Responsive image
博碩士論文 etd-0530117-151941 詳細資訊
Title page for etd-0530117-151941
論文名稱
Title
基於人類視覺系統特性之行動裝置顯示節能技術
Optimized Display Power Saving in Mobile Devices to Human Visual Perception
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-29
繳交日期
Date of Submission
2017-06-30
關鍵字
Keywords
有機發光二極體顯示器、人類視覺感知、液晶顯示器、背光調整、像素調光、行動裝置、主觀視覺品質量測
Subjective visual quality assessment, Human visual perception, Organic light-emitting diode (OLED), Liquid-crystal display (LCD), Backlight dimming, Mobile devices, Pixel dimming
統計
Statistics
本論文已被瀏覽 5669 次,被下載 18
The thesis/dissertation has been browsed 5669 times, has been downloaded 18 times.
中文摘要
行動裝置已成為現今最主要的資訊傳遞媒介;無線行動通訊與高畫質顯示技術的持續發展,帶動了使用者對各種行動高畫質影音服務與創新應用程式的需求。考量電池總電量有限及軟硬體功能不斷提升所消耗的額外電力,如何延長續航力已成為行動裝置科技領域中極受重視的研究議題。由於螢幕之耗電量位居行動裝置所有元件之首,故本論文目標為提出一先進節能顯示技術,利用人類視覺感知特性,降低顯示面板之背光亮度及調整其顯示內容,在維持視覺品質的情況下達成省電效果。首先,本論文開發一基於主觀視覺品質之背光調整演算法 (SVQB-GBD),降低液晶顯示器之耗電量;並針對有機發光二極體顯示器設計一以視覺注意力為基礎之像素調光演算法 (VAB-PD),提升其顯示能源效率。接著,利用運動矢量提取、GPU像素補償和像素採樣三項技術,將演算法實現於行動裝置之即時視訊撥放應用。最終,透過電量量測實驗驗證論文所提演算法於行動裝置上之節能效果。
Abstract
Mobile devices have significantly increased the accessibility and availability of multimedia data for people. Come along with is the tremendously increased demand for longer usage time from users as the number of mobile applications keep growing, which prompts us to find a way to reduce the energy cost on mobile devices. Since screen dominates major power consumption, this thesis aims to develop a power saving scheme for displaying videos on mobile devices. By leveraging the attributes of human visual perception, the proposed methods modify backlight intensity and image content to lower the power usage of display panels without affecting visual quality. First, a subjective visual quality-based global backlight dimming (SVQB-GBD) algorithm for LCD is introduced. For OLED display, a visual attention-based pixel dimming (VAB-PD) method is designed. After that, three strategies, including motion vector extraction, GPU-based pixel compensation, and pixel subsampling, are used to apply the proposed algorithms to mobile devices for real-time video display. Finally, the experimental results of power measurement are provided to evaluate the performance of the proposed methods.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Motivation 3
1.3 Contribution 4
1.4 Organization 6
Chapter 2 Background & Literature Review 7
2.1 Liquid-crystal Display 7
2.2 Organic Light-emitting Diode Display 9
2.3 Human Visual System 10
2.4 Global Backlight Dimming Algorithm for LCD 11
2.5 Pixel Dimming Algorithm for OLED 14
Chapter 3 Proposed Power Saving Algorithms 16
3.1 SVQB-GBD 17
3.1.1 Backlight Dimming and Pixel Compensation 18
3.1.2 Brightness and Visual Uncertainty Analysis 19
3.1.3 Subjective Experiment for SVQB-GBD 21
3.1.4 Building the BSR Prediction Model 27
3.1.5 BSR Optimization 32
3.2 VAB-PD 34
3.2.1 Saliency Map Generation 35
3.2.2 Pixel Dimming Function 38
3.2.3 Subjective Experiment for VAB-PD 39
Chapter 4 Efficiency Enhancement for Power Saving Algorithms on Mobile Devices 41
4.1 Efficient Decoder with MV Extraction Technique 42
4.2 GPU-based Pixel Compensation 43
4.3 Pixel Subsampling 44
Chapter 5 Experimental Results of Power Measurement 46
5.1 Testing Environment 46
5.2 Measurement Results of SVQB-GBD 47
5.3 Measurement Results of VAB-PD Algorithm 51
Chapter 6 Conclusions and Future works 53
6.1 Conclusions 53
6.2 Future Works 55
Reference 56
Publication List 63
Honors and Awards 65
參考文獻 References
[1] Number of mobile phone users worldwide from 2013 to 2019. Statista. Retrieved 6 June, 2017, from https://www.statista.com/statistics/274774/forecast-of-users
-worldwide/.
[2] Victor H. Samsung Galaxy S8 and S8+ battery life test result is out. PhoneArena. Retrieved 6 June, 2017, from http://www.phonearena.com/news/Samsung
-Galaxy-S8-and-S8-battery-life-test-result-is-out_id92744
[3] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in Proceedings of USENIX Annual Technical Conference, pp. 271-284, June 2010.
[4] The human eye. Tobii Pro offices. Retrieved 26 June, 2017, from https://www.
tobiipro.com/learn-and-support/learn/eye-tracking-essentials/the-human-eye/.
[5] W.-C. Cheng and M. Pedram, “Power minimization in a backlit TFT-LCD display by concurrent brightness and contrast scaling,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 25-32, Feb. 2004.
[6] C.-C. Lai and C.-C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Transactions on Consumer Electronics, vol. 54, no. 2, pp. 669-674, May 2008.
[7] Y.-K. Lai, Y.-F. Lai, and P.-Y. Chen, “Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis,” Journal of Display Technology, vol. 7, no. 10, pp.550-555, Oct. 2011.
[8] A. Iranli, H. Fatemi, and M. Pedram, “HEBS: histogram equalization for backlight scaling,” in Proceedings of Design, Automation and Test in Europe, pp. 346-351, Mar. 2005.
[9] H. Cho and O.-K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 839-844, May 2009.
[10] T.-H Kim, K.-S. Choi, and S.-J Ko, “Backlight power reduction using efficient image compensation for mobile devices,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1972-1978, Aug. 2010.
[11] T.-L. Lin, P.-Y. Wu, K.-H. Tung, and G.-J. Fan, “Backlight dimming algorithm based on video quality metric (VQM) for video contents,” Journal of Display Technology, vol. 12, no. 10, pp. 1168-1176, Oct. 2016.
[12] S.-J. Kang and Y. H. Kim, “Image integrity-based gray-level error control for low power liquid crystal displays,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 2401-2406, Nov. 2009.
[13] S.-J. Kang and Y. H. Kim, “Multi-histogram-based backlight dimming for low power liquid crystal displays,” Journal of Display Technology, vol. 7, no. 10, pp. 544-549, Aug. 2011.
[14] S.-J. Kang and Y. H. Kim, “Segmentation-based clipped error control algorithm for global backlight dimming,” Journal of Display Technology, vol. 7, no. 10, pp. 568-573, July 2014.
[15] S. I. Cho, S.-J. Kang, and Y. H. Kim, “Image quality-aware backlight dimming with color and detail enhancement techniques,” Journal of Display Technology, vol. 9, no. 2, pp. 112-121, Feb. 2013.
[16] S.-J. Kang, S. Bae, J.-J. Yun, and M.-Y. Lee, “Color distortion-aware error control for backlight dimming,” Journal of Display Technology, vol. 11, no. 1, pp. 79-85, Jan. 2015.
[17] L. Cheng, S. Mohapatra, M. Zar El, N. Dutt, and N. Venkatasubramanian, “Quality-based backlight optimization for video playback on handheld devices,” Advances in Multimedia, vol. 2007, no. 1, pp. 4-4, 2007.
[18] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh, “Dynamic backlight scaling optimization: a cloud-based energy-saving service for mobile streaming applications,” IEEE Transactions on Computers, vol. 63, no. 2, pp. 335-348, Feb. 2014.
[19] Y. Liu, M. Xiao, M. Zhang, X. Li, M. Dong, Z. Ma, Z. Li, L. Guo, and S. Chen, “Content-adaptive display power saving for internet video applications on mobile devices,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 12, no. 84, Dec. 2016.
[20] D.-G. Yoo, S.-J. Kang, H.-S. Kim, and Y. H. Kim, “Viewing distance-aware backlight dimming of liquid crystal displays,” Journal of Display Technology, vol. 10, no. 10, pp. 867-874, Oct. 2014.
[21] C. Y. Jang, S.-J. Kang, and Y. H. Kim, “Perceived distortion-based progressive LCD backlight dimming method,” Journal of Display Technology, vol. 12, no. 10, pp. 1130-1138, Oct. 2016.
[22] X. Chen, K. W. Nixon, H. Zhou, Y. Liu, and Y. Chen, “FingerShadow: An OLED power optimization based on smartphone touch interactions.” in Proceedings of HotPower, Oct. 2014.
[23] P. K Choubey, A. K Singh, R. B Bankapur, V. P C SB, and M. P. B, “Content aware targeted image manipulation to reduce power consumption in OLED panels,” in Proceedings of Eighth International Conference on Contemporary Computing (IC3), pp. 467-471, Aug. 2015.
[24] L. M. Jan, F. C. Cheng, C. H. Cheng, S. J. Ruan, and C. A. Shen, “A power-saving histogram adjustment algorithm for OLED-oriented contrast enhancement,” Journal of Display Technology, vol. 12, no. 4, pp. 368-375, Oct. 2016.
[25] M. Park and M. Song, “Saving power in video playback on OLED displays by acceptable changes to perceived brightness,” Journal of Display Technology, vol. 12, no. 5, pp. 483-490, May 2016.
[26] S.-J. Kang, “Perceptual quality-aware power reduction technique for organic light emitting diodes,” Journal of Display Technology, vol. 12, no. 6, June 2016.
[27] X. Chen, J. Mao, J. Gao, K. W. Nixon, and Y. Chen, “MORPh: mobile OLED-friendly recording and playback system for low power video streaming,” in Proceedings of ACM/EDAC/IEEE Design Automation Conference, pp. 1-6, June 2016.
[28] P. Chondro and S.-J. Ruan, “Perceptually hue-oriented power-saving scheme with overexposure corrector for AMOLED displays,” Journal of Display Technology, vol. 12, no. 8, pp. Aug. 2016.
[29] C.-H. Lin, C.-K. Kang, and P.-C. Hsiu, “CURA: a framework for quality-retaining power saving on mobile OLED displays,” ACM Transactions on Embedded Computing Systems, vol. 15, no. 4, Aug. 2016.
[30] Q. Li and Z. Wang, “Video quality assessment using a statistical model of human visual speed perception,” Journal of the Optical Society of America A, vol. 24, no. 12, pp. B61-B69, 2007.
[31] T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi, “Performance comparisons of subjective quality assessment methods for mobile video,” in Proceedings of International Conference on Quality of Multimedia Experience, pp. 82-87, June 2010.
[32] H. Boujut, J. Benois-Pineau, and R. Megret, “Fusion of multiple visual cues for visual saliency extraction from wearable camera settings with strong motion,” in Proceedings of Computer Vision–ECCV 2012 Workshops and Demonstrations, vol. 7585, pp. 436-445, 2012.
[33] A. Saleem, A. Beghdadi, and B. Boashash, “Image fusion-based contrast enhancement,” EURASIP Journal on Image and Video Processing, vol. 2012, no. 10, May 2012.
[34] A. R. Conn, N. Gould, and P. L. Toint, Trust-Region Methods. Philadelphia, PA: SIAM, 2000.
[35] J. J. Moré and D. C. Sorenson, “Computing a trust region step,” SIAM Journal on Scientific and Statistical Computing, vol. 4, pp. 553-572, 1983.
[36] J. Nocedal and S. J. Wright, Numerical Optimization, ser. Springer Series in Operations Research. New York: Springer-Verlag, 1999.
[37] O. Brouard, V. Ricordel, and D. Barba. Cartes de saillance spatio-temporelle bas´ees contrastes de couleur et mouvement relatif, Compression et representation des signaux audiovisuels, CORESA 2009, Toulouse, France, 2009, pp. 6.
[38] S. J. Daly, “Engineering observations from spatiovelocity and spatiotemporal visual models,” in Proceedings of IS&T/SPIE Conference on Human Vision and Electronic Imaging III, pp. 180-191, 1998.
[39] E. H. Weber. De Pulsu, resorptione, auditu et tactu: Annotationes anatomicae et physiologicae. CF Koehler, 1834.
[40] S. Ratabouil, Android NDK: Beginner's Guide. Packt Publishing Ltd., 2015.
[41] Y. Liu, M. Xiao, M. Zhang, X. Li, M. Dong, Z. Ma, Z. Li, L. Guo, and S. Chen, “Content-adaptive display power saving for internet video applications on mobile devices,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 12, no. 84, Dec. 2016.
[42] A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL ES 2.0 programming guide. Pearson Education, 2008.
[43] Power monitor. Monsoon Solution Inc. Retrieved 6 June, 2017 from https://www.msoon.com/LabEquipment/PowerMonitor/.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code