Responsive image
博碩士論文 etd-0530114-203559 詳細資訊
Title page for etd-0530114-203559
論文名稱
Title
生活污水中鄰苯二甲酸酯類與藥物:監測及新穎電薄膜處理
Phthalate Esters and Pharmaceuticals in Municipal Wastewater: Monitoring and Removal by a Novel Electromembrane Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-26
繳交日期
Date of Submission
2014-06-30
關鍵字
Keywords
釋鋁量、十六烷基三甲氧基矽烷、新興污染物、管狀碳纖維/碳/氧化鋁複合膜、生活污水、同步電混凝/電過濾、表面改質
municipal wastewater, surface modification, simultaneous electrocoagulation/electrofiltration, tubular carbon fibers/carbon/alumina composite membrane, hexadecyltrimethoxysilane, Al released quantity, emerging contaminants
統計
Statistics
本論文已被瀏覽 5713 次,被下載 531
The thesis/dissertation has been browsed 5713 times, has been downloaded 531 times.
中文摘要
近數年來,眾多研究報告皆指出,在生活污水處理廠之進/放流水中常被檢驗出許多新興污染物 (例如:鄰苯二甲酸酯類、藥物類等),若任其排入至承受水體將造成潛在之環境風險問題。本研究首先針對台灣南部某校園生活污水廠之進/放流水及某都市生活污水廠之進/放流水中關切的8種鄰苯二甲酸酯類與15種藥物類與環境荷爾蒙進行長期性之逐月濃度監測。結果顯示,8種關切的鄰苯二甲酸酯類以鄰苯二甲酸二丁酯 (DnBP)、鄰苯二甲酸二辛酯 (DEHP) 及鄰苯二甲酸二異壬酯 (DiNP) 為最常被檢出之化合物,而15種藥物類與環境荷爾蒙則以咖啡因 (Caffeine)、先鋒黴素 (Cefalexin) 及磺胺甲噁唑 (Sulfamethoxazole) 較常被檢測出,且上述之6個化合物在兩個生活污水廠採集的水樣中皆可被檢測出100 ng/L以上,甚至是μg/L之濃度,而雙酚A則是未被檢出。另一方面,本研究以自行製備之管狀碳纖維/碳/氧化鋁複合膜,搭配十六烷基三甲氧基矽烷作為改質劑進行複合膜表面疏水性改質,結合同步電混凝/電過濾 (EC/EF) 程序處理該校園生活污水廠及該都市生活污水廠之進流水,藉由改變透膜壓差、電場強度及掃流速度等操作條件,尋找最佳之試驗參數。試驗結果顯示,該校園生活污水廠及該都市生活污水廠進流水,分別在透膜壓差294 kPa、電場強度30 V/cm及掃流速度1.63 cm/s及透膜壓差294 kPa、電場強度40 V/cm及掃流速度1.63 cm/s之操作條件下有一最佳去除成效,其對於關切的鄰苯二甲酸酯類之去除效率分別可達到94.3-98.0%及91.7-99.7%,對於關切的藥物類之去除率分別可達95.6-99.1%及95.7-98.8%。接續,利用最佳操作條件進行逆洗週期及逆洗時間之評估,處理某校園生活污水及某都市生活污水其逆洗週期分別為10及20分鐘;而逆洗時間分別在3及1分鐘時有最佳之回復性。而在釋鋁量評估方面,比較不同電場強度下關切的新興污染物去除效率與釋鋁量之關係,可得知電場強度與釋鋁量成正比,且關切的新興污染物的去除在臨界電場強度時會達到一最佳的去除效果。最後,在操作電費評估方面,若將EC/EF處理模組擴大至實廠規模,在操作時間為60分鐘下,則處理某校園生活污水及某都市生活污水後收集一噸濾液之費用約為68.65元及41.25元。
Abstract
In recent years, many studies have indicated that many emerging contaminants (e.g., phthalate esters and pharmaceuticals) were detected in municipal wastewater treatment plants (WWTPs). It would pose potential risks to the environment if those effluents are discharged into receiving water bodies . The first objective of this study was to investigate the concentration variations of the phthalate esters and pharmaceuticals monthly obtained from the influent and effluent of the selected campus WWTP and municipal WWTP in southern Taiwan. Di-n-butylPhthalate, Di-(2-ethylhexyl) Phthalate, and Di-iso-nonyl Phthalate were detected at relatively higher concentration and frequency in phthalate esters of concern. Also, caffeine, cefalexin and sulfamethoxazole were detected at relatively higher concentration and frequency. The concentration of the aforementioned six contaminants ranged from 100 ng/L up to μg/L. In this study, hexadecyltrimethoxysilane was used for the surface modification of the laboratory-prepared tubular carbon fiber/carbon/alumina composite membrane. Then, the modified tubular composite membrane was coupled with the simultaneous electrocoagulation/electrofiltration (EC/EF) process for the treatment of the influent of the selected campus WWTP and municipal WWTP under various operating conditions by changing transmembrane pressure, electric field strength, and crossflow velocity, respectively. Test results showed that the corresponding optimal conditions for the selected campus WWTP and municipal WWTP were 294 kPa, 30 V/cm, 1.63 cm/s, and 294 kPa, 40 V/cm, 1.63 cm/s, respectively. The removal efficiencies of target phthalate esters for the selected campus WWTP and municipal WWTP were 94.3-98.0% and 91.7-99.7%, respectively. On the other hand, the removal efficiencies of target pharmaceuticals for the aforementioned two WWTPs were 95.6-99.1% and 95.7-98.8%, respectively. The proper practice of backwash cycle (10 min for the campus WWTP and 20 min for the municipal WWTP) and backwash time (3 min for the campus WWTP and 1 min for the municipal WWTP) were found to extend the service life of the above-indicated memebrane and to enhance the permeate flux. Also, the relationship betewwn the quantity of released Al and the removal efficiencies of the emerging contaminants under different electric field strength was investigated. The results showed that the quantity of released Al and electric field strength were in direct proportion, and the optimum removal effieciency of the emerging contaminants was obtained under the critical electric field strength. Finally, the energy consumption for treating the influents of the campus and municipal WWTP were evaluated, the estimated for treating the campus wastewater and municipal wastewater were about 2.27 USD and 1.36 USD, respectively if the EC/EF module was scaled up to commercial scale.
目次 Table of Contents
論文審定書 i
聲明切結書 ii
謝誌…… iii
摘要…… v
Abstract.. vii
目錄…… viii
圖目錄… xv
表目錄… xx
照片目錄 xxiv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3研究內容 3
第二章 文獻回顧 6
2.1 鄰苯二甲酸酯類與藥物及個人保健用品 6
2.1.1介紹 6
2.1.2 在水體中之流布 8
2.1.3本研究所選定之鄰苯二甲酸酯類與藥物介紹 11
2.2薄膜處理程序 16
2.2.1 薄膜種類及組件形式 16
2.2.2 薄膜之材質 19
2.3 掃流薄膜過濾 20
2.4掃流電過濾 21
2.5電混凝理論 24
2.6同步電混凝/電過濾程序 26
2.7薄膜改質 29
2.7.1親/疏水性之定義 30
2.7.2矽烷偶合物 31
第三章 實驗材料、設備與方法 34
3.1 實驗材料 34
3.1.1 水樣來源 34
3.1.2 材料與試劑 35
3.2 實驗設備 36
3.2.1同步電混凝/電過濾模組處理系統 36
3.2.2化學氣相沉積設備 38
3.2.3 其他設備及儀器 39
3.3 實驗方法 41
3.3.1 管狀碳纖維/碳/氧化鋁複合膜製備程序 41
3.3.2 管狀碳纖維/碳/氧化鋁複合膜改質 41
3.3.3管狀碳纖維/碳/氧化鋁複合膜之表面顯微結構觀察 42
3.3.4 管狀碳纖維/碳/氧化鋁複合膜表面官能基分析 42
3.3.5 管狀碳纖維/碳/氧化鋁複合膜表面親/疏水特性分析 42
3.3.6同步電混凝/電過濾 (EC/EF) 處理系統之操作 43
3.3.7電極釋鋁量評估 44
3.3.8逆洗操作程序 44
3.3.9水樣及濾液品質分析方法 44
第四章 結果與討論 47
4.1 管狀碳纖維/碳/氧化鋁複合膜之特性分析 47
4.1.1 複合膜表面顯微結構觀察 47
4.1.2改質前後的復合膜表面傅立葉紅外線 (FT-IR) 光譜與拉曼(Raman) 光譜分析 49
4.1.3改質前後的管狀複合膜表面接觸角量測 53
4.2 生活污水處理廠進/放流水中鄰苯二甲酸酯類與藥物之流布調查與長期監測 54
4.2.1進/放流水中關切的鄰苯二甲酸酯類流布調查與長期監測 54
4.2.1.1 某校園生活污水處理廠 54
4.2.1.2 某都市生活污水處理廠 56
4.2.2進/放流水中關切的藥物與環境荷爾蒙流布調查與長期監測 58
4.2.2.1 某校園生活污水處理廠 58
4.2.2.2 某都市生活污水處理廠 66
4.3管狀碳纖維/碳/氧化鋁複合膜處理某校園生活污水及某都市生活污水之效能評估 69
4.3.1某校園生活污水廠進流水 69
4.3.2 某都市生活污水廠之進流水 77
4.4 同步電混凝/電過濾系統處理某校園生活污水及某都市生活污水之效能評估 82
4.4.1 某校園生活污水廠進流水 82
4.4.1.1電場強度對於濾液通量及品質之影響 82
4.4.1.2 掃流速度對於濾液通量及品質之影響 86
4.4.2某都市生活污水廠進流水 89
4.4.2.1電場強度對於濾液通量及品質之影響 89
4.4.2.2 掃流速度對於濾液通量及品質之影響 92
4.4.3 最佳操作條件對某校園生活污水廠進流水及某都市生活污水廠進流水之處理成效 96
4.5 同步電混凝/電過濾處理程序處理某校園生活污水廠進流水及某都市生活污水廠進流水之逆洗週期與時間 99
4.6 電極釋鋁量及電混凝效應之評估 107
4.7 操作成本之電費估算 114
第五章 結論與建議 116
5.1 結論 116
5.2 建議 …120
參考文獻 …121
附錄 143
附表1 2013年4月至2013年10月期間關切的鄰苯二甲酸酯類於某校園生活污水廠進流水之濃度分布情況 (ng/L) 144
附表2 2013年4月至2013年10月期間關切的鄰苯二甲酸酯類於某校園生活污水廠放流水之濃度分布情況 (ng/L) 144
附表3 2013年4月至2013年10月期間關切的鄰苯二甲酸酯類於某都市生活污水廠進流水之濃度分布情況 (ng/L) 145
附表4 2013年4月至2013年10月期間關切的鄰苯二甲酸酯類於某都市生活污水廠放流水之濃度分布情況 (ng/L) 145
附表5 2012年8月至2013年10月期間關切的藥物類於某校園生活污水廠進流水之濃度分布情況 (ng/L) 146
附表6 2012年8月至2013年10月期間關切的藥物類於某校園生活污水廠放流水之濃度分布情況 (ng/L) 147
附表7 2013年3月至2013年10月期間關切的藥物類於某都市生活污水廠進流水之濃度分布情況 (ng/L) 148
附表8 2013年3月至2013年10月期間關切的藥物類於某都市生活污水廠放流水之濃度分布情況 (ng/L) 149
附表9 HDTMS改質前後之管狀碳纖維/碳/氧化鋁複合膜處理某校園生活污水廠進流水在不同透膜壓差之實驗數據 150
附表10 HDTMS改質前後之管狀碳纖維/碳/氧化鋁複合膜處理某都市生活污水廠進流水在不同透膜壓差之實驗數據 151
附表11 HDTMS改質後之管狀碳纖維/碳/氧化鋁複合膜結合同步電混凝/電過濾系統處理某校園生活污水廠進流水其不同電場強度下之實驗數據 152
附表12 HDTMS改質後之管狀碳纖維/碳/氧化鋁複合膜結合同步電混凝/電過濾系統處理某校園生活污水廠進流水其不同掃流速度下之實驗數據 152
附表13 HDTMS改質後之管狀碳纖維/碳/氧化鋁複合膜結合同步電混凝/電過濾系統處理某都市生活污水廠進流水其不同電場強度下之實驗數據 153
附表14 HDTMS改質後之管狀碳纖維/碳/氧化鋁複合膜結合同步電混凝/電過濾系統處理某都市生活污水廠進流水其不同掃流速度下之實驗數據 153
附表15 施加不同電場強度下每10分鐘記錄之電流I及其相對應之電量Qi (水樣來源:某校園生活污水廠進流水) 154
附表16施加不同電場強度下每10分鐘記錄之電流I及其相對應之電量Qi (水樣來源:某都市生活污水廠進流水) 155
附表17選定的某校園及都市生活污水廠進/放流水之基本水質檢測數據 (2012年7月) 156
碩士在學期間發表之學術論文 157
參考文獻 References
台灣電力公司,“電價表”,http://www.taipower.com.tw/content/q_service/q_service02.aspx (2012)。
行政院衛生福利部食品藥物管理署,“藥物食品安全週報”,第305期,第1-3頁 (2011)。
行政院環保署,“石化產業及半導體產業之放流水標準與修正放流水標準及海洋放流水標準” (2011)。
行政院環境保護署,“宣導手冊-認識生活環境中毒性物質” (2012)。
行政院環境保護署環境保護人員訓練所,“廢水收及處理系統規劃”,第35頁 (2012)。
沈宛瑩,“新穎電薄膜程序處理生活污水中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2013)。
林立民,“藉由兩次表面改質處理製程降低多孔洞二氧化矽薄膜之介電常數”,碩士學位論文,逢甲大學半導體與光電產業研發碩士專班研究所,台中市 (2006)。
林郁真,“論環境中之新興污染物”,環境工程會刊,第十八卷,第1期,第39-55頁 (2007)。
林正芳、林郁真、余宗賢,“新興污染物 (抗生素與止痛藥) 於特定污染源環境之流布”,2008年持久性有機污染物 (含戴奧辛) 研討會論文集,第1-10頁,台北市 (2008)。
莊智琄,“利用同步電混凝/電過濾程序處理含奈米級TiO2之有機廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2004)。
周宗享,“同步電混凝/電過濾程序輔助奈米/S2O82-氧化物去除水溶液中之環境荷爾蒙”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
柯以侃,“儀器分析”,新文京開發出版股份有限公司,新北市 (2007)。
黃國禎,“掃流微過濾之發展與應用”,中國化學工程學會會刊,第51卷第3期,第2-13頁 (2004)。
黃建宏、章日行,“探討電化學混凝之電流效率、pH變化及用電量估算-以鋁極板為例”,中華民國環境工程學會2009年廢水處理技術研討會,第186-191頁,雲林縣 (2009)。
章夢軒,“電場作用下之掃流過濾特性”,碩士學位論文,中原大學化學工程學系,中壢市 (1996)。
陳富政,“利用電混凝/電過濾技術於廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
陳婕,“藥物與個人保健用品於污水與淨水處理程序中分布與宿命之探討”,碩士學位論文,國立台灣大學環境工程研究所,台北市 (2009)。
楊金鐘,“一種利用同步電混凝及電過濾去除水溶液中奈米微粒及乳化液滴之方法與設備”,中華民國發明專利第229656號 (2005)。
楊金鐘,“淺談無機濾膜及其於廢水處理之應用”,化工技術,第16卷,第7期,第174-185頁 (2008)。
楊金鐘、顏嘉亨,“利用管狀碳質/陶瓷複合膜結合同步電混凝/電過濾程序去除生活污水中之乙醯胺酚和紅黴素研究”,中華民國環境工程學會第二十二屆年會及2010年廢水處理技術研討會論文摘要集,第WAT-98頁,2010年11月13日,國立屏東科技大學,屏東縣 (2010)。
楊金鐘、王智龍、邱鈺涵,“藥物及鄰苯二甲酸酯類於典寶溪之流布調查”,中華民國環境工程學會第二十四屆年會及2012年廢水處理技術研討會論文摘要集,第WAT-61頁,2012年9月23日,中原大學,桃園縣 (2012)。
楊金鐘、王智龍、邱鈺涵,“鄰苯二甲酸酯類於後勁溪底泥及河川水流布之初步調查”,中華民國環境工程學會第二十五屆年會及2013年土壤及地下水研討會論文摘要集,第SOI-10頁,2013年11月9日,國立高雄大學,高雄市 (2013)。
楊士弘,“利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2011)。
楊進丁、藍志豪,“以SiO2顆粒對鋁片表面改質之疏水性研究”,機光電技術與應用研討會,台北市 (2009)。
廖倍滋,“下水道污水處理廠鄰苯二甲酸酯類之變遷 (以台中市為例) ”,碩士學位論文,中國醫藥大學環境醫學研究所,台中市 (2009)。
鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2003)。
蔡啟明,“新穎管狀碳質/陶瓷複合膜製備其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)。
賴志敏,“利用兩種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2010)。
顏嘉亨,“多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
羅金生,“半導體廠化學機械研磨 (CMP) 廢水回收再利用可行性評估”,碩士學位論文,國立台灣大學環境工程研究所,台北市(2001)。
Alatriste-Mondragon, F., R. Iranpour, and B. K. Ahring, “Toxicity of Di-(2-ethylhexyl) Phthalate on the Anaerobic Digestion of Wastewater Sludge,” Water Research, Vol. 37, pp. 1260-1269 (2003).
Amaral, M. J. J., “The Endocrine Disrupters: A Major Medical Challenge,” Food and Chemical Toxicology, Vol. 40, pp. 781-788 (2002).
Barel-Cohen, K., L. S. Shore, M. Shemesh, A. Wenzel, J. Mueller, and N. Kronfeld-Schor, “Monitoring of Natural and Synthetic Hormones in a Polluted River,” Journal of Environmental Management, Vol. 78, pp. 16-23 (2006).
Behera, S. K., H. W. Kim, J. E. Oh, and H. S. Park, “Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea,” Science of the Total Environment, Vol. 409, pp. 4351-4360 (2011).
Benotti, M. J., R. A. Trenholm, B. J. Vanderford, J. C. Holady, B. D. Stanford, and S. A. Snyder, “Pharmaceuticals and Endocrine Disrupting Compounds in U. S. Drinking Water,” Environmental Science & Technology, Vol. 43, pp. 597-603 (2009).
Blossey, R., “Self-Cleaning Surfaces - Virtual Realities,” Nature Materials, Vol. 2, pp. 301-306 (2003).
Bowen, W. R. and H. A. Sabuni, “Pulsed Electrokinetic Cleaning of Cellulose Nitrate Microfiltration Membranes,” Industrial and Engineering Chemistry Research, Vol. 31 pp. 515-523 (1992).
Burggraaf, A. J., K. Keizer, and B. A. Van Hassel, “Ceramic Nanostructure Materials, Membranes and Composite Layers,” Solid State Ionics, Vol. 32/33, pp. 771-782 (1989).
Canizares, P. M. Carmona, J. Lobato, F. Martınez, and M. A. Rodrigo, “Electrodissolution of Aluminum Electrodes in Electrocoagulation
Processes,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 4178-4185 (2005).
Carballa, M., F. Omil, J. M. Lema, M. Llompart, C. Garcia-Jaresb, I. Rodríguez, M. Gómez, and T. Ternes, “Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant,” Water Research, Vol.38, pp. 2918-2926 (2004).
Chandler, D., “Interfaces and the Driving Force of Hydrophobic Assembly,” Nature, Vol. 437, pp. 640-647 (2005).
Chang, C. H., W. Y. Shau, C. W. Kuo, S. T. Chen and M. S. Lai, “Increased Risk of Stroke Associated With Nonsteroidal Anti-Inflammatory Drugs: A Nationwide Case-Crossover Study,” Stroke, Vol. 41, pp. 1884-1890 (2010).
Chipara, D. M., J. Macossay, A. V. R. Ybarra, A. C. Chipara, T. M. Eubanks, M. Chipara, “Raman Spectroscopy of Polystyrene Nanofibers - Multiwalled Carbon Nanotubes Composites,” Applied Surface Science, Vol. 275, pp. 23-37 (2013).
Clara, M., G. Windhofer, W. Hartl, K. Braun, M. Simon, O. Gans, C. Scheffknecht, and A. Chovanec, “Occurrence of Phthalates in Surface Runoff, Untreated and Treated Wastewaterand Fate during Wastewater Treatment,” Chemosphere, Vol. 78, pp. 1078-1084 (2010).
Carlson, D. P. and W. Schmiegel, “Ullmann’s Encyclopedia of Industrial Chemistry,” VCH Publishers, Weinheim, German, (1988).
Daughton, C. G. and T. A. Ternes, “Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?” Environmental Health Perspectives Supplements, Vol. 107, pp. 907-938 (1999).
Esteban, S., M. Gorga, M. Petrovic, S. González-Alonso, D. Barceló, and Y. Valcárcel, “Analysis and Occurrence of Endocrine Disrupting Compounds and Estrogenic Activity in the Surface Waters of Central Spain,” Science of the Total Environment, Vol. 466-467, pp. 939-951 (2014).
Faraday, M., “Experimental Researches in Electricity. Seventh Series,” Philosophical Transactions of the Royal Society of London, Vol. 124, pp. 77-122 (1834).
Field, J. A., C. A. Johnson, and J. B. Rose, “What Is “Emerging”?” Environmental Science & Technology, Vol. 40, pp. 7105-7105 (2006).
Fossi, M. C., S. Casini, and L. Marsili, “Potential Toxicological Hazard Due to Endocrine-Disrupting Chemicals on Mediterranean Top Predators: State of Art, Gender Differences and Methodological Tools,” Environmental Research, Vol. 104, pp. 174-182 (2007).
Gao, D., Z. Li, Z. Wen, and N. Ren, “The Fate of Di-n-butyl Phthalate in a Laboratory-Scale Anaerobic/Anoxic/Oxic Wastewater Treatment Process,” Bioresource Technology, Vol. 101, pp. 7767-7772 (2010).
Gao, N., M. Li, W. Jing, and Y. Fan, “Improving the Filtration Performance of ZrO2 Membrane in Non-Polar Organic Solvents by Surface Hydrophobic Modification,” Journal of Membrane Science, Vol. 375, pp. 276-283 (2011).
Gao, D., Z. Li, Z. Wen, and N. Ren, “Occurrence and Fate of Phthalate Esters in Full-Scale Domestic Wastewater Treatment Plants and Their Impact on Receiving Waters along the Songhua River in China,” Chemosphere, Vol. 95, pp. 24-32 (2014).
García, S. O. D. G., P. Pinto, P. G. Encina, and R. I. Mata, “Consumption and Occurrence of Pharmaceutical and Personal Care Products in the Aquatic Environment in Spain,” Science of the Total Environment, Vol. 444, pp. 451-465 (2013).
Göbel, A., A. Thomsen, C. S. McArdell, A. C. Alder, W. Giger, N. Theiss, D. Löffler, and T. A. Ternes, “Extraction and Determination of Sulfonamides, Macrolides, and Trimethoprim in Sewage Sludge,” Journal of Chromatography A, Vol. 1085, pp. 179-189 (2005).
Goren, U., A. Aharoni, M. Kummel, R. Messalem, I. Mukmenev, A. Brenner, and V. Gitis, “Role of Membrane Pore Size in Tertiary Flocculation/Adsorption/Ultrafiltration Treatment of Municipal Wastewater,” Separation and Purification Technology, Vol. 61, pp. 193-203 (2008).
Gracia-Lor, E., J. V. Sancho, R. Serrano, and F. Hernández, “Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants at the Spanish Mediterranean Area of Valencia,” Chemosphere, Vol. 87, pp. 453-462 (2012).
Gulkowska, A., H. W. Leung, M. K. So, S. Taniyasu, N. Yamashita, L. W. Y. Yeung, B. J. Richardson, A. P. Lei, J. P. Giesy, and P. K. S. Lam, “Removal of Antibiotics from Wastewater by Sewage Treatment Facilities in Hong Kong and Shenzhen, China,” Water Research, Vol. 42, pp. 395-403 (2008).
Hess, R. A., D. Bunick, K. H. Lee, J. Bahr, J. A. Taylor, K. S. Korach, and D. B. Lubahn, “A Role for Oestrogens in the Male Reproductive System,” Nature, Vol. 390, pp. 509-512 (1997).
Hedgespeth, M. L., Y. Sapozhnikova, P. Pennington, A. Clum, A. Fairey, and E. Wirth, “Pharmaceuticals and Personal Care Products (PPCPs) in Treated Wastewater Discharges into Charleston Harbor, South Carolina,” Science of the Total Environment, Vol. 437, pp. 1-9 (2012).
Hijosa-Valsero, M., V. Matamoros, J. Martín-Villacorta, E. Bécares, and J. M. Bayona, “Assessment of Full-Scale Natural Systems for the Removal of PPCPs from Wastewater in Small Communities,” Water Research, Vol. 44, pp. 1429-1439 (2010).
Hu, C. Y., S. L. Lo, and W. H. Kuan, “Effects of Co-Existing Anions on Fluoride Removal in Electrocoagulation (EC) Process Using Aluminum Electrodes,” Water Research, Vol. 37, pp. 4513-4523 (2003).
Huschek, G., P. D. Hansen, H. H. Maurer, D. Krenger, and A. Kayser, “Environmental Risk Assessment of Medicinal Products for Human Use According to European Commission Recommendations,” Environmental Toxicology, Vol. 19, pp. 226-240 (2004).
Huotairi, H. M., I. H. Huisman, and G. Tragardh, “Crossflow Membrane Filtration Enhanced by an External DC Electric Field: A Review,” Chemical Engineering Research and Design, Vol. 77, pp. 461-468 (1999).
IUPAC, “Compendium of Chemical Terminology,” Published by the International Union of Pure and Applied Chemistry, The Gold Book, 2nd Edition (1997).
Jacangelo, J. G., R. R. Trussell, and M. Watson, “Role of Membrane Technology in Drinking Water Treatment in the United States,” Desalination, Vol. 113, pp. 119-127 (1997).
Jelic, A., M. Gros, A. Ginebreda, R. Cespedes-Sánchez, F. Ventura, M. Petrovic, and D. Barcelo, “Occurrence, Partition and Removal of Pharmaceuticals in Sewage Water and Sludge during Wastewater Treatment,” Water Research, Vol. 45, pp. 1165-1176 (2011).
Jensen, W. B., “Faraday’s Laws or Faraday’s Law?” Journal of Chemical Education, Vol. 89, pp. 1208-1209 (2012).
Jermann, D., W. Pronk, M. Boller, and A. I. Schäfer, “The Role of NOM Fouling for the Retention of Estradiol and Ibuprofen during Ultrafiltration,” Journal of Membrane Science, Vol. 329, pp. 75-84 (2009).
Kasprzyk-Hordern, B., R. M. Dinsdale, and A. J. Guwy, “The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters,” Water Resesrch, Vol. 43, pp. 368-380 (2009).
Khemakhem, S. and R. B. Amar, “Modification of Tunisian Clay Membrane Surface by Silane Grafting: Application for Desalination with Air Gap Membrane Distillation Process,” Colloids and Surfaces A, Vol. 387, pp. 79-85 (2011).
Kim, S. D., J. Cho, I. S. Kim, B. J. Vanderford, and S. A. Snyder, “Occurrence and Removal of Pharmaceuticals and Endocrine Disruptors in South Korean Surface, Drinking, and Waste Waters,” Water Research, Vol. 41, pp. 1013-1021 (2007).
Kiso, Y., Y. Nishimura, T. Kitao, and K. Nishimura, “Rejection Properties of Non-Phenylic Pesticides with Nanofiltration Membranes,” Journal of Membrane Science, Vol. 171, pp. 229-237 (2000).
Lai, C. L. and S. H. Lin, “Electrocoagulation of Chemical Mechanical Polishing (CMP) Wastewater from Semiconductor Fabrication,” Chemical Engineering Journal, Vol. 95, pp. 205-211 (2003).
Larry, D. B., J. F. Jukins, and B. L. Weand, “Process Chemistry for Water and Wastewater Treatment,” Published by Prentice-Hall, New Jersey, U. S. A. (1982).
Larue, O., E. Vorobiev, C. Vu, and B. Durand, “Electrocoagulation and Coagulation by Iron of Latex Particles in Aqueous Suspensions,” Separation and Purification Technology, Vol. 31, pp. 177-192 (2003).
Linares-Hernández, I., C. Barrera-Díaz, G. Roa-Moralesa, B. Bilyeu, and F. Ureña-Núñez, “Influence of the Anodic Material on Electrocoagulation Performance,” Chemical Engineering Journal, Vol. 148, pp. 97-105 (2009).
Ma, K. X., T. S. Chung, and R. J. Good, “Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide,” Journal of Polymer Science Part B: Polymer Physics, Vol. 36, pp. 2327-2337 (1998).
Magara, Y., S. Kunikane, and M. Itoh, “Advanced Membrane Technology for Application to Water Treatment,” Water Science and Technology, Vol. 37, pp. 91-99 (1998).
Marttinen, S. K., R. H. Kettunen, K. M. Sormunen, and J. A. Rintal, “Removal of Bis(2-ethylhexyl) Phthalate at a Sewage Treatment Plant,” Water Research, Vol. 37, pp. 1385-1393 (2003).
Mahmoud, A., J. Olivier, J. Vaxelaire, and A. F. A. Hoadley, “Electrical Field: A Historical Review of Its Application and Contributions in Wastewater Sludge Dewatering,” Water Research, Vol. 44, pp. 2381-2407 (2010).
Mahmoud, A., J. Rivera-Utrilla, R. Ocampo-Pérez, J. D. Méndez-Díaz, and M. Sánchez-Polo, “Environmental Impact of Phthalic Acid Esters and Their Removal from Water and Sediments by Different Technologies: A Review,” Journal of Environmental Management, Vol. 109, pp, 164-178 (2012).
McCreery, R. L., “Raman Spectroscopy for Chemical Analysis,” Published by Wiley & Sons, U. S. A. (2005).
Miège, C., J. M. Choubert, L. Ribeiro, M. Eusèbe, and M. Coquery, “Fate of Pharmaceuticals and Personal Care Products in Wastewater Treatment Plants - Conception of a Database and First Results,” Environmental Pollution, Vol.157, pp. 1721-1726 (2009).
Mollah, M. Y. A., R. Schennach, J. R. Parga, and D. L. Cocke, “Electrocoagulation (EC) Science and Applications,” Journal of Hazardous Materials, Vol. 84, pp. 29-41 (2001).
Mouedhen, G., M. Feki, M. D. P. Wery, and H. F. Ayedi, “Behavior of Aluminum Electrodes in Electrocoagulation Process,” Journal of Hazardous Materials, Vol. 150, pp. 124-135(2008).
Nakada, N., T. Tanishima, H. Shinohara, K. Kiri, and H. Takada, “Pharmaceutical Chemicals and Endocrine Disrupters in Municipal Wastewater in Tokyo and Their Removal during Activated Sludge Treatment,” Water Research, Vol. 40, pp. 3297-3303 (2006).
Nakada, N., H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato, and H. Takada, “Removal of Selected Pharmaceuticals and Personal Care Products (PPCPs) and EndocrineDisrupting Chemicals (EDCs) during Sand Filtration and Ozonation at a Municipal Sewage Treatment Plant,” Water Research, Vol. 41, pp. 4373-4382 (2007).
Nicolaisen, B., “Developments in Membrane Technology for Water Treatment,” Desalination, Vol. 153, pp. 355-360 (2003).
Oliver, R., E. May, and J. Williams, “Microcosm Investigations of Phthalate Behaviour in Sewage Treatment Biofilms,” Science of the Total Environment, Vol. 372, pp. 605-614 (2007).
Radjenović, J., M. Petrović, F. Ventura, and D. Barceló, “Rejection of Pharmaceticals in Nanofiltration and Reverse Osmosis Membrane Drinking Water Treatment,” Water Research, Vol. 42, pp. 3601-3610 (2008).
Ripperger, S. and J. Altmann, “Crossflow Microfiltration - State of the Art,” Separation and Purification Technology, Vol. 26, pp. 19-31 (2003).
Rohricht, M., J. Krisam, U, Weise, U. R. Kraus, and R. A. During, “Elimination of Carbamazepine, Diclofenac and Naproxen from Treated Wastewater by Nanofiltration,” Clean-Soil, Air, Water, Vol. 37, pp. 638-641 (2009).
Roberts, P. H. and K. V. Thomas, “The Occurrence of Selected Pharmaceuticals in Wastewater Effluent and Surface Waters of the Lower Tyne Catchment,” Science of the Total Environment, Vol. 356, pp. 143-153 (2006).
Safe, S., “Endocrine Disruptors and Human Health: Is There a Problem?” Toxicology, Vol. 205, pp. 3-10 (2004).
Schwab, B. W., E. P. Hayes, J. M. Fiori, F. J. Mastrocco, N. M. Roden, D. Cragin, R. D. Meyerhoff, V. J. D’Aco, and P. D. Anderson, “Human Pharmaceuticals in U. S. Surface Waters: A Human Health Risk Assessment,” Regulatory Toxicology and Pharmacology, Vol. 42, pp. 296-312 (2005).
Spongberg, A. L. and J. D. Witter, “Pharmaceutical Compounds in the Wastewater Process Stream in Northwest Ohio,” Science of the Total Environment, Vol. 397, pp. 148-157 (2008).
Stales, C. A., D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The Environmental Fate of Phthalate Esters: A Literature Review,” Chemosphere, Vol. 35, pp. 667-749 (1997).
Stasinakis, A. S., “Review on the Fate of Emerging Contaminants during Sludge Anaerobic Digestion,” Bioresource Technology, Vol. 121, pp. 432-440 (2012).
Strong, F. C., “Faraday’s Laws in One Equation,” Journal of Chemical Education, Vol. 38, pp. 98 (1961).
Sui, Q., J. Huang, S. Deng, W. Chen, and G. Yu, “Seasonal Variation in the Occurrence and Removal of Pharmaceuticals and Personal Care Products in Different Biological Wastewater Treatment Processes,” Environmental Science and Technology, Vol. 45, pp. 3341-3348 (2011).
Sun, T., G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, and D. Zhu, “Reversible Switching between Superhydrophilicity and Superhydrophobicity,” Angewandte Chemie International Edition, Vol. 43, pp. 357-360 (2004).
Trompette, J. L.and H. Vergnes, “On the Crucial Influence of Some Supporting Electrolytes during Electrocoagulation in the Presence of Aluminum Electrodes,” Journal of Hazardous Materials, Vol. 163, pp. 1282-1288 (2009).
U. S. EPA, “Special Report on Environmental Endocrine Disruption: An Effects Assessment and Analysis,” U. S. Environmental Protection Agency, Washington, D. C. (1997).
U. S. EPA, “Edition of the Drinking Water Standards and Health Advisories,” U. S. Environmental Protection Agency, Washington, D. C. (2006).
U. S. EPA, “Final List of Chemicals for Initial Tier 1 Screening,” U. S. Environmental Protection Agency, Washington, D. C. (2009).
Wakeman, R. J. and C. J. Williams, “Additional Techniques to Improve Microfiltration,” Separation and Purification Technologh, Vol. 26, pp. 3-18 (2002).
Weigert, T., J. Altmann, and S. Reppeerger, “Crossflow Elecro - Filtration in Pilot Scale,” Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
Webb, S., T. Ternes, M. Gibert, and K. Olejniczak, “Indirect Human Exposure to Pharmaceuticals via Drinking Water,” Toxicology Letters, Vol. 142, pp. 157-167 (2003).
World Health Organization (WHO), “Guidelines for Drinking Water Quality - Volume 1: Recommendations,” 3rd Edition, Incorporating First and Second Addenda byWorld Health Organization (2006).
Yang, B., G. G. Ying, J. L. Zhao, S. Liu, L. J. Zhou, and F. Chen, “Removal of Selected Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) during Ferrate(VI) Treatment of Secondary Wastewater Effluents,” Water Research, Vol. 46, pp. 2194-2204 (2012).
Yang, G. C. C. and C. H. Yen, “Treatment of Acetaminophen and Erythromycin in Sewage by the Simultaneous Electrocoagulation/Electrofiltration Process Using Tubular Carbonaceous/Ceramic Composite Membranes,” The 4th IWA-ASPIRE Conference Exhibition, October 2-6, Tokyo, Japan. (2011).
Yang, G. C. C., C. H. Yen, W. Y. Shen, and Y. H. Huang, “Treatment of Cefalexin and Ibuprofen in Sewage by the Simultaneous Electrocoagulation/Electrofiltration Process Using Carbon Fibers/Carbon/Alumina Tubular Composite Membranes,” Book of Abstracts, Electromembrane Processesand Materials, Stellite Meeting of The 63rd ISE Annual Meeting, pp. 126-127, August 26-29, Cesky Krumlov, Czech Republic (2012).
Yang, G. C. C. and C. H. Yen, “The Use of Different Materials to Form the Intermediate Layers of Tubular Carbon Nanofibers/Carbon/Alumina Composite Membranes for Removing Pharmaceuticals from Aqueous Solutions,” Journal of Membrane Science, Vol. 425-426, pp. 121-130 (2013).
Yoon, Y., J. Ryu, J. Oh, B. G. Choi, S. A. Snyder, “Occurrence of Endocrine Disrupting Compounds, Pharmaceuticals, and Personal Care Products in the Han River (Seoul, South Korea),” Science of the Total Environment, Vol. 408, pp. 636-643 (2010).
Zeng, F., K. Cui, Z. Xie, M. Liu, Y. Li, Y. Lin, Z. Zeng, and F. Li, “Occurrence of Phthalate Esters in Water and Sediment of Urban Lakes in a Subtropical City, Guangzhou, South China,” Environment International, Vol. 34, pp. 372-380 (2008).
Zhang, L., D. Liang, L. Ren, S. Shi, L. Zhou, T. Zhang, and Y. Huang, “Concentration and Source Identification of Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in the Surface Water of the Yangtze River Delta, China,” Journal of Environmental Sciences, Vol. 24, pp. 335-342 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code