Responsive image
博碩士論文 etd-0531110-195414 詳細資訊
Title page for etd-0531110-195414
論文名稱
Title
一維p-Laplacian算子之正問題和反問題
Direct and inverse problems for one-dimensional p-Laplacian operators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-28
繳交日期
Date of Submission
2010-05-31
關鍵字
Keywords
反問題、p-拉普拉斯
p-Laplacian, inverse problems
統計
Statistics
本論文已被瀏覽 5814 次,被下載 2207
The thesis/dissertation has been browsed 5814 times, has been downloaded 2207 times.
中文摘要
摘 要
在本論文中,研究一維p-拉普拉斯算子正、反問題中,解的節點性質。我們首先考慮邊界值問題定義在(0,1)區間中,
-(y^(p-1))’+(p-1)q(x)y^(p-1) =(p-1)λw(x)y^(p-1), (0.1)
其中 f(p-1):=∣f∣^(p-1) sgn f。此問題為非線性且退化的,其行為與傳統Sturm-Liouville問題很類似,是p=2時的特例。當此問題考慮線性分離的邊界值條件時,其特徵值是離散的,且對應於第n個的特徵函數 yn恰有(n-1)個零點在(0,1)中。利用一個Prufer型代換及廣義sine函數Sp(x)的性質,我們解答了當w(x)≡1時Dirichlet、週期及反週期邊界值條件下,反節點問題的重構公式及穩定性問題。另外,對應的Ambarzumyan問題也得到解答。
我們也研究一組含有非齊次項(p-1)w(x)f(y(x))在式子(0.1)右項的邊界值問題,其中w是恆正且連續可微的,q是連續可微的,f是正函數且Lipschitz連續在(0,∞)中,並且是在R中的奇函數使得
f0, f∞
不相等。我們推廣了Kong的結果,由p=2到p>1,結果為當有一個特徵值λn落在(f0 , f∞)或(f∞ , f0)時,以上的非齊次式方程式結合任意線性分離的邊界值條件,存在一個解u有(n-1)個零點在(0,1)中。
雖然已知有些不同於p=2時的狀況,我們的結果證明了,一維p-拉普拉斯算子是非常相似於Sturm-Liouville算子,特別是使用Prufer代換的技巧。
Abstract
In this thesis, direct and inverse problems concerning nodal solutions associated with the one-dimensional p-Laplacian operators are studied. We first consider the eigenvalue
problem on (0, 1),
−(y0(p−1))0 + (p − 1)q(x)y(p−1) = (p − 1) λw(x)y(p−1) (0.1)
Here f(p−1) := |f|p−2f = |f|p−1 sgn f. This problem, though nonlinear and degenerate, behaves very similar to the classical Sturm-Liouville problem, which is the special case
p = 2. The spectrum {λk} of the problem coupled with linear separated boundary conditions are discrete and the eigenfunction yn corresponding toλn has exactly n−1 zeros in (0, 1). Using a Pr‥ufer-type substitution and properties of the generalized sine function, Sp(x), we solve the reconstruction and stablity issues of the inverse nodal problems for Dirichlet boundary conditions, as well as periodic/antiperiodic boundary conditions whenever w(x) λ 1. Corresponding Ambarzumyan problems are also solved.
We also study an associated boundary value problem with a nonlinear nonhomogeneous
term (p−1)w(x) f(y(x)) on the right hand side of (0.1), where w is continuously differentiable and positive, q is continuously differentiable and f is positive and Lipschitz
continuous on R+, and odd on R such that
f0 := lim
y!0+
f(y)
yp−1 , f1 := lim
y!1
f(y)
yp−1 .
are not equal. We extend Kong’s results for p = 2 to general p > 1, which states that whenever an eigenvalue _n 2 (f0, f1) or (f1, f0), there exists a nodal solution un
having exactly n − 1 zeros in (0, 1), for the above nonhomogeneous equation equipped
with any linear separated boundary conditions.
Although it is known that there are indeed some differences, Our results show that the one-dimensional p-Laplacian operator is still very similar to the Sturm-Liouville operator, in aspects involving Pr‥ufer substitution techniques.
目次 Table of Contents
Contents
1 Introduction 5
1.1 The p-Laplacian eigenvalue problem . . . . . . . . . . . . . . . . . . . . 5
1.2 Two inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 A class of nonlinear p-Laplacian boundary value problems . . . . . . . 13
1.4 Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Preliminaries 17
2.1 The generalized sine function Sp . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Pr‥ufer-type substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Eigenvalue estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Inverse nodal problems and Ambarzumyan problems 24
3.1 Inverse nodal problem for Dirichlet boundary conditions . . . . . . . . 24
3.2 Inverse nodal problem for periodic/anti-periodic boundary conditions . 30
3.3 The Ambarzumyan problems . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Nonlinear boundary value problems for p-Laplacian 35
4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Results on initial value problems . . . . . . . . . . . . . . . . . . . . . 38
4.3 Some technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Proof of Theorem 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻 References
[1] P. Binding and P. Drabek, Sturm–Liouville theory for the p-Laplacian, Studia
Scientiarum Mathematicarum Hungarica, 40 (2003), 373-396.
[2] P. Bindind, P. Drabek, and Y.X. Huang, On the Fredholm alternative for the
p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 3555-3559.
[3] P. Binding and B. Rynne, The spectrum of the periodic p-Laplacian, J. Differential
Equations, 235 (2007), 199-218.
[4] P. Binding and B. Rynne, Variational and non-variational eigenvalues of the p-
Laplacian, J. Differential Equations, 244 (2008), 24-39.
[5] G. Birkhoff and G.C. Rota, Ordinary Differential Equations, 4th ed (1989) Wiley,
New York.
[6] B.M. Brown and M.S.P. Eastham, Titchmarsh’s asymptotic formula for periodic
eigenvalues and an extension to the p-Laplacian, J. Math. Anal. Appl., 338 (2008),
1255-1266.
[7] H.Y. Chen, On generalized trigonometric functions, unpublished Master thesis,
National Sun Yat-sen University, Kaohsiung, Taiwan, 2009.
[8] Y.H. Cheng and C.K. Law, On the quasinodal map for the Sturm-Liouville problem,
Proc. Roy. Soc. Edinburgh, 136A (2006), 71-86.
[9] Y.H. Cheng and C.K. Law, The inverse nodal problem for Hill’s equation, Inverse
Problems, 22 (2006), 891-901.
[10] Y.H. Cheng, C.K. Law, W.C. Lian, and W.C. Wang, Two inverse problems for
the p-Laplacian eigenvalue problem with integrable potentials, submitted.
[11] H.H. Chern, C.K. Law and H.J. Wang, Extension of Ambarzumyan’s theorem
to the general boundary conditions, J. Math. Anal. Appl., 263 (2001), 333-342;
Corrigendum, 309 (2005), 764-768.
[12] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
New York : McGraw-Hill, 1955.
[13] M. Cuesta, D.G. Figureiredo and J.P. Gossez, The beginning of the Fucik spectrum
for the p-Laplacian, J. Differential Equations, 159 (1999), 212-238.
[14] S. Currie and B.A. Watson, Inverse nodal problems for Sturm-Liouville equations
on graphs, Inverse Problems, 23 (2007), 2029–2040.
[15] M. del Pino, P. Drabek, and R. Manasevich, The Fredholm altenative at the first
eigenvalue for on-dimensional p-Laplacian, J. Differential Equations, 151 (1999)
386-419.
[16] M. del Pino, M. Elgueta, and R. Manasevich, A homotopic deformation along
p of a Leray-Schauder degree result and existence for (|u0|p−2u0)0 + f(t, u) = 0,
u(0) = u(1) = 0, p > 1, J. Differential Equations 80 (1989) 1-13.
[17] M. del Pino and R. Manasevich, Global bifurcation from the eigenvalues of the
p-Laplacian, J. Differential Equations 92 (1991) 226-251.
[18] P. Drabek and P. Takac, A counterexample to the Fredholm alternative for the
p-Laplacian, Proc. Amer. Math. Soc., 129 (1999) 1079-1087.
[19] P. Drabek and S.B. Robinson, On the generalization of the Courant nodal domain
theorem, J. Differential Equations, 181 (2002), 58-71.
[20] W. Eberhard and A. Elbert, On the eigenvalues of half-linear boundary value
problems, Math. Nachr., 213 (2000), 57-76.
[21] A. Elbert, A half-linear second order differential equation, Colloqia mathematica
Societatis J′onos Bolyai, 30. Qualitiative Theory of Differential Equations, Szeged
(Hungary) (1979), 153-180.
[22] L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary
value problems, Math. Comput. Modelling, (2000) 529-539.
[23] M. Garcia-Huidobbo, R. Manasevich, and F. Zanolin, A Fredholm-like result for
strongly nonlinear second ODE’s, J. Differential Equations, 114 (1994), 132-167.
[24] Q. Kong, Existence and nonexistence of solutions of second-order nonlinear boundary
value problems, Nonlinear Anal., 66 (2007) 2635-2651.
[25] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,
2nd ed., Gordon and Breach (New York), 1969.
[26] C.K. Law, C.L. Shen and C.F. Yang, The inverse nodal problem on the smoothness
of the potential function, Inverse Problems, 15 (1999), 253-263; Errata, 17 (2001),
361–363.
[27] C.K. Law, W.C. Lian and W.C. Wang, Inverse nodal problem and Ambarzumyan
problem for the p-Laplacian, Proc. Roy. Soc. Edinburgh, 139A (2009), 1261-1273.
[28] C.K. Law and J. Tsay, On the well-posedness of the inverse nodal problem, Inverse
Problems, 17 (2001), 1493-1512.
[29] Y.H. Lee and I. Sim, Existence results of sign-changing solutions for singular onedimensional
p-Laplacian problems, Nonlinear Anal., 68 (2008) 1195-1209.
[30] H.J. Li and C.C. Yeh, Sturmian comparison theorem for half-linear second-order
differential equations, Proc. Roy. Soc. Edinburgh, 125A (1995) 1193-1204.
[31] W.C. Lian, F.H. Wong, and C.C. Yeh, On the existence of positive solutions of
nonlinear second order differential equations, Proc. Amer. Math. Soc., 124 (1996)
1117-1126.
[32] P. Lindqvist, Note on a nonlinear eigenvalue problem, Rocky Mount. J. Math., 23
(1993) 281-288.
[33] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche diMathematica,
44 (1995) 269-290.
[34] P. Lindqvist, On the equation div(|ru|p−2ru)+ |u|p−2u = 0, Proc. Amer. Math.
Soc., 109 (1990) 157-164.
[35] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires,
Dunod (Paris) 1969.
[36] J.R. McLaughlin, Inverse spectral theory using nodal points as data – a uniqueness
result, J. Differential Equations, 73 (1988), 354-362.
[37] Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary
value problem for nonlinear second order differential equations, Nonlinear Anal.,
66 (2004) 919-935.
[38] Y. Naito and S. Tanaka, Sharp conditions for the existence of sign-changing solutions
to the equations involving one-dimensional p-Laplacian, Nonlinear Anal.,
69 (2008) 3070-3083.
[39] M. ˆOtani, A remark on certain nonlinear elliptic equations, Proc. Faculty Sci.
Tokai Univ., 19 (1984) 23-28.
[40] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional
Analysis, 7 (1971) 487-513.
[41] W. Reichel and W.Walter, Radial solutions of equations and inequalities involving
the p-Laplacian, J. Inequalities Appl., 1 (1997) 47-71.
[42] W. Rudin, Real and Complex Analysis, 3rd Edition, New York: McGraw-Hill,
1987.
[43] C.L. Shen and T.M. Tsai, On a uniform approximation of the density function
of a string equation using eigenvalues and nodal points and some related inverse
nodal problems, Inverse Problems, 11 (1995), 1113-1123.
[44] W. Walter, Sturm-Liouville theory for the radial Mp-operator, Math. Z., 227
(1998) 175-185.
[45] C.F. Yang, Z.Y. Huang and X.P. Yang, Ambarzumyam’s theorems for vectorial
Sturm-Liouville system with coupled boundary conditions, Taiwanese J. Math.,
to appear.
[46] V.A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse
and Ill-Posed Problems Series, VSP, Utrecht, 2002.
[47] M. Zhang, The rotation number approach to eigenvalues of the one-dimensional
p-Laplacian with periodic potentials, J. London Math. Soc., 64 (2001) 125-143.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code