Responsive image
博碩士論文 etd-0530117-171507 詳細資訊
Title page for etd-0530117-171507
論文名稱
Title
防波堤堤頭附近三維水動力特性之研究
Study on Three-Dimensional Hydrodynamic Characteristics around the Head of Breakwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-07-23
關鍵字
Keywords
計算流體力學、水動力、防波堤、淘刷、紊流
Breakwater, scouring, hydrodynamics, Computational Fluid Dynamics, Turbulent
統計
Statistics
本論文已被瀏覽 5819 次,被下載 54
The thesis/dissertation has been browsed 5819 times, has been downloaded 54 times.
中文摘要
防波堤是海事結構體,一般延伸在港口進出航道兩側,主要作用為遮蔽與
防止波浪侵入,維持港內靜穩度,確保船舶安全進出,順利靠泊裝卸。台中港及
麥寮港是台灣西岸中部的重要港口,根據本研究 2014 年水深測量結果發現前
述兩港防波堤堤頭附近海床淘刷最大深度已達 26 m,且防波堤堤頭護基消波塊
部分已有崩塌後退情況,因此採取適當的因應及改善措施實為當務之急。
本研究採 FLOW-3D 計算流體力學數值軟體,針對台中港北防波堤及麥寮
工業港西防波堤堤頭附近海域進行三維波流場數值模擬,目的在於探討與分析
防波堤堤頭的水動力特性與淘刷機制,藉由附近海域歷年來背景資料收集統計
分析,並與本研究實測波潮流及海床侵蝕特性等進行比對修正,建立與設定三
維數值計算領域之邊界條件及初始條件。
研究的結果顯示,波流場水動力的模式驗證與水工試驗現場觀測趨於一致。
以視覺化呈現波場自由水面及堤頭前之垂直流況時序變化,以及最大底床水分
子速度分佈分析與渦流區底床切剪力的分布情形,包括波浪引發的流場伴隨南
北向的漲退潮流,以及陡峭淺化的海底地形,共同形成堤頭附近海床的淘刷機
制。前進波列在防波堤遮蔽的前方積聚的水動力能量,折向深海方向的帶狀離
岸流與南向的前進波列混合,深化了海床邊界層的紊流機制,淘刷區因此紊流
機制起動之懸浮載,隨著漲退潮流搬離遠處。由於長期缺乏砂源補注,淘刷區
浸淤失衡,因此持續威脅防波堤結構體的穩定。
Abstract
Breakwaters are the maritime structures which are generally extending to both sides of the ship channel. Their main functions are to create the shelter, prevent the heavy seas, and maintain the stability of the harbor basin to ensure safety of navigation and cargo operation. The Port of Taichung and the Port of Mailiao are the important ports in the middle of the west coast of Taiwan. According to the results of the sounding datum survey in 2014, the maximum depth of the seabed scouring in the vicinity of these two ports found was 26 m, and part of the amors of breakwater have been collapsed and backwards. Therefore, it is a top priority task to take appropriate responses and improving measures.
In this paper, three dimensional numerical simulations of wave-current fields around both heads of breakwaters of the Port of Taichung and the Port of Mailiao were carried out. The purpose is to explore and analyze the characteristics and scouring mechanism around the head of breakwater. The boundary conditions and initial inputs were established by using statistics to analyze background data and compare with the wave-current and seabed scouring characteristics of this research. The tools applied in the research are FAVORTM, wave, tide, turbulence and scouring modules in the Computational Fluid Dynamics (CFD) software FLOW-3D○R which calculate hydrodynamics.
The results show that numerical simulations of flow hydrodynamics of wave-flow field is consistented with field observations and laboratory experiments. By visualizing, it distributes the free surface wave, vertical flow conditions, and the maximum orbital velocity at the seabed that shear in the eddy area to clarify the scouring mechanism around the head of breakwater. Including the wave-induced flow field, along a north-south trend of the flooding and ebb current, and the steep slope formed together. Because the wave propagation is blocked by the breakwater, the accumulated hydrodynamic energy turns to the deep sea and cause of band-like offshore flow mixed with the southward forward wave, which deepen the turbulence mechanism of the seabed boundary layer. Turbulence mechanism by the suspension load, with the trend and move away. Due to the lack of long-term lack of sand source, the scouring area is difficult to achieve balance of siltation, thus continue to threaten the stability of the breakwater structure.
目次 Table of Contents
第1章 引言 1
1-1 研究動機與目的 1
1-2 研究範圍 2
1-2-1 臺中港 2
1-2-2 麥寮港 5
1-3 文獻回顧 8
1-3-1 河川輸砂 10
1-3-2 橋墩或垂直柱淘刷 10
1-3-3 人工魚礁淘刷 14
1-3-4 海堤淘刷 15
1-3-5 防波堤淘刷 16
1-3-6 FLOW-3D○R 應用於波、流場、結構物及地形變化計算 23
1-4 本文組織架構 24
第2章 數值模式 25
2-1 FLOW‐3D 簡介 25
2-2 基本控制方程式 26
2-2-1 坐標系統 26
2-2-2 質量連續性方程式 (Mass Continuity Equation) 26
2-2-3 動量方程式 (Momentum Equations) 27
2-3 主要應用物理模式 29
2-3-1 紊流模式 29
2-3-2 孔隙介質模式 32
2-3-3 底質淘刷模式 36
2-4 數值方法與邊界條件 42
2-4-1 網格符號與處理 43
2-4-2 障礙物處理方法 44
2-4-3 離散方法 45
2-4-4 邊界條件 48
2-4-5 數值穩定與收斂 54
2-5 網格獨立測試與模擬合理性 56
2-5-1 波場網格測試 56
2-5-2 流場網格測試 57
2-5-3 流場流速分析比較 59
第3章 模式驗證 62
3-1 數值空水槽海棉層反射率測試 62
3-2 斜坡底床波場變化模式驗證 63
3-3 TRUVOF模式驗證 65
3-4 淘刷模式驗證 68
3-5 水下平射流模式驗證 70
3-6 水工試驗與數值模擬驗證 71
3-6-1 試驗條件與試驗比尺 71
3-6-2 南流流場 (N-S) 水工試驗與數值模擬驗證 75
3-6-3 北流流場 (S-N) 水工試驗與數值模擬驗證 77
第4章 數值模擬結果與討論 80
4-1 三維波場數值模擬 80
4-1-1 波場數值計算領域 80
4-1-2 波浪條件 81
4-1-3 網格與初始參數設定 81
4-1-4 波場自由液面變化 83
4-1-5 海床邊界層之流速變化 90
4-1-6 堤頭附近最大底床水分子速度分佈分析 99
4-1-7 堤頭前之垂直流況變化 103
4-1-8 防波堤堤頭附近海域波場流速與底床變化分析 110
4-1-9 拉格朗日粒子追蹤波流場 112
4-1-10 防波堤頭附近波場底床儎侵淤變化與分布 113
4-1-11 波場數值模擬結論 115
4-2 三維潮流流場數值模擬 116
4-2-1 潮流流場計算範圍及水深地形 116
4-2-2 潮流流場空間分布與時序變化 118
4-2-3 測站潮位流向與流速之驗證 123
4-2-4 堤頭前之垂直流況變化 127
4-2-5 淘刷區底床貼面流速與 ESS 之分布 129
4-3 麥寮港三維動床流場數值模擬 134
4-3-1 防波堤堤頭流場計算範圍及水深地形 134
4-3-2 防波堤堤頭附近海域海床底層流速之時序分布變化 137
4-3-3 防波堤堤頭附近海域垂直分層流速u, v, w之變化 138
4-3-4 防波堤頭附近流場底床載侵淤變化與分布 141
第5章 結論與建議. 143
5-1 結論 143
5-2 建議 145
附錄 A. 波浪反射率 MATLAB code
B. 三維數值潮流流場初始程式碼
參考文獻 References
1. 李兆芳 (1979)。堤腳沖刷理論與試驗之研究 (碩士論文)。國立成功大學水利暨海洋工程學系。
2. 林銘崇、盧衍琪、梁乃匡、吳啟東 (1984)。短峰波對防波堤基礎沖刷影響之研究。第七屆海洋工程研討會論文集,頁 44-1~44-21。
3. 王啟銘 (1990)。人工魚礁配置之基礎研究 (碩士論文)。國立臺灣海洋大學漁業研究所。
4. 田文敏 (1994)。由大地工程觀點探討人工魚礁的掩埋機制。第十六屆海洋工程研討會論文集,高雄,D-79。
5. 涂盛文、邱惠萍 (1994)。海堤最佳面坡之二維試驗研究。第十六屆海洋工程研討會論文集,C-17~C-30。
6. 謝惠民 (1996)。網路型河川擬似二維沖淤行為之數值模擬 (博士論文)。國立臺灣大學土木工程學研究所。
7. 成大水工試驗所 (1997)。雲林縣離島式基礎工業區整體開發規劃調查分析,第一部份第二冊海流調查。國立成功大學水工試驗所研究報告第202號,經濟部工業局主辦。
8. 張文鎰 (1998)。橋墩沖刷模式之改良與驗證 (碩士論文)。國立臺灣大學土木工程學研究所。
9. 林呈、顏光輝、陳謹偉、黃文彥 (1998)。人工魚礁周邊之流場特性與沖刷機制之實驗研究。第二十屆海洋工程研討會論文集,基隆,頁 305-312。
10. 賴明賢 (2000)。臺灣西南海域人工魚礁礁體工程行為分析 (碩士論文)。國立中山大學海洋環境及工程研究所。
11. 劉景毅、黃煌煇 (2000)。直立防波堤前海流造成之底床沖刷預測。第二屆國際海洋大氣會議論文彙編,頁 331-336。
12. 張文鎰 (2002)。圓形橋墩局部沖刷之模擬與試驗驗證 (博士論文)。國立臺灣大學土木工程學研究所。
13. 黃俊維 (2002)。不規則波作用下海堤堤趾沖淤特性之初步研究 (碩士論文)。國立成功大學水利及海洋工程學系。
14. 王建忠 (2002)。多重網格法於河口沖淤模式之數值模擬 (碩士論文)。國立中興大學土木工程學系。
15. 朱志誠、杜振宗、廖學瑞 (2002)。防波堤堤頭刷深現象之分析探討。第二十四屆海洋工程研討會論文集,頁 219-231。
16. 劉景毅 (2003)。直立防波堤前海流導致底床沖刷之數值模擬。海洋工程學刊,第3卷,第1期,頁 15-33。
17. 許泰文、黃清哲、藍元志、蔡金晏、曾以帆、謝志敏、林俊遠 (2003)。防波堤堤前沖刷問題數值模擬研究。財團法人中華顧問工程司主辦,中華民國92年12月。
18. 湯麟武 (2004)。港灣及海域工程。中國土木水利工程學會出版。
19. 陳彥彰 (2004)。應用 Boussinesq 方程式計算斜坡上之波浪溯升及反射 (碩士論文)。國立成功大學水利及海洋工程研究所。
20. 林義復 (2008)。應用計算流力模擬船舶岸壁效應之研究 (碩士論文)。國立海洋科技大學航海科技研究所。
21. 賴堅戊 (2009)。波浪於粗粒徑斜坡底床傳遞之試驗與數值研究 (博士論文)。國立成功大學水利及海洋工程研究所。
22. 馬煒倫 (2011)。潛堤與海堤間波流場特性之數值模擬 (碩士論文)。國立中興大學土木工程學系。
23. 蔡立宏、徐如娟 (2011)。臺灣近岸港域地形變遷與環境調查研究 (2/4)。交通部運輸研究所主辦。
24. 侯逸瑞、莊世璿、岳景雲 (2011)。應用FLOW-3D模擬港內水面波動之研究。第33 屆海洋工程研討會論文集,高雄,頁 335-340。
25. 陳信宏、楊瑞源、黃煌煇、尤上林、張欽森、郭少谷、呂介斌、陳國隆 (2011)。金門跨海大橋橋墩地形沖刷之研究。第33 屆海洋工程研討會論文集,高雄,頁 359-364。
26. 邱永芳、李忠潘、蔡金吉 (2014)。港灣防波堤堤頭三維沖蝕特性及防制機制之研究(1/4)。交通部運輸研究所。
27. 李忠潘、曾以帆、邱永芳、何良勝、蔡金吉 (2016)。港灣防波堤堤頭波場定床三維數值模擬研究。港灣季刊,期 103,頁 1-24。
28. 橋本宏、田中茂信、筒井保博 (1987)。緩傾斜堤の局所洗掘と岸沖漂砂ヘの影響。第30回海岸工學講演會論文集,頁 249~253。
29. 豐島修 (1987)。緩傾斜岸工法。第34回海岸工學講演會論文集,頁 447-451。
30. Acharya, A. (2011). Experimental study and numerical simulation of flow and sediment transport around a series of spur dikes. Doctoral dissertation, Univ. of Arizona.
31. Alfonsi, G. (2015). Numerical Simulations of Wave-Induced Flow Fields around Large-Diameter Surface-Piercing Vertical Circular Cylinder. Computation, Vol. 3, pp. 386-426.
32. Arneborg, L., Hansen, E. A., & Juhl, J. (1995). Numerical modeling of local scour at partially reflective structures. Final Proceedings of the project Rubble-Mound Breakwater Failure Models. MAST Contract No. MAS2-CT92-0047, Vol. 2. Commission of the European Communities, Directorate General for Science, Research and Development.
33. Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. U. S. Geological Survey Prof. Paper, 422-I, pp. v + 37.
34. Beji, S., Ohyama, T., Battjes, J. A., & Nadaoka, K. (1992). Transformation of nonbreaking waves over a bar. Coastal Engineering, Vol. 22, pp. 51-61.
35. Bijker, E. W. (1971). Longshore transport computations. Journal of the Waterways, Harbors and Coastal Engineering Division, Vol. 97 (WW4), 687-701.
36. Breusers, H. N. C., & Raudkivi, A. J. (1991). Scouring. Rotterdam: Balkema.
37. Burcharth, H. F., Kramer, M., Lamberti, A., & Zanuttigh, B. (2006). Structural stability of detached low crested breakwaters, Coastal Engineering, Vol. 53(4), pp. 381-394.
38. Chang, H. H., & Hill, J. C. (1976). Computer modeling of erodible flood channels, & deltas. Journal of the Hydraulics Division, ASCE, Vol. 102, No. HY10, pp. 1461-1477.
39. Cho, S. M. (2010). Foundation design of the Incheon bridge. Geotechnical Engineering Journal of the SEAGS & AGSSEA. Vol 41, pp. 1-16.
40. Davies, H. C. (1976). A lateral boundary formulation for multi-level prediction models. Quarterly Journal of the Royal Meteorological Society, 102, 405-418.
41. Davies, H. C. (1983). Limitations of some common lateral boundary schemes used in regional NWP models. Monthly Weather Review, 111, 1002-1012.
42. Dentale F., Donnarumma, G., & Carratelli, E. P. (2012). Wave run up and reflection on tridimensional virtual breakwater. Journal of Hydrogeology and Hydrologic Engineering 1:1. doi:10.4172/2325-9647.1000102.
43. Eckert, J. W. (1983). Design of toe protection for coastal structures. Proceedings of Coastal Structures 1983, ASCE, New York, pp. 331-341.
44. Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flow. Technical Bulletin, No. 1026, U. S. Dep. of Agriculture, Washington, D.C..
45. Ettema, R. (1980). Scour at bridge piers (Report No. 216). Univ. of Auckland, Auckland.
46. Fenton, J.D. (1985). A fifth-order Stokes theory for steady waves. Journal of Waterway Port Coastal, and Ocean Engineering, 111, pp. 216-234.
47. Fenton, J.D. (1988). The numerical solution of steady water wave problems. Computers, and Geosciences 14, pp. 357-368.
48. Fredsøe, J., & Sumer, B.M. (1997). Scour at the round head of a rubble-mound breakwater. Coastal Engineering, Vol. 29, pp. 231-262.
49. Garcia, N., Lara, J. L., & Losada, I. J. (2004). 2-D numerical analysis of near-field flow at low-crested breakwaters. Coastal Engineering 51 (10), pp. 991-1020.
50. Gislason K., Fredsøe, J., & Sumer, B. M. (2009). Flow under standing waves: Part 2. Scour, & deposition in front of breakwaters. Coastal Engineering, Vol.56 (3), pp. 363-370.
51. Gladstone, C., Phillips, J. C., & Sparks, R. S. J. (1998). Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45, pp 833-843
52. Greben, J. M., Cooper, A. K., Gledhill, I., & de Villiers, R. (2008). Numerical modelling of structures of dolosse and their interaction with waves.
53. Hales, L. Z. (1980). Erosion control of scour during construction: Report 2. Literature survey of theoretical, experimental and prototype investigations (Technical Report HL-80-3). US Army Engineer Waterways Experiment Station, Vicksburg, MS.
54. Heribich, J. B., & Ko, S. C. (1967). Scour of sand beaches in front of seawall. Proc. 11th Int. Conf. on Coastal Eng., pp. 622-643.
55. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Physics 39, pp. 201-225.
56. Hirt, C. W. & Sicilian, J. M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. Proc., Fourth Int. Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
57. Horikawa, K. (1988). Nearshore dynamics and coastal process. University of Tokyo Press.
58. Hsu, J. R. C., Tsuchiya, Y., & Silvester, R. (1979). Third-order approximation to short-crested waves. J. Fluid Mech., Vol. 90, part 1, pp. 179-196.
59. Hsu, J. R. C., Silvester, R., & Tsuchiya, Y. (1980). Boundary-layer velocities and mass transport in short-crested waves. J. Fluid Mech., Vol. 99, pp. 321-342.
60. Hsu, T. J., Sakakiyama, T., & Liu, P. L. F. (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering 46 (1), pp.25-50.
61. Hsu, T. W., Chang, J. Y., Lan, Y. J., Lai, J. W., & Ou, S. H. (2008). A parabolic equation for wave propagation over porous structures. Coastal Engineering 55, pp. 1148-1158.
62. Huang, C. J., Chang, H. H., & Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering 49, pp. 1-24.
63. Hur, D. S., & Mizutani, N. (2003). Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Engineering 47, pp. 329-345.
64. Irie, I., & Nadaoka, K. (1984). Laboratory reproduction of seabed scour in front of breakwaters. Proceedings 19th International Conference on Coastal Engineering, ASCE, Vol. 2, pp. 1715-1731.
65. Israeli, M., & Orszag, S. (1981). Approximation of radiation boundary conditions. Journal of Conputational Physics 41, pp.115-135.
66. Jin, J., & Meng, B. (2011). Computation of wave loads on the superstructures of coastal highway bridges. Ocean Engineering, 38 (17-18), pp. 2185-2200.
67. Karim, M. F., & Kennedy, J. F. (1982). IALLUVIAL: a Computer-based flow and sediment routing for alluvial streams and its application to the Missouri River (Iowa Institute of Hydraulic Research, Report, No.250). The University of Iowa, Iowa, USA.
68. Karim, M. F., Tanimoto, K., & Hieu, P. D. (2009). Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model. Applied Mathematical Modelling 33, pp. 343-360.
69. Kayser, M., & Gabr, M. A. (2013). Assessment of scour on bridge foundations by means of in situ erosion evaluation probe. Journal of the Transportation Research Board, Vol. 2335, pp. 72-78.
70. Kim, C., Kim, J., & Kang, J. (2013). Analysis of the cause for the collapse of a temporary bridge using numerical simulation. Scientific Research, Engineering, Vol. 5, No. 12, pp. 997-1005.
71. Kocaman, S., Seckin, G., & Erduran, K. S. (2010). 3D model for prediction of flow profiles around bridges. Journal of Hydraulic Research, Vol. 48, Issue 4, pp. 521-525.
72. Kothyari, U. C. (1989). Scour around bridge piers, Doctoral dissertation, Univ. of Roorkee, Roorkee.
73. Kuo, C. T., & Hwung, H. H. (1975). Study on the scouring of seawall, Proc.16th.Conf. IAHR DELFT, Netherlands, pp 17-1~17-10.
74. Lara, J. L., Garcia, N., & Losada, I. J. (2006). RANS modelling applied to random wave interaction with submerged permeable structures. Coastal Engineering 53, pp. 395-417.
75. Lara, J. L., Losada, I. J., & Guanche, R. (2008). Wave interaction with low-mound breakwaters using a RANS model. Ocean Engineering 35, pp.1388-1400.
76. Le Méhauté, B. (1976). An introduction to hydrodynamics and water waves. Springer Science + Business Media, New York.
77. Lee, C. P. (1987). Wave interaction with permeable breakwaters. Doctoral dissertation, Oregon State University, Corvallis, OR.
78. Lee, K. H., & Mizutani, N. (2008). Experimental study on scour occurring at a vertical impermeable submerged breakwater. Journal of Applied Ocean Research, Vol. 30 (2), pp. 92-99.
79. Lin, P., & Liu, P. L. F. (1998). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 359, pp. 239-264
80. Lin, M., & Jeng, D. S. (2004). A 3-D model for ocean waves over a Columb-damping poroelastic seabed. Ocean Engineering, Vol. 31, pp. 561-585.
81. Lin, P., & Karunarathna, S. A. (2007). Numerical study of solitary wave interaction with porous breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 133 (5), pp. 352-363.
82. Liu, P. L. F. (1984). Diffraction of solitary waves. Journal of Waterway, Port, Coastal, Ocean Engineering, Vol.110 (2), pp.201-214.
83. Mansard, E. P. D., & Funke, E. R. (1980). The measurement of incident and reflected spectra using a least squares method. Proc. of the 17th Conf. on Coastal Eng., pp. 154-172.
84. Melville, B. W. (1975). Local scour at bridge sites. Doctoral dissertation, Department of Civil Engineering, University of Auckland, New Zealand.
85. Myrhaug, D., Rue, H., & Tørum, A. (2004). Tentative engineering approach to scour around breakwaters in random waves. Coastal Engineering, Vol. 51, pp. 1051-1065.
86. Myrhaug, D., & Ong, M. C. (2009). Random wave-induced scour at the trunk section of a breakwater. Coastal Engineering, Vol. 56, pp. 688-692.
87. Requejo, S., Vidal, C., & Losada, I. J. (2002). Modelling of wave loads and hydraulic performance of vertical permeable structures. Coastal Engineering 46, 249-276.
88. Richardson, J. E., & Panchang, V. G. (1998). Three-dimensional simulation of scour-inducing flow at bridge piers. Journal of Hydraulic Engineering 124 (5), pp. 530-540.
89. Roulund, A., Sumer, B. M., Fredsøe, J., & Michelsen, J. A. (1999). 3D mathematical modelling of scour around a circular pile in current. River Sedimentation – Theory and Application, pp. 131-138
90. Sato, S., Tanaka, N., & Irie, I. (1968). Study on scouring at the foot of coastal structures. Proceeding of 11th ICCE, London, England, Chapter 37, pp. 579-598.
91. Sato, S., Tanaka, N., & Irie, I. (1969). Study on scouring at the foot of coastal structures. Coastal Engineering in Japan, Vol. 37, pp. 579-598.
92. Sato, S., & Irie, I. (1970). Variation of topography of sea-bed caused by the construction of breakwaters. Proc. 12th Int. Conf. Coastal Eng., ASCE, V. 2, pp. 1301-1319.
93. Sawaragi, T. (1966). Scouring due to wave action at the toe of permeable coastal structures. 10th International Conference on Coastal Engineering, Tokyo, Japan, pp. 1036-1047
94. Silvester, R., & Hsu, J. R. C. (1993). Coastal stabilization. Advanced Series on Ocean Engineering: Volume 14, World Scientific.
95. Soulsby, R. L. (1997). Dynamics of marine sands. Thomas Telford Publications, London.
96. Soulsby, R. L. & Whitehouse, R. J. S. W. (1997). Threshold of sediment motion in coastal environments. Proc. Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154.
97. Sumer, B. M., & Fredsøe, J. (1997). Scour at the head of a vertical-wall breakwater. Coastal Engineering, Vol. 29, pp. 201-230.
98. Sumer, B. M., & Fredsøe, J. (2000). Experimental study of 2D scour and its protection at a rubble-mound breakwater. Coastal Engineering, Vol. 40, pp. 59-87.
99. Sumer, B. M., Whitehouse, R. J. S., & Tørum, A. (2001). Review Scour around coastal structures: a summary of recent research. Coastal Engineering, Vol. 44, Issue 2, pp. 153-190.
100. Sumer, B. M., Fredsøe, J., Lamberti, A., Zanuttigh, B., Dixen, M., Gislason, K., & Di Penta, A. F. (2005). Local scour at roundhead and along the trunk of low crested structures. Coastal Engineering, Vol.52, pp. 995-1025.
101. Teisson, C. (1992). Cohesive suspended sediment transport: feasibility and limitations of numerical modeling. Journal of Hydraulic Research, Vol. 29, No.6.
102. Ting, C. L., Lin, M. C., & Cheng, C. Y. (2004). Porosity effects on non-breaking surface waves over permeable submerged breakwaters. Coastal Engineering 50, pp. 213-224.
103. Tirindelli, M., Lamberti, A., Paphitis, D., Vidal, C., Hawkins, S., Morchella, P., & van Gent, M. R. A. (1995). Porous flow through rubble-mound material. Journal of Waterway Port Coastal and Ocean Engineering, pp. 176-181.
104. Tsai, C. P., Wang, J. S, & Lin, C. (1998). Downrush flow from waves on sloping seawalls. Ocean Engineering, Vol. 25, Nos 4-5, pp.295-308.
105. van Gent, M. R. A. (1995). Porous flow through rubble-mound material. Journal of Waterway Port Coastal and Ocean Engineering, pp. 176-181.
106. van Rijn, L. C. (1984a). Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering, Vol.110, No.10, pp. 1431-1456.
107. van Rijn, L. C. (1984b). Sediment transport, part II: suspended load transport, Journal of Hydraulic Engineering, Vol.110, No.11, pp. 1613-1641.
108. van Rijn, L. C. (1987). Mathematical modeling of morphological processes in the case of suspended sediment transport. Delft Hydraulics Communication, No. 382, The Netherlands.
109. van Rijn, L. C. (1989). Handbook sediment transport by currents and waves (Report Delft Hydraulics, H 461).
110. Velioğlu, D. (2017). Advanced two- and three-dimensional tsunami – models benchmarking and validation. Doctoral dissertation, Middle East Technical University, Ankara, Turkey.
111. Viccione, G., Dentale, F., & Pugliese Carratelli, E. (2008). Simulation of wave impact pressure on vertical structutes with the SPH method. 3rd SPHERIC Conference, Lausanne, Switzerland, pp. 1-10
112. Winterwerp, J. C., Bakker, W. T., Mastbergen, D. R., & Van Rossum, H. (1992). Hyperconcentrated sand-water mixture flows over erodible bed. J. Hydraul. Eng., 118, pp. 1508-1525.
113. Xie, S. L. (1981). Scouring patterns in front of vertical breakwaters and their influence on the stability of the foundations of the breakwaters (Report, Department of Civil Engineering). Delft University of Technology, Delft, The Netherlands, pp. 61.
114. Yang, C.T. (1984). Unit stream power equation for gravel. Journal of the Hydraulics Engineering, ASCE, Vol. 110, No.12, pp. 1679-1704.
115. Zhang, J., Gao, P., Zheng, J., Wu, X., Peng, Y., & Zhang, T. (2015) Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine. Journal of Marine Science and Technology, Vol. 23, No. 6, pp. 929-936.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code