caffarel-Salvador E, Al-Zahrani S, Woolfson AD. Hydrogel-Forming Microneedles Prepared from "Super Swelling' Polymers Combined with Lyophilised Wafers for Transdermal Drug Delivery. Plos One 2014, 9 (10), e111547.
[75] Ko PT, Lee IC, Chen MC, Tsai SW. Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J Taiwan Inst Chem E 2015, 51, 1-8.
[76] Ke CJ, Lin YJ, Hu YC, Chiang WL, Chen KJ, Yang WC, Liu HL, Fu CC, Sung HW. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials 2012, 33 (20), 5156-5165.
[77] Chen MC, Wang KW, Chen DH, Ling MH, Liu CY. Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater 2015, 13, 344-353.
[78] Song JM, Kim YC, O EJ, Compans RW, Prausnitz MR, Kang SM. DNA Vaccination in the Skin Using Microneedles Improves Protection Against Influenza. Mol Ther 2012, 20 (7), 1472-1480.
[79] Lee KJ, Park SH, Lee JY, Joo HC, Jang EH, Youn YN, Ryu WH. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J. Control. Release 2014, 192, 174-181.
[80] Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, Washburn NR, Falo Jr. LD. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater 2015, 24, 96-105.
[81] Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, Birchall JC. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release 2012, 160 (3), 561-569.
[82] DeMuth PC, Min YJ, Huang B, Kramer JA, Miller AD, Barouch DH, Hammond PT, Irvine DJ. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 2013, 12 (4), 367-376.
[83] Kim NW, Lee MS, Kim KR, Lee JE, Lee K, Park JS, Matsumoto Y, Jo DG, Lee H, Lee DS, Jeong JH. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J. Control. Release 2014, 179, 11-17.
[84] 行政院衛生署疾病管制局,台灣兒科醫學會,台灣感染症醫學會。感染與疫苗,行政院衛生署疾病管制局,台灣 2013。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code