Responsive image
博碩士論文 etd-0530101-113833 詳細資訊
Title page for etd-0530101-113833
論文名稱
Title
頻譜分析技術的改進及在電機監視的應用
The improvements and applications of spectrum analysis technology on the electric machinery supervision
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-05-16
繳交日期
Date of Submission
2001-05-30
關鍵字
Keywords
最佳化、參數評估、頻譜、辨識
Optimization, Parameter estimation, Spectrum, Recognition
統計
Statistics
本論文已被瀏覽 5681 次,被下載 2037
The thesis/dissertation has been browsed 5681 times, has been downloaded 2037 times.
中文摘要
摘 要
本論文對頻譜分析技術作進一步的改進與利用。分為三部份:信號參數評估、頻譜分析的最佳化及電機狀況監視。研究結果對現今信號處理的理論與應用提出了完整的改善方法。
參數評估是動態設計、控制和監視的基礎。本論文推導一組完整的參數評估方法。以頻域的觀點分析信號參數。在電機領域中最常處理的信號都可以用複數指數型式表示。該信號的參數包含頻率、阻尼、振幅及相位。根據阻尼的存在與否可分為週期性信號及非週期性信號。每個複數指數分量在頻譜將產生所屬的頻帶。該方法利用每個頻帶中最高振幅的刻度為參考,分別求取信號精確的參數。在條件許可下,計算式亦可簡化到相當實用的程度,並維持精確分析的結果。
頻譜分析技術廣泛地應用快速傅立葉轉換(FFT)於時頻轉換的工作。然而數位信號取樣是隨機的,FFT的轉換又有特定的限制。使得信號經由FFT轉換到頻譜上將不可避免地產生誤差。本論文利用最佳化的方法解決頻譜對信號分析所產生的誤差。當頻率刻度符合信號特性時,信號在頻譜中所產生的柵欄效應及洩漏效應將會降到最低的程度。該方法由信號參數評估、最佳刻度參數選取及可調式頻譜等三種新技術所構成。不僅能將信號的參數清楚而精確地顯示在頻譜上,並可維持快速處理的能力。當分析的信號愈複雜,最佳化的結果將受到限制。在這種情況下可針對局部的信號予以明確化,則仍可維持精確的分析結果。
本論文整合監視技術於一種信號的量測上。使監測的信號取樣更簡單、方便。透過聲訊的分析來監視電機機械的運轉狀況及故障診斷。不僅能對其他無法測量的馬達依然能正常偵測,同時也擴大監測的功能。在運轉狀況監視方面,以聲訊的分析監視感應機轉速及輸入功率;在故障狀況辨識方面,辨識系統在不同負載的情況下仍可成功地辨識出不同的故障狀況。辨識系統以類神經網路建立,證實其對辨識能力的提昇。
有關本論文所提的方法,均透過實際而合理的評估,驗證其精確性及實用性。
Abstract
Abstract
An improvement and more accuracy method for spectrum analysis has been achieved in this thesis. There are three major parts in this thesis: the signal parameter estimation, the optimization of spectrum analysis, and the supervision to electric machinery. All these parts suggest the improvement ways to theories and applications of signal process.
Parameter estimation is the base of dynamic designs, controls, and supervisions. This thesis infers the complete method to estimate parameters. The method estimates signal parameters in frequency domain. In electric machinery analysis, the most signals can consist of complex exponents. The component parameters include frequency, damping, amplitude, and phase. Basing on the damping existed or not, signals can be classified into two parts: periodic and non-periodic. Each complex exponent component will produce its band on spectrum. This method references the scales with highest amplitudes to estimate exact parameters. In suitable conditions, these mathematical equations can be simplified substantially to save computing time.
The developed technologies of spectrum analysis take FFT to deal with the time-frequency transform work extensively. However, the sample of discrete signal is at random, and FFT suffers specific restrictions. When FFT transforms signal into frequency domain, the signal will cause errors on spectrum inevitably. This thesis corrects the errors by the optimization method. When frequency scales can match with signal characteristics, the picket-fence effect and leakage effect that the signal caused on spectrum will decrease to minimum. This method consists of three new technologies: parameter estimation, selection for optimal scale parameters, and adjustable spectrum. The method not only displays signal parameters on spectrum exactly and clearly, but also keeps the ability of fast process. When analyzing the more complex signal, the result of optimization will be restricted. Under this condition, the method can focus on the partial components and analyze them, then the result will keep accurate.
This thesis combines supervisory technologies via a signal measurement. The signal sampling of these technologies is more convenient and simple. The system monitors operating conditions and fault conditions of the electric machinery with sound signal analysis. This signal analysis not only keeps normal measurement in the place which other signals can’t be detected, but also can expand the monitoring ability. In operation conditions, the system monitors the speed and the input power of electric machinery through sound signal analysis. In fault conditions, the system recognizes type of fault under variation loads successfully. The recognition system is established by artificial neural network. The improvement of recognition ability is also discussed in this thesis.
The methods discussed in the thesis give powerful estimation method for the signal analysis accurately and practically.
目次 Table of Contents
目 錄

頁次

目錄 …………………………………………………………... …………………. I
圖目錄 ……………………………………………………………………………. VI
表目錄 ………………………………………………………………….………… X
摘要 ………………………………………………………………………………… XI
Abstract ……………………………………………………………………………. XII

第一章 緒論 ………………………………………………………………….. 1
1.1 研究背景與目的 …………………………………………… 1
1.2 創新與貢獻 …………………………………………………. 3
1.3 內容概述 ……………………………………………………… 4

第二章 頻譜分析技術及其限制 …………………………..……… 7
2.1 前言 ……………………………………………………….…… 7
2.2 頻譜分析的演化 …………………………..……………… 8
2.2.1 傅立葉級數 ………………………….………………… 8
2.2.2 離散傅立葉轉換 ……………………………………… 9
2.2.3 頻譜參數及其影響 …………………………………… 10
2.2.4 快速傅立葉轉換 ……………………………………… 11
2.3 FFT造成的誤差 …………………………………………… 12
2.3.1 理想的頻譜分析 ……………………………………… 13
2.3.2 柵欄效應 ……………………………….……………… 14
2.3.3 洩漏效應 ……………………………….……………… 14
2.3.4 混疊效應 ……………………………….……………… 16
2.3.5 非週期性信號 …………………….…………………… 16

第三章 信號參數評估 …………………………..……………………… 18
3.1 前言 …………………………………………….……………… 18
3.2 諧波的參數評估 ……………..…………………………… 21
3.2.1理論 ……………………………………………………… 21
3.2.1.1 諧波對頻譜刻度的影響 ………………………… 21
3.2.1.2 參數評估 ………………………………………… 23
3.2.1.3 干擾去除 ………………………………………… 25
3.2.2 程序 ………………………………………………..…… 26
3.2.2.1 處理步驟 ………………………………………… 26
3.2.2.2 特殊情況 ………………………………………… 27
3.2.3 評估 ………………………………..…………………… 27
3.2.3.1 精確度 …………………………………………… 28
3.2.3.2 處理速度 ………………………………………… 28
3.2.3.3 分析限制與解決方法 …………………………… 30
3.2.3.4 實際應用 ………………………………………… 30
3.2.4 不同分析方法的比較 …………..…………………… 31
3.2.4.1 準牛頓法 ………………………………………… 32
3.2.4.2 群集諧波法 ……………………………………… 33
3.2.4.3 FFT插值法 …………………………….………… 33
3.3 複數指數的參數評估 ……………….…………………… 36
3.3.1理論 ……………………………………………………… 36
3.3.1.1 複數指數對頻譜的影響 ………………………… 36
3.3.1.2 參數評估 ………………………………………… 38
3.3.1.3 干擾去除 ………………………………………… 40
3.3.2 程序 …………………………………………………..… 40
3.3.2.1 處理步驟 ………………………………………… 41
3.3.2.2 特殊情況 ………………………………………… 42
3.3.3 評估 …………………………………………………..… 43
3.3.3.1 精確度 …………………………………………… 43
3.3.3.2 處理速度 ………………………………………… 43
3.3.3.3 限制與解決方法 ………………………………… 44
3.3.3.4 實際應用 ………………………………………… 46
3.4 計算式的簡化 ……………………………………….……… 48
3.4.1 簡化的條件 ……………………………….…………… 48
3.4.2 諧波參數的求解 ……………………………………… 48
3.4.3 複數指數參數的求解 …………..…………………… 49
3.4.4 殘項補償 ……………………………….……………… 50
3.4.5 評估 …………………………………………..………… 52
3.4.5.1 誤差 ……………………………………………… 52
3.4.5.2 精確度的提昇 …………………………………… 57
3.5 頻帶放大技術 ………………………….…………………… 59
3.5.1 頻率解析度對頻譜分析的影響 ………….……..… 59
3.5.2 傳統的頻帶放大技術 …………………..…………… 59
3.5.3 取樣週期擴充法 ……………………………………… 60
3.5.4 能力評估 ……………………….……………………… 60


第四章 頻譜分析的最佳化 …………………………..……………… 62
4.1 前言 ……………………………………………………….…… 62
4.2 最佳刻度參數選取 ……………….……………………… 65
4.2.1 最佳化的現象 ………………………………………… 65
4.2.2 最小洩漏量 ………………………….………………… 66
4.2.3 程序 …………………………………………..………… 69
4.2.4 評估 …………………………..………………………… 69
4.3 可調式頻譜 ……………………………….………………… 72
4.3.1 理論 ……………………………………..……………… 72
4.3.1.1 刻度間隔的調整 ………………………………… 72
4.3.1.2 刻度位移的調整 ………………………………… 73
4.3.1.3 可調式頻譜的演算流程 ………………………… 74
4.3.2評估 ……………………………….……………………… 74
4.3.2.1 刻度間隔改變的影響 …………………………… 74
4.3.2.2 刻度位移改變的影響 …………………………… 76
4.3.2.3 最佳化的解 ……………………………………… 78
4.3.2.4 處理速度………………………………………… 78
4.3.2.5 不同頻率刻度對信號的解析…………………… 79
4.4 最佳化法 …………………………..………………………… 81
4.4.1 程序 ………………………………………………..…… 81
4.4.2 評估 ……………………………………..……………… 82
4.4.2.1 諧波參數評估 …………………………………… 82
4.4.2.2 最佳刻度參數選取 ……………………………… 83
4.4.2.3 可調式頻譜 ……………………………………… 84
4.4.2.4 速度 ……………………………………………… 85
4.4.2.5 限制 ……………………………………………… 85
4.4.3 不同方法的比較 ……………………………………… 86
4.4.3.1 原取樣信號 ……………………………………… 86
4.4.3.2 視窗法 …………………………………………… 88
4.4.3.3 零補位法 ………………………………………… 90
4.4.3.4 整數週期擴充法 ………………………………… 92
4.4.3.5 最佳化法 ………………………………………… 93
4.4.4 應用 ……………………………………..……………… 95
4.4.4.1 簡單的情況 ………………………….……… 95
4.4.4.2 特徵分析 ………………………..…………… 95
4.4.4.3 頻帶分析 ……………………………..……… 98

第五章 電機狀況監視 ……………………………..…………………… 99
5.1 前言 …………………………………………….……………… 99
5.2 聲音信號的處理 ………………..………………………… 101
5.2.1 頻帶的漂移 ………………………….………………… 104
5.2.1.1 波峰頻率的計算 ………………………………… 104
5.2.1.2 頻率軸等比校正 ………………………………… 106
5.2.2 振幅的變化 ……………………………………….…… 107
5.2.2.1 負載分段 ………………………………………… 107
5.2.2.2 特徵萃取 ………………………………………… 107
5.2.3 評估 ………………………………………….….……… 110
5.2.3.1 頻率軸等比校正的結果 ………………………… 110
5.2.3.2 負載分段的結果 ………………………………… 110
5.2.3.3 特徵萃取的結果 ………………………………… 110
5.3 類神經網路與辨識系統 ……………………..………… 115
5.3.1 類神經網路 ………………………………….………… 115
5.3.2 辨識系統 ……………………………………….……… 118
5.3.3 訓練與辨識 ………………………………….………… 119
5.3.3.1 訓練過程 ……………………….……………… 119
5.3.3.2 辨識過程 ………………………………………… 121
5.4 設備架構 ………………………………………..…………… 122
5.5 運轉狀況監視 …………………………….………………… 123
5.5.1 資料庫建立 …………………………….……………… 123
5.5.2 波峰頻率所對應的轉速 ………….………………… 124
5.5.3 結果與討論 ………………………………………….… 125
5.5.3.1 轉速的偵測 ……………………………………… 125
5.5.3.2 輸入功率的偵測 ………………….…………… 126
5.6 故障狀況辨識 ……………………….……………………… 127
5.6.1 處理程序 …………………………………….………… 127
5.6.2 參數設定 ………………………………….…………… 129
5.6.2.1 狀況模擬 ………………………………………… 129
5.6.2.2信號處理的參數設定 ……………………….… 129
5.6.2.3 訓練樣本與辨識樣本 …………………………… 129
5.6.2.4 類神經網路的參數設定 ………………………… 131
5.6.3 結果與討論 …………………………….……………… 132
5.6.3.1 辨識率 …………………………………………… 132
5.6.3.2 不同方法的比較 ………………………………… 134
5.6.3.3 不同對象的適應 ………………………………… 136

第六章 結論與研究展望 …………………………….………………… 138
6.1 結論 ……………………………………………….…………… 138
6.1.1 信號參數評估 ………………………….……………… 138
6.1.2 頻譜分析的最佳化 …………………………………… 139
6.1.3 電機狀況監視 ……………………………………….… 140
6.2 未來研究展望 …………………………………….………… 142
6.2.1 時域的參數評估 ……………………………………… 142
6.2.2 系統模型參數的建立 …………..…………………… 142
6.2.3 電磁信號分析在監測系統上的應用 ……..……… 142

參考文獻 …………………………………………………………..…………… 144
附錄一 週期信號參數計算式的推導 ……..…………………… 149
附錄二 複數指數參數計算式的推導 ………..………………… 155
附錄三 最小洩漏量的推導 …………………………………..……… 163
發表著作……………..…………….………………………………..…………… 167
作者簡歷……………………………………………………………..…………… 168

參考文獻 References
參考文獻

[1] J.W. Cooley and J.W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Mathematics Computation, vol. 19, April 1965, pp. 297-301.
[2] R. Bracewell, The Fourier transform and its application, New York: McGraw-Hill, 1965.
[3] R.C. Singleton, “An algorithm for computing the mixed radix fast Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-17, June 1969, pp. 93-103.
[4] E.O. Brigham, The fast Fourier transform, New Jersey: Prentice-Hall, 1974.
[5] J. Sottile, Jr. and L.E. Holloway, “An overview of fault monitoring and diagnosis in mining equipment,” IEEE Trans. Industry Applications, vol. 30, No. 5, Sept./Oct. 1994, pp. 1326-1332.
[6] P.J. Tavner, B.G. Gaydon, and D.M. Ward, “Monitoring generators and large motors,” IEE Proceedings-B, vol. 133, No. 3, May 1986, pp. 169-180.
[7] A.V. Oppenheim and R.W. Schafer, Discrete-time signal processing, New Jersey: Prentice-Hall, 1989.
[8] L.C. Ludeman, Fundamentals of digital signal processing, New York: Harper and Row, 1986.
[9] G.D. Bergland, “A guided tour of the fast Fourier transform,” IEEE Spectrum, July 1969, pp. 41-52.
[10] P.D. Welch, “A fixed-point fast Fourier transform analysis,” IEEE Trans. Audio Electroacoust., vol. 17, No. 2, 1969, pp. 151-157.
[11] A.A. Girgis and F.M. Ham, “A quantitative study of pitfalls in the FFT,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-16, No. 4, July 1980, pp. 434-439.
[12] D.J. Ewins, Model testing: theory and practice, New York: Wiley, 1984.
[13] H.W. Dommel, “Digital computer solution of electromagnetic transients in single- and multiphase networks,” IEEE Trans. Power Apparatus and Systems, vol. PAS-88, No. 4, April 1969, pp. 388-399.
[14] H.S. Patel and R.G. Hoft, “Generalized techniques of harmonic elimination and voltage control on thyristor inverter: Part I - harmonic elimination,” IEEE Trans. Industry Applications, vol. IA-9, No, 3, May/June 1973, pp. 310-317.
[15] A.G. Phadke, J.S. Thorp, and M.G. Adamiak, “ A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, No. 5, May 1983, pp. 1025-1038.
[16] J. Arrillaga, C.P. Arnold, and B.J. Harker, Computer modeling of electrical power systems, New Zealand, John Wiley & Sons, 1983.
[17] O.I. Elgerd, Basic electric power engineering, Massachusetts: Addison Wesley, 1983.
[18] A. Paulraj, R.Roy, and T. Kailath, “A subspace rotation approach to signal parameter estimation, ” Proc. IEEE, vol. 74, 1986, pp.1044-1045.
[19] M. Nagaike, A. Nagamatsu, and T. Yoshmura, “Research on model analysis, ” Bulletin of JSME, vol. 29, No. 254, 1986, pp. 2606-2611.
[20] R.S. Pappa and S.R. Ibrahim, “A parameter study of Ibrahim time domain modal analysis,” Shock and Vibration Bulletin, vol. 51, part 3, 1981, pp. 43-72.
[21] S.S. Niu, L. Ljung, and A. Bjorck, “Decomposition methods for solving least-squares parameter estimation,” IEEE Trans. Signal Processing, vol. 44, No. 11, Nov. 1996, pp. 2847-2852.
[22] J.-N. Juang, J.E. Copper, and J.R. Wright, “An eigensystem realization algorithm using data correlation (ERA/DC) for modal parameter identification,” Control-theory and Advanced technology, vol. 4, No. 1, 1988, pp. 5-14.
[23] L.L. Lai and J.T. Ma, “Application of evolutionary programming to transient and subtransient parameter estimation,” IEEE Trans. Energy Conversion, vol. 11, No. 3, Sept. 1996, pp. 523-530.
[24] I.D. Landau, System identification and control design: using P.I.M.+ software, Englewood Cliffs, N.J.: Prentice Hall, 1990.
[25] E.D. Eyman, Modeling, simulation, and control, St. Paul: West Pub. Co., 1988.
[26] IEEE Working Group on Power System Harmonics, “Power system harmonic: an overview,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, No. 8, Aug. 1983, pp. 2455-2460.
[27] IEEE Power System Harmonic Working Group Report, “Bibliography of power system harmonics, part I,” IEEE Trans. Power Apparatus and Systems, vol. PAS-103, No. 9, Sept. 1984, pp. 2460-2469.
[28] IEEE Power System Harmonic Working Group Report, “Bibliography of power system harmonics, part II,” IEEE Trans. Power Apparatus and Systems, vol. PAS-109, No. 9, Sept. 1984, pp. 2470-2479.
[29] 曹大鵬, 吳榮慶, 李天龍, 寧家慶, “諧波參數的精密計算,” 第二十屆電力研討會, 1999, pp. 1080-1085.
[30] B. Widrow, J.R. Glove, JR. J. M. McCool, J. Kauntiz, C.S. Williams, R.H. Hearn, J.R. Zeideer, E. Dong, JR., and R.C. Goodin, “Adaptive noise canceling: principle and application,” Proceedings of IEEE, vol. 12, No. 12, Dec. 1975, pp. 1692-1716.
[31] IEEE Magnetic Fields Task Force, “An evaluation of instrumentation used to measure AC power system magnetic fields,” IEEE Trans. Power Delivery, vol. 6, No. 1, Jan. 1991, pp. 373-383.
[32] T.T. Nguyen, “Parameteric harmonic analysis,” IEE Proceedings-Gener. Transm. Distrib., vol. 144, No. 1, Jan. 1997, pp. 21-25.
[33] C.S. Moo, Y.N. Chang, and P.P. Mok, “A digital measurement scheme for time-varying transient harmonics,” IEEE Trans. Power Delivery, vol. 10, No. 2, April 1995, pp. 588-594.
[34] V.K. Jain, W.L. Collins, and D.C. Davis, “FFT based algorithms for high accuracy analog measurement, ” Comput. Elect. Eng., vol. 5, No. 1, March 1978, pp. 15-27.
[35] V.K. Jain, W.L. Collins, Jr., and D.C. Davis, “High-accuracy analog measurements via interpolated FFT,” IEEE Trans. Instrument Measurement, vol. IM-28, No. 2, June 1979, pp. 113-122.
[36] C.A. Desoer and E.S. Kuh, Basic circuit theory, New York: McGraw-Hill, 1987.
[37] A.R. Bergen, Power system analysis, New York: Prentical-Hall, 1986.
[38] 吳榮慶, 曹大鵬, 葉迺崑, “信號諧波頻率與振幅的精密計算,” 第十九屆電力研討會, 1998, pp. 453-457.
[39] N. Bose, Digital filters: theory and applications, New York: North-Holland, 1985.
[40] B.C. Kau, Digital control system, HRW Inc., 1980.
[41] J.R. Cox, Jr. and L.N. Medgyesi-Mitschang, “An algorithmic approach to signal estimation useful in fetal electrocardiography,” IEEE Trans. Biomed. Eng., vol. BME-16, July 1969, pp. 215-219.
[42] J.W. Defty and G.C. Maples, “Harmonic measurement facility for power supply systems,” IEE Proc., vol. 117, 1970, pp. 1993-1996.
[43] L.J. Jacovides, "Analysis of induction motor drives with a nonsinusoidal supply voltage using Fourier analysis," IEEE Trans. Industry Applications, vol. IA-9, Nov./Dec. 1973, pp. 741-747.
[44] T.A. George and D. Bones, “Harmonic power flow determination using the fast Fourier transform,” IEEE Trans. Power Delivery, vol. 6, No. 2, April 1991, pp. 530-535.
[45] G. Heydt, Computer analysis methods for power systems, Macmillan, New York, 1986.
[46] D. Xia, and G.T. Heydt, “Harmonic power flow studies - part II implementation and practical application,” IEEE Trans. Power Apparatus and Systems, vol. PAS-101, No. 6, June 1982, pp. 1266-1270.
[47] B. Szabados, “Harmonic measurements: Instrumentation and techniques,” IEEE Tutorial Course on Power System Harmonics, 1984, pp. 113-125.
[48] D.J. Velazquez and J.J. Toth, “Benefit of an automated on-line harmonic measurement system,” IEEE Trans. Industry Applications, vol. IA-22, No. 5, Sept./Oct. 1986, pp. 952-963.
[49] A.N. Mortensen and G.L. Johnson, “A power system digital harmonic analyzer,” IEEE Trans. Instrumentation Measurement, vol. 37, No. 4, Dec. 1988, pp. 537-540.
[50] T.P. Tsao, R.C. Wu, and C.C. Ning, “The optimization of spectrum analysis for signal harmonics,” Accepted on IEEE PES Transaction, 2000.
[51] D.V. James, "Quantization errors in the fast Fourier transform," IEEE Trans. Acoust., Speech, and signal processing, vol. ASSP-23, June 1975, pp. 277-283.
[52] 曹大鵬, 吳榮慶, 李天龍, 寧家慶, “可調式頻譜的理論與應用,” 第二十屆電力研討會, 1999, pp. 1351-1355.
[53] R.L. Burden and J.D. Faires, Numerical analysis, Boston: PWS Publishing Company, 1993.
[54] 吳榮慶, 曹大鵬, 葉迺崑, “頻譜對信號諧波分析的最佳化,” 第十九屆電力研討會, 1998, pp. 448-452.
[55] S.B. Davan and A. Straughen, Power semiconductor circuits, New York: John Wiley &Sons, 1985.
[56] F.J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, pp. 51-83.
[57] A.H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-29, No. 1, Feb. 1981, pp. 84-91.
[58] S.L. Lu, C.E. Lin, and C.L. Huang, “Power frequency harmonic measurement using integer periodic extension method,” Electric Power Systems Research, vol. 44, 1998, pp. 107-115.
[59] T.P. Tsao and R.C. Wu, "The optimal spectrum analysis for specific component of signal," IASTED International Conference on Modeling and Simulation, Pittsburgh, Pennsyivania, USA, May 2000, pp. 401-405.
[60] 吳榮慶, 曹大鵬, 葉迺崑, “信號局部分析最佳化的頻譜刻度選取,” 第十九屆電力研討會, 1998, pp. 458-462.
[61] L.L. Freris, J. Meisel, and R. Chedid, “Cascaded harmonic synchronous machine,” IEE Proceedings-C, vol. 140, No. 2, March 1993, pp. 131-140.
[62] S.J. Chapman, Electric machinery fundamentals, McGraw-Hill Book Company, 1991.
[63] M. Ishida and K. Iwata, “A new frequency detector of an induction motor utilising rotor slot harmonics,” IEEE Trans. Industry Applications, vol. IA-20, 1984, pp. 575-582.
[64] J. Penman, M.N. Dey, A.J. Tait, and W.E. Bryan, “Condition monitoring of electrical drives,” IEE Proceedings-B, vol. 133, No. 3, May 1986, pp. 142-148.
[65] T.W. Dakin, C.N. Works, and J.S. Johnson, “An electromagnetic probe for detecting and locating discharges in large rotating-machine stators,” IEEE Trans. Power Apparatus and Systems, vol. PAS-88, No. 3, March 1969, pp. 251-257.
[66] F.T. Emery, B.N. Lenderking, and R. D. Couch, “Turbine-generator on-line diagnostics using RF monitoring,” IEEE Trans. Power Apparatus and Systems, vol. PAS-100, No. 12, Dec. 1981, pp. 4974-4982.
[67] E.T. James, “Incipient fault identification through neutral RF monitoring of large rotating machines,” IEEE Trans. Power Apparatus and Systems, vol. PAS-30, No. 3, March 1983, pp. 693-698.
[68] H.W. Whittington, J.R. Jordan, N. Paterson, and P.M. Johnson, “Performance monitoring of diesel electricity generation,” IEE Proceedings-B, vol. 133, No. 3, May 1986, pp. 149-154.
[69] A.J. Ellison and S.J. Yang, “Effect of rotor eccentricity on acoustic noise from induction machines,” Proc. IEE, vol. 118, No. 1, 1971, pp. 174-184
[70] B.J. Chalmers and R. Dodgson, “Waveshapes of flux density in polyphase induction motors under saturated conditions,” IEEE Trans. Power Apparatus and Systems, vol. PAS-90, No. 2, Mar./Apr. 1971, pp. 564-569,
[71] P.J. Tavner, B.G. Gaydon, and D.M. Ward, “Monitoring generators and large motors,” IEE Proceedings-B, vol. 133, No. 3, May 1986, pp. 169-180.
[72] J.R. Cameron, W.T. Thomson, and A.B. Dow, “Vibration and current monitoring for detecting airgap eccentricity in large induction motors,” IEE Proceedings-B, vol. 133, No. 3, May 1986, pp. 155-163.
[73] D.R. Albright, “Intertune short-current detector for turbine-generator rotor windings,” IEEE Trans. Power Apparatus and Systems, vol. PAS-90, No. 2, March/April 1971, pp. 478-483.
[74] M. Kurtz and J.F. Lyles, “Generator insulation diagnostic testing,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, No. 5, Sept./Oct. 1979, pp. 1596-1603.
[75] R.T. Harrold, F.T. Emery, F.J. Murphy, and S.A. Drinkut, “Radio frequency sensing of incipient arcing faults within large turbine generators,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, No. 4, July/Aug. 1979, pp. 1167-1173.
[76] Y. Michiguchi, S. Tanisaka, and S. Izumi, “Development of a collector ring monitor for sparking detector of generator,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, No. 4, April 1983, pp.928-932.
[77] R. Natarajan, J.L. Kohler, and J. Sottile, “Condition monitoring of slip-ring induction motors,” Electric Power Systems Research, vol. 15, 1988, pp. 189-195.
[78] H.T. Yang, K.Y. Huang, and L.C. Huang, “An artificial neural network identification and control approach for the field-oriented induction motor,” Electric Power Systems Research, vol. 30, 1994, pp. 35-45.
[79] S. Chen, E. Zhong, and T.A. Lipo, “A new approach to motor condition monitoring in induction motor drives,” IEEE Trans. Industry Applications, vol. 30, No. 4, July/Aug. 1994, pp. 905-911.
[80] R.R. Schoen and T.G. Habetler, “Effects of time-varying loads on rotor fault detection in induction machines.” IEEE Trans. Industry Applications, vol. 31, No 4, July/Aug. 1995, pp. 900-906.
[81] 吳榮慶, 秦純, 曹大鵬, 陳建源, “利用音訊於不同負載下的馬達狀況辨識,” 第十七屆電力研討會, 1996, pp. 423-427.
[82] C.C.T. Chen and D.A. Landgrebe, “Spectral feature design system for the HIRIS/MODIS rea,” IEEE Trans. Geoscience and Remote Sensing, vol. 27, No. 6, Nov. 1989, pp. 681-686.
[83] R.P. Lippmann, “An introduction to computing with neural nets,” IEEE Magazine, vol. ASSP-4, April 1987, pp. 4-22.
[84] M.-Y. Chow, P.M. Mangum, and S.O. Yee, “A neural network approach to real time condition monitoring of induction machines,” IEEE Trans. Industrial Electronics, vol. 38, No. 6, Dec. 1991, pp. 448-453.
[85] M.-Y. Chow, S.O. Yee, “Methodology for on-line incipient fault detection in single-phase squirrel-cage induction motors using artificial neural networks,” IEEE Trans. Energy Conversion, vol. 6, No. 3, Sept. 1991, pp. 536-545.
[86] M.-Y. Chow and S.O. Yee, “Using neural networks to detect incipient faults in induction motors,” Journal of Neural Networks Computing, vol. 2, 1991, pp. 26-32.
[87] L.R. Bahl and F. Jelinek, “decoding for channels with insertions, deletions and substitutions with applications to speech recognition,” IEEE Trans. Information theory, vol. IT-21, pp. 404-411.
[88] S.R. Chu, R. Shoureshi, and M. Tenorio, “Neural networks for system identification,” IEEE Control System Magazine, vol. 10, No. 3, April 1990, pp. 31-35.
[89] J.L. Dineley and W. Tayati, “Digital rotor velocity and acceleration measurement for generator control,” IEEE Trans. Power Apparatus and Systems, vol. 102, No. 8, Aug. 1983, pp. 2440-2446.
[90] 吳榮慶, 秦純, 曹大鵬, “音訊取樣對感應機轉速的偵測,” 第十七屆電力研討會, 1996, pp. 413-417.
[91] R.C. Wu and T.P. Tsao, “Condition Recognition of Induction Machine under Various Loads,” IEEE 1999 International Conference on Power Electronics and Drive System,PEDS’99, Hong Kong, 1999, pp. 385-394.
[92] T.P. Tsao, and R.C. Wu, “The application of artificial neural network on sound signal recognition for induction motor,” Proc. Natl. Sci. Counc. ROC (A), vol. 23, No.1, 1999, pp.75-84.
[93] A.E. Hribar and P.M. Niskode, “On the use of directional microphones for turbine-generator sound level measurement,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, No. 3, May/June 1979, pp. 1104-1108.
[94] 曹大鵬, 吳榮慶, 陳志堅, 李勝義, 楊裕明, “感應機聲訊狀況之研究,” 第十六屆電力研討會, 1995, pp. 160-164.




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code