Responsive image
博碩士論文 etd-0530120-141929 詳細資訊
Title page for etd-0530120-141929
論文名稱
Title
西太平洋文昌魚的類緣關係
Phylogenetic Relationships of Amphioxus in the West Pacific Ocean
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-21
繳交日期
Date of Submission
2020-06-30
關鍵字
Keywords
西太平洋、類緣關係、頭索動物、文昌魚、分歧時間
cephalochordate, phylogeny, West Pacific Ocean, divergence time, amphioxus / lancelet
統計
Statistics
本論文已被瀏覽 61 次,被下載 2
The thesis/dissertation has been browsed 61 times, has been downloaded 2 times.
中文摘要
近年來,粒腺體基因分子標記被廣泛地使用在分析文昌魚(頭索動物亞門)之類緣關係,但卻鮮少使用同樣能提供演化訊息的核基因。本研究使用五個分子標記,包含粒腺體基因(12S rRNA, Cytochrome c oxidase I, Cytochrome b)和核基因 (Histone H3, 18S rRNA)來推論七種西太平洋與兩種大西洋文昌魚的類緣關係,涵蓋了文昌魚的三個屬,這是目前已知文昌魚類緣關係分析中種類最完整的。文昌魚與外群的關係中,文昌魚為脊索動物中的基群,尾索動物與脊椎動物為姐妹系群。類緣關係分析的結果中,最大簡約法(Maximum Parsimony)和最大似然法(Maximum Likelihood),但不包括貝葉氏譜系分析(Bayesian Inference),顯示偏殖文昌魚屬(Asymmetron)是基群,鰓口文昌魚屬(Branchiostoma)和側殖文昌魚屬(Epigonichthys)互為旁系群。文昌魚的最近共同祖先約起源於134.56 百萬年前的¬特提斯海,並於50百萬年間在白堊紀分化成三個屬,這段時間與東印度洋的開啟相吻合,這三個屬可能都起源於印度洋與西太平洋。本研究首次以核基因確認了偏殖文昌魚屬中兩個潛在隱蔽種各為單系群。鰓口文昌魚屬可分為兩個演化支,分別是大西洋演化支(B. floridae 與 B. lanceolatum)和太平洋演化支(B. japonicum、 B. belcheri 與 B. malayanum)。現生側殖文昌魚屬僅分佈在印度西太平洋,可能遷移路徑為從印度洋往西到西太平洋。另外,我們在南沙群島發現了短刀側殖文昌魚(E. cultellus)可能的隱蔽種,顯示南中國海文昌魚的多樣性比想像的更高。
Abstract
Recently, the phylogeny of amphioxus has been widely investigated with molecular markers of mitochondrial gene, but rarely of nuclear gene which also provides evolutionary information. Our study inferred the phylogenetic relationships of seven amphioxus species from the West Pacific and two amphioxus species from the Atlantic covering the three genera with five molecular markers including both mitochondrial (12S rRNA, Cytochrome c oxidase I, Cytochrome b) and nuclear genes (Histone H3, 18S rRNA). This is the most comprehensive taxon sampling of amphioxus phylogeny to date. The phylogenetic relationships of cephalochordate and the outgroups show that cephalochordate is the basal chordate, and tunicate and vertebrate are sister clades. In our phylogenetic results, MP and ML but not BI approach, showed that Asymmetron is the basal clade, and Branchiostoma and Epigonichthys which are sisters diverged later. The most recent common ancestor of amphioxus probably originated at 134.56 million years ago in the Tethys Sea and diverged into three genera within 50 million years in Cretaceous. This period coincides with the opening of the eastern Indian Ocean. All the three genera probably originated in the Indo-West Pacific Ocean. Our phylogenetic trees confirmed the reciprocal monophylies of the two potential cryptic species in A. lucayanum with nuclear genes for the first time. Branchiostoma is divided into the Atlantic clade (B. floridae and B. lanceolatum) and the Indo-West Pacific clade (B. japonicum, B. belcheri and B. malayanum). Extant Epigonichthys species occurred only in the Indo-West Pacific Ocean. They probably migrated westward from the Indian Ocean into the Pacific Ocean. In addition, we found a potential cryptic species of E. cultellus in the Spratly Island which further increases the diversity of amphioxus in the South China Sea.
目次 Table of Contents
Thesis validation letter…………………………………………………….……………………..i
Acknowledgement………………………………………………………………………………ii
Abstract (Chinese)……………………………………………………………………………... iii
Abstract (English)…………………………………………………….……………………...... iv
Table of Contents…………………………………………………………………………….... vi
Table of Figures……………………………………………………………………………..…viii
Table of Tables…………………………………………………………………………….........ix
1 Introduction …………………………………………………………………………….......1
1.1 Introduction to amphioxus………………………………………………………..…1
1.2 Literature review of amphioxus phylogeny…………………………………………2
1.3 DNA markers…………………………………………………………………..……4
1.4 Goals in this study………………………………………………………………...…5
2 Materials and Methods……………………………………………………………………7
2.1 Sample collection……………………………………………………………………7
2.2 Species identification……………………………………………………………..…7
2.3 Molecular data………………………………………………………………….……7
2.3.1 DNA extraction……………………………………………………………7
2.3.2 PCR amplification and sequencing…………………………………..……8
2.4 Phylogenetic analyses………………………………………………………………10
2.4.1 Alignment…………………………………………………………...……10
2.4.2 Concatenation of genes………………………………………………...…10
2.4.3 Partitioning scheme and model selection…………………………………11
2.4.4 Phylogenetic analyses………………………………………………..……11
2.5 Estimation of divergence time………………………………………………………12
2.6 Ancestral biogeography reconstruction……………………………………………..13
3 Results………………………………………………………………….……………………14
3.1 Species identification………………………………………………………….……14
3.2 Molecular data, partitioning scheme and model selection…………………….……14
3.3 Phylogenetic analyses………………………………………………………………15
3.4 Estimation of divergence time………………………………….……………..……16
3.5 Ancestral biogeography reconstruction………………….……….…………………17
4 Discussion…………………………………………………………………..………………18
4.1 Phylogeny of amphioxus…………………………………………..…………..……18
4.2 Phylogenetic position of amphioxus as the basal chordate…………….……………20
4.3 Estimation of divergence time……………………………………………....………20
4.4 Dispersal route of amphioxus……………………………..………………...………22
5 Conclusions..………………………………………………………………..……….……...26
References ...……………………………………………………………………….…………27
參考文獻 References
1. Benton M. & Donoghue P. (2009) Calibrating and constraining molecular clocks. Journal of Vertebrate Paleontology 29.
2. Blair J.E. & Hedges S.B. (2005) Molecular phylogeny and divergence times of deuterostome animals. Molecular biology and evolution 22, 2275-84.
3. Bonaparte & Laurent C.L.J. (1846) Catalago Metodico dei Pesci Europei. Stamperia e Cartiere del Fibreno, Napoli. 99 pp., 9, 92.
4. Brown W.M., George M., Jr. & Wilson A.C. (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967-71.
5. Butler A.B. (2000) Chordate evolution and the origin of craniates: an old brain in a new head. Anat Rec 261, 111-25.
6. Cavalli‐Sforza L.L. & Edwards A.W.F. (1967) Phylogenetic Analysis: Models and Estimation Procedures. International Laboratory of Genetics & Biophysics, Naples, Pavia Section, Instituto di Genetica, Universita di Pavia, Italy.
7. Chen Y., Cheung S.G., Kong R.Y.C. & Shin P.K.S. (2007) Morphological and molecular comparisons of dominant amphioxus populations in the China Seas. Marine Biology 153, 189-98.
8. Chen Y., Cheung S.G. & Shin P.K.S. (2008) The diet of amphioxus in subtropical Hong Kong as indicated by fatty acid and stable isotopic analyses. Journal of the Marine Biological Association of the United Kingdom 88, 1487-91.
9. Colgan D., McLauchlan A., Wilson G., Livingston S., Edgecombe G., Macaranas J., Cassis G. & Gray M. (1998) Histone H3 and U2 snRNA DNA sequences and arthropod evolution. Australian Journal of Zoology 46.
10. Daly M., Chorowicz J. & Fairhead J. (1989) Rift basin evolution in Africa: The influence of reactivated steep basement shear zones. Geological Society, London, Special Publications 44, 309-34.
11. Delsuc F., Brinkmann H., Chourrout D. & Philippe H. (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965-8.
12. Farris J.S. (1983) The logical basis of phylogenetic analysis. In: NI Platnick, VA Funk (eds) Advances in Cladistics vol. 2. Columbia University Press, New York, 7–36.
13. Franz V. (1922) Systematische Revision der Akranier. Jenaische Zeitschrift fur Naturwissenschaft 58, 369-452.
14. Gautier F., Clauzon G., Suc J.-P., Cravatte J. & Violanti D. (1994) Age and duration of the Messinian salinity crisis [Age et duree de la crise de salinite messinienne]. Comptes Rendus - Academie des Sciences, Serie II: Sciences de la Terre et des Planetes 318, 1103-9.
15. Gibbs P.E. & Wickstead J.H. (1969) On a collection of Acrania (Phylum Chordata) from the Solomon Islands. Journal of Zoology 158, 133-41.
16. Giribet G., Carranza S., Baguna J., Riutort M. & Ribera C. (1996) First Molecular Evidence for the Existence of a Tardigrada + Arthropoda Clade. Molecular biology and evolution 13, 76-84.
17. Goldschmidt R. (1905) Amphioxides. Vertreter einer neuen Acranier-Familie. (Vorlaufige Mitteilung). Biologisches Centralblatt. 25(7), 235-40.
18. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-21.
19. Holland N. & Chen J. (2001) Origin and early evolution of the vertebrates: New insights from advances in molecular biology, anatomy, and palaeontology. BioEssays 23, 142-51.
20. Hubbs C.L. (1922) A list of the lancelets of the world with diagnosis of five new species of Branchiostoma. Occasional Papers of the Museum of Zoology, Univ. Michigan. 105, 1-16.
21. Huelsenbeck J.P., Larget B., Miller R.E. & Ronquist F. (2002) Potential Applications and Pitfalls of Bayesian Inference of Phylogeny. Systematic Biology 51, 673-88.
22. Huelsenbeck J.P. & Ronquist F. (2005) Bayesian Analysis of Molecular Evolution Using MrBayes. In: Statistical Methods in Molecular Evolution (pp. 183-226. Springer New York, New York, NY.
23. Igawa T., Nozawa M., Suzuki D.G., Reimer J.D., Morov A.R., Wang Y., Henmi Y. & Yasui K. (2017) Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Scientific Reports 7, 1157.
24. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647-9.
25. Klitgord K. & Schouten H. (1986) Plate kinematics of the Central Atlantic. In: (pp. 351-78.
26. Kolaczkowski B. & Thornton J.W. (2009) Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PloS one 4, e7891-e.
27. Kon T., Nohara M., Nishida M., Sterrer W. & Nishikawa T. (2006) Hidden ancient diversification in the circumtropical lancelet Asymmetron lucayanum complex. Marine Biology 149, 875-83.
28. Kon T., Nohara M., Yamanoue Y., Fujiwara Y., Nishida M. & Nishikawa T. (2007) Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evolutionary Biology 7, 127.
29. Koressaar T. & Remm M. (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics (Oxford, England) 23, 1289-91.
30. Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution 35.
31. Lacalli T. (1996a) Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Philosopical Transactions of the Royal Society B 351, 243-63.
32. Lacalli T. (1996b) Landmarks and subdomains in the larval brain of Branchiostoma: Vertebrate homologs and invertebrate antecedents. Israel Journal of Zoology 42, S131-S46.
33. Lanfear R., Calcott B., Ho S.Y.W. & Guindon S. (2012) PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular biology and evolution 29, 1695-701.
34. Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. (2017) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular biology and evolution 34, 772-3.
35. Li W., Fang S.-H. & Wang Y. (2014) Complete Mitochondrial Genome of Epigonichthys cultellus (Cephalochordata: Branchiostomatidae). Zoological Science 31, 766-72.
36. Lin H.-C. (2001) Systematic and Ecological Studies of Lancelets from the Coastal Areas of Taiwan, Kinmen and Matsu. In: 動物學研究所, p. 0. 國立臺灣大學, 台北市.
37. Maddison W.P. & Maddison D.R. (2019) Mesquite: a modular system for evolutionary analysis. Version 3.61
38. Mello B. (2018) Estimating TimeTrees with MEGA and the TimeTree Resource. Molecular biology and evolution 35, 2334-42.
39. Miller M., Pfeiffer W.T. & Schwartz T. (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees.
40. Nguyen L.T., Schmidt H.A., von Haeseler A. & Minh B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution 32, 268-74.
41. Nishikawa T. (2004) A new deep-water lancelet (Cephalochordata) from off Cape Nomamisaki, SW Japan, with a proposal of the revised system recovering the genus Asymmetron. Zoological Science 21, 1131-6.
42. Nohara M., Nishida M., Manthacitra V. & Nishikawa T. (2004) Ancient Phylogenetic Separation between Pacific and Atlantic Cephalochordates as Revealed by Mitochondrial Genome Analysis. Zoological Science 21, 203-10.
43. Nohara M., Nishida M. & Nishikawa T. (2005) Evolution of the Mitochondrial Genome in Cephalochordata as Inferred from Complete Nucleotide Sequences from Two Epigonichthys Species. Journal of molecular evolution 60, 526-37.
44. Pallas P.S. (1774) “Limax lanceolatus: descriptio Limacis lanceolaris”. In Spicilegia Zoologica, quibus novae imprimus et obscurae animalium species iconibus, descriptionibus Vol. 10 Berlin: Lange.
45. Poss S. & Boschung H. (1996) Lancelets (Cephalochordata: Branchiostomatidae): how many species are valid? Israel Journal of Zoology 42, S13-S66.
46. Powell C.M., Roots S.R. & Veevers J.J. (1988) Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 155, 261-83.
47. Putnam N.H., Butts T., Ferrier D.E., Furlong R.F., Hellsten U., Kawashima T., Robinson-Rechavi M., Shoguchi E., Terry A., Yu J.K., Benito-Gutierrez E.L., Dubchak I., Garcia-Fernandez J., Gibson-Brown J.J., Grigoriev I.V., Horton A.C., de Jong P.J., Jurka J., Kapitonov V.V., Kohara Y., Kuroki Y., Lindquist E., Lucas S., Osoegawa K., Pennacchio L.A., Salamov A.A., Satou Y., Sauka-Spengler T., Schmutz J., Shin I.T., Toyoda A., Bronner-Fraser M., Fujiyama A., Holland L.Z., Holland P.W., Satoh N. & Rokhsar D.S. (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-71.
48. Rambaut A., Drummond A., Xie D., Baele G. & Suchard M. (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic biology 67.
49. Richardson B. & McKenzie A. (1994) Taxonomy and distribution of Australian Cephalochordates (Chordata : Cephalochordata). Invertebrate Systematics 8, 1443-59.
50. Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61, 539-42.
51. Rowe T. (2004) Assembling the Tree of Life. Oxford University Press, New York, 384-409.
52. Ruppert E.E. (2005) Key characters uniting hemichordates and chordates: homologies or homoplasies? Canadian Journal of Zoology 83, 8-23.
53. Rychel A., Smith S., Shimamoto H. & Swalla B. (2006) Evolution and Development of the Chordates: Collagen and Pharyngeal Cartilage. Molecular biology and evolution 23, 541-9.
54. SantaLucia J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences 95, 1460-5.
55. Schaeffer B. (1987) Deuterostome Monophyly and Phylogeny. Evolutionary Biology 21, 179–235.
56. Schluter D. (2000) The Ecology Of Adaptive Radiation. Oxford University Press, New York, 1-288.
57. Simmons M.P., Ochoterena H. & Freudenstein J.V. (2002) Amino acid vs. nucleotide characters: challenging preconceived notions. Molecular Phylogenetics and Evolution 24, 78-90.
58. Stamatakis A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-3.
59. Stokes M.D. & Holland N.D. (1995) Embryos and larvae of a lancelet, Branchiostoma floridae, from hatching through metamorphosis: Growth in the laboratory and external morphology. Acta Zoologica 76, 105-20.
60. Subirana L., Farstey V., Bertrand S. & Escriva H. (2020) Asymmetron lucayanum: How many species are valid? PloS one 15, e0229119-e.
61. Suzuki Y., Glazko G. & Nei M. (2003) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99, 16138-43.
62. Swofford D. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10.
63. Tchang S. & Koo K. (1936) Description of a new variety of Branchiostoma belcheri (Gray) from Kiaochow Bay, Shantung, China. Contributions from the Institute of Zoology. National Academy of Peiping 3, 77-114.
64. Thompson J.D., Higgins D.G. & Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673-80.
65. Wang Y., Xu Q., Peng X. & Zhou H. (2004) Taxonomic status of amphioxus Branchiostoma belcheri in Xiamen beach estimated by homologous sequence of Cyt b gene. Dong wu xue bao, Acta zoologica Sinica 50, 202-8.
66. Xu Q.-S., Fei M. & Wang Y. (2005) Morphological and 12S rRNA gene comparison of two Branchiostoma species in Xiamen Waters. Journal of experimental zoology. Part B, Molecular and developmental evolution 304, 259-67.
67. Zhang Q.J., Zhong J., Fang S.H. & Wang Y.Q. (2006) Branchiostoma japonicum and B. belcheri are distinct lancelets (Cephalochordata) in Xiamen waters in China. Zoological Science 23, 573-9.
68. Zhong J., Zhang Q., Xu Q., Schubert M., Laudet V. & Wang Y. (2009) Complete mitochondrial genomes defining two distinct lancelet species in the West Pacific Ocean. Marine Biology Research 5, 278-85.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code