Responsive image
博碩士論文 etd-0601107-182805 詳細資訊
Title page for etd-0601107-182805
論文名稱
Title
石化污染場址風險管控策略之研究
Development of Risk Management Strategies for a Petro-Chemical Contaminated Site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
299
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-05-21
繳交日期
Date of Submission
2007-06-01
關鍵字
Keywords
風險基準矯正行動、薄膜介面探測、三合法、污染場址、場址概念模型
Triad Approach, risk-based corrective action, conceptual site models, membrane interface probe, contaminated site
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
石油化學污染場址之調查、評估與整治,為環境保護領域中極具挑戰性及困難度之議題。我國於民國八十九年正式實施「土壤及地下水污染整治法」以來,諸多案場亦因地下環境、污染調查、風險評估、整治復育等過程充滿不確定性,而遭遇許多技術或控管方面之瓶頸,使許多案場陷於膠著狀態。為突破此現象及瓶頸,本研究由污染場址之不確定性風險控管切入,以某石化污染場址個案進行風險控管策略之研究,探討受含氯之乙烯類物質污染之地下環境特徵、健康風險評估與風險基準矯正行動策略,期能藉由一系列之不確定性之風險管控,提供案場管理者更具體而經濟之決策建議。
本研究首先應用三合作業法,以聚焦並加速污染場址調查流程。藉由導入專案系統規劃、動態性工作策略,及結合薄膜介面探測等現地即時直壓採樣或量測等系統工具,搭配離場實驗室物理化學檢測方法,經濟地降低地下環境污染的關鍵不確定性特徵,建構可供作為健康風險評估之具體場址概念模型。估計節省新台幣約600萬之調查費用並縮短約3年之場址特徵描繪以及整治清除時程。當欲管理決策不確定性以支持可辯護之案場決策之情況下,本研究證實三合法可被用於將場址特徵調查及整治清除等過程流暢化。
本研究依據三合法完成之場址概念模型,再運用美國試驗及材料協會所發展之「風險基準矯正行動」準則,以及我國行政院環境保護署所建置之「土壤及地下水污染場址健康風險評估評析方法」及程式軟體,進行受含氯之乙烯類物質污染場址之健康風險評估,以探討各環境介質、關切化學物質、暴露人體途徑等定量之健康風險。評估結果顯示,場址內第二層次健康風險評估,於符合場址實際狀況在不計入地下水飲用和接觸之考量下,其總致癌風險為1.613E-03,高於可容許之風險基準1E-06;非致癌風險8.422E+00亦高於可容許之非致癌風險基準1。環境介質中以地下水所引發之風險最高,地下水土壤之揮發蒸散空氣次之,吸入表土揚塵微粒之風險值最低。地下水中最大致癌風險暴露途徑為取用地下水做為洗澡或日常清洗所致之風險(8.064E-02),飲用污染地下水為次高之致癌風險途徑,三氯乙烯為主要的影響標的關切化學物質,致癌風險影響程度佔各關切化學物質總致癌風險95.6%。最大非致癌風險途徑為地下水飲用(8.919E+02),主要的關切污染物為順-1,2-二氯乙烯;而由土壤蒸散之空氣,主要關切物質亦為順-1,2-二氯乙烯,三氯乙烯次之。
本研究場址若欲降低人體健康風險,宜同步實施禁制措施、工程控制、及整治復育之複合式風險基準矯正行動。禁制措施方面以限制鑿井與禁抽地下水為主,所花費金額最為經濟。工程控制方面,土壤污染可考慮將場址內土壤裸露地表面之混凝土灌漿封隔;地下水污染可考慮設置鋼板樁或設置抽水井以阻截地下水擴散。整治復育方面,以現場就地化學還原法灌注或反應牆,搭配監測式自然衰減為較可行方案,但經費最高且耗時最久。本研究過程及結果,可供案場管理/決策者,進行風險基準管理與決策之參考依據。
Abstract
The subsurface environmental contamination investigation, assessment and remediation of petro-chemical contaminated site have been the most challenging environmental issues of environmental protection. If subsurface environmental mediums like soil and groundwater are contaminated, the investigation and remediation will always be time-consuming and costly even though they could not be cleaned up completely. Groundwater contaminated by chlorinated volatile solvents is more difficult to remedy owing to its property of dense non-aqueous phase liquid (DNAPL).

This study focuses on petro-chemicals contaminated site whose subsurface environment is contaminated by chlorinated ethene. The study will also find out the efficient, effective and economic ways to identify and concretely delineate the characterization of subsurface environment and contamination, conduct human health risk management and take risk-based corrective action, so as to formulate an appropriate risk management strategy and solution.

Firstly, this study applies a Triad approach to accelerate and streamline the investigation process of contaminated site. Introduction of project systematic planning, dynamic work strategy and in situ, real time survey or direct-push sampling like membrane interface probe, together with off-site measures like physical measurement and chemical analytic testing in laboratory, could reduce the key uncertain characteristics of subsurface environmental contamination and establish the conceptual cite models for health risk assessment cost-effectively. It is estimated that this method could save 6 million NTD and shorten 3 years’ time in site characteristics delineation and remediation. If we wish to make the site defensible via managing the uncertain decision, the integration of Triad approach which is developed by United States Environmental Protection Agency, and Environmental Site Assessment, Accelerated Site Characterization, Health Risk Assessment and Risk-based Corrective action which were developed by American Society for Testing and Materials (ASTM), are proved in this study that they could help streamline the site characterization and remediation.

This study is based on the conceptual site models of Triad Approach, the Risk-based corrective action of ASTM, the Health Risk Assessment and Evaluation Methods for Soil and Groundwater Contaminated Site, and also the software developed by the Taiwan Environmental Protection Administration. Through the health risk assessment of chlorinated ethenes contaminated site, this research aims to evaluate the quantitative health risk like chemical of concern, environmental medium, and human exposure pathway etc. The result of evaluation showed that the carcinogenic risk of tier 2 is 1.080E-01 which exceeds the acceptable risk-based standard, 1E-06; tier 2’s non-carcinogenic risk, 1.819E+03, also exceeds the acceptable hazard index which is 1. Groundwater poses the highest risk among environmental media, followed by inhalation of vapor from contaminated soil and/or groundwater. The risk of inhalation of top soil particulates is the lowest. The most dangerous carcinogenic exposure of groundwater is using groundwater for shower and washing whose risk is 8.064E-02; the second highest carcinogenic pathway is groundwater ingestion. Trichloroethylene is the key chemical of concern which poses 95.6% of carcinogenic risk among all chemicals of concern. Groundwater ingestion poses the highest non-carcinogenic risk (8.919E+02), and the main chemical of concern is cis-1, 2-dichloroethylene. The main chemical of concern of soil volatilization is cis-1, 2-dichloroethylene, followed by trichloroethylene.

If the site in this study wishes to reduce the health risk of human beings, it is suggested to simultaneously implement integrated risk-based corrective actions including institutional control, engineering control and remediation. For institutional control, prohibition of pumping groundwater and pumping well installation is the most cost-effective choice. For engineering control, concrete capping on uncovered surface soil is feasible when dealing with soil contamination. When it comes to groundwater contamination, steel sheet pile containment or pumping well installation could help intercept the migration of groundwater. Regarding remediation, in-situ chemical reduction injection or permeable reactive barrier, incorporated together with monitored natural attenuation are more practicable alternatives, however, they are time-consuming and costly. The process and result of this study could be the basis for managers and/or decision makers of contaminated site to conduct risk-based management and decision making.
目次 Table of Contents
謝誌 I
摘要 II
Abstract IV
目錄 VII
圖目錄 XI
表目錄 XIV

第一章 序論 1
1.1研究動機 1
1.2研究目的 3
1.3研究內容 3
第二章 研究背景與文獻回顧 6
2.1三合法及作業程序 6
2.1.1發展背景 6
2.1.2調查之不確定性 7
2.1.3發展目的 9
2.1.4構成要素 10
2.1.5 場址概念模型 14
2.1.6執行流程概念與效益 17
2.2健康風險評估 19
2.2.1定義架構與國外發展 19
2.2.2美國試驗及材料協會 22
2.2.3國內法源依據 37
2.3風險基準矯正行動 38
2.3.1發展背景 38
2.3.2技術準則 39
2.4研究場址背景概述 58
2.5場址法令規定概況 64
2.5.1現行法令規定 64
2.5.2本場址法令現況 65
第三章 研究方法及設備 71
3.1地下環境特徵調查 71
3.1.1專案系統規劃 72
3.1.2動態工作策略 75
3.1.3即時量測系統 77
3.1.4水文地質試驗 84
3.1.5地下水水質監測 91
3.1.6資料品保品管 92
3.2人體健康風險評估 94
3.2.1架構流程及評估層次 94
3.2.2定量化風險度推估 118
3.2.3不確定性分析 120
3.2.4評估位置及關切物質 122
第四章 結果與討論 125
4.1場址概念模型 125
4.1.1污染特徵描繪 125
4.1.2水文地質特徵 139
4.1.3潛在污染來源 149
4.1.4場址概念模型 153
4.1.5污染潛在受體與暴露途徑 155
4.1.6資料品保品管 158
4.1.7調查耗費成本 166
4.2健康風險評估 169
4.2.1第一層次健康風險評估 169
4.2.2第二層次健康風險評估 173
4.2.3結果 181
4.3風險基準矯正行動 186
4.3.1行政禁制措施 188
4.3.2工程控制措施 190
4.4模場先導試驗 205
4.5整治成本評估 211
第五章 結論與建議 216
5.1結論 216
5.2建議 222
參考文獻與網址 227
附件X1人體健康風險評估相關運算……………………………………… 237
附件X2採樣分析結果 246
附件X3作者履歷 274
參考文獻 References
1. Adams, W.M., D. Brockington, J. Dyson, and B. Vira. Managing Tragedies: Understanding Conflict over Common Pool Resources, Science, Vol.302, pp. 1915-1916, 2003.
2. Agency of Toxic Substances and Disease Registry, Toxicological Profile for 1,1-Dichloroethene, May 1994.
3. Agency of Toxic Substances and Disease Registry, Toxicological Profile for 1,2-Dichloroethene, Aug. 1996.
4. Agency of Toxic Substances and Disease Registry, Toxicological Profile for Tetrachloroethylene, Sept. 1997.
5. Agency of Toxic Substances and Disease Registry, Toxicological Profile for Trichloroethylene, Sept. 1997.
6. Agency of Toxic Substances and Disease Registry, Toxicological Profile for Vinyl Chloride, July 2006.
7. Allen W. Hatheway, Yuji Kanaori, Tariq Cheema, James Griffiths, Kitchakarn Promma, Encompassing Hydrogeology, Environmental Geology and the Applied Geosciences, Engineering Geology, Vol.81, pp. 99-130, 2005.
8. American Society for Testing and Materials, D5912-96(04) Standard Test Method for (Analytical Procedure) Determining Hydraulic Conductivity of an Unconfined Aquifer by Overdamped Well Response to Instantaneous Change in Head (Slug), PA, USA, 2004.
9. American Society for Testing and Materials, E 1527-00(05) Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, PA, USA, 2005.
10. American Society for Testing and Materials, E 1689-95(03) Standard Guide for Developing Conceptual Site Models for Contaminated Sites, PA, USA, 2003.
11. American Society for Testing and Materials, E 1739-95(02) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, PA, USA, 2002.
12. American Society for Testing and Materials, E 1903-97(02) Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, PA, USA, 2002.
13. American Society for Testing and Materials, E 1912-98(04) Standard Guide for Accelerated Site Characterization for Confirmed or Suspected Petroleum Releases, PA, USA, 2004.
14. American Society for Testing and Materials, E 2081-00(04)e1 Standard Guide for Risk-Based Corrective Action, PA, USA, 2004.
15. American Society for Testing and Materials, E 2091-05 Standard Guide for Use of Activity and Use Limitations, Including Institutional and Engineering Controls, PA, USA, 2005.
16. American Society for Testing and Materials, E 2435-05 Standard Guide for Application of Engineering Controls to Facilitate Use or Redevelopment of Chemical-Affected Properties, PA, USA, 2005.
17. American Society for Testing and Materials, E1739-95(02) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, PA, USA, 2002.
18. American Society for Testing and Materials, E2081-00(04) Standard Guide for Risk-Based Corrective Action, PA, USA, 2004.

19. American Society for Testing and Materials, E2205-02 Standard Guide for Risk-Based Corrective Action for Protection of Ecological Resources, PA, USA, 2002.
20. American Society for Testing and Materials, Standard Provisional Guide for Risk-Based Corrective Action, West Conshohocken, PS 104-98, 1998.
21. Battelle, Demonstration of In Situ Dehalogenation of DNAPL through Injection of Emulsified Zero Valent Iron at Launch Complex 34 in Cape Canaveral Air Force Station, Florida: Final Innovative Technology Evaluation Report, U.S. EPA, Sept. 2004.
22. Bouwer, H., Ground Water, 29:41-46, 1991.
23. C. W. Fetter, Applied Hydrogeology, Third Edition, Macmillan College Publishing Company, 1994.
24. Crumbling, D.M., Groenjes, C., Lesnik, B., Lynch, K., Shockley, J., EE, J.V., Howe, R., Keith, L., and McKenna, J., Managing Uncertainty in Environmental Decisions, Environmental Science & Technology A-Pages, Vol.35, No.19, pp. 404 A-409 A, 2001.
25. Crumbling, D.M., White paper: Summary of the Triad Approach, United States Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, March 25, 2004.
26. Das, M.B., Principles of Geotechnical Engineering, Fifth Edition, BROOKS/COLE, pp. 589, 2002.
27. Doctor, P.G. and R.O. Gilbert, “Two Studies in Variability for Soil Concentrations: With Aliquot Size and With Distance” in “Selected Environmental Plutonium Research Reports of the Nevada Applied Ecology Group” (NAEG), Las Vegas, NV. , pp. 405-423 and 439-442, 1978.
28. Domenico, P.A. and F.W. Schwartz, Physical and Chemical Hydrogeology, John Wiley and Sons, NY, pp.824, Eqn. 17.21, 1990.
29. Esmaili, E., ASTM Risk-Based Corrective Action (RBCA) Program Foster Wheeler Environmental Corp, Proceedings of SPE 1997 67th Annual Western Regional Meeting, Long Beach, CA, USA, Society of Petroleum Engineers, Richardson, TX, USA, Costa Mesa, CA, USA, 763, Jun 25-27, 1997.
30. GeoSyntec Consultants, Emulsified Zero Valent Iron Treatment of Chlorinated Solvent DNAPL Source Areas, Presentation Given to the Department of Defense's Environmental Security Technology Certification Program, 2004.
31. Hermann Ru¨gner, Michael Finkel, Arno Kaschl, Martin Bittens, Application of Monitored Natural Attenuation in Contaminated Land Management—A Review and Recommended Approach for Europe, Environmental Science & Policy, Vol. 9, pp. 568-576, 2006.
32. Howard, Handbook of Environmental Degradation Rates, Lewis Publishers, Chelsea, MI, 1989.
33. Huffman, R.L., Comparison of Passive Diffusion Bag Samplers and Submersible Pump Sampling Methods for Monitoring Volatile Organic Compounds in Ground Water at Area 6, Naval Air Station Whidbey Island, Washington. U.S. Geological Survey Water-Resources Investigations Report 02-4203, 2002.
34. Illinois EPA, Title 35, Subtitle G, Chap. I, Subchap. f: Risk Based Cleanup Objectives, Part 742: Tiered Approach Correction Objectives (TACO), 1997.

35. John T. Wilson, U.S. EPA’s Approach for Chlorinated Solvents, Workshop For the Environmental Protection Administrator of Taiwan on Natural Attenuation (NA) as Remediation for Contaminated Sites, Taipei, Taiwan, 2006.
36. Kejr, Inc., Geoprobe Membrane Interface Probe Standard Operating Procedure, GeoprobeTM Technical Bulleyin No. MK3010, pp. 6-7, May 2003.
37. Loxnachar, T.E., Brown, K.W., Cooper, T.H., Milford, M.H., Sustaining Our Soils and Society, American Geological Institute, Soil Science Society of America, USDA Natural Resource Conservation Service publication, 1999.
38. McCutcheon, M.C., Farahani, H.J., Stednick, J.D., G.W. Buchleiter, T.R. Green, Effect of Soil Water on Apparent Soil Electrical Conductivity and Texture Relationships in a Dryland Field, Biosystems Engineering, Vol.94, Issue 1, pp. 19-32, 2006.
39. Malander, Mark W., Novick, Norman J., Implementation of ASTM E 1739-95, Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, in the United States, Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition, Air & Waste Management Assoc, Pittsburgh, PA, USA, Jun 8-13, 1997.
40. National Academy of Sciences, Risk Assessment in the Federal Government: Management the Process, 1983.
41. Ott, W. R., Total Human Exposure, Environmental Science & Technology, Vol.19, No.10.p880-886, 1985.
42. Paul, J. L.”Assessing total human exposure to contaminants” Environmental Science & Technology, Vol.24, No.7.p938-945, 1990.
43. Philip B Bedient et al, Ground Water Contamination, PTR Prentice-Hall, Inc., 1994.
44. Pretty, Jules, Social Capital and the Collective Management of Resources, Science, Vol. 302, pp. 1912-1914, Dec. 2003.
45. Quinn, J., O'Hara, S., Krug, T., Geiger, C., and Clausen, C.,Evaluating the Distribution of Emulsified Zero Valent Iron Using Four Different Injection Techniques, The Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 24-27, 2004.
46. Schulmeister, M.K., Butler, J.J., Healey, J.M., Zheng, L., Wysocki, D.A., and McCall, G.W., Direct-Push Electrical Conductivity Logging for High-Resolution Hydrostratigraphic Characterization, Ground Water Monitoring & Remediation, Vol.23, no.3, pp.52-62, Summer 2003.
47. Tetra Tech, Inc., Cost and Performance Report, FEROX Injection Technology Demonstration, Parcel C, Remedial Unit C4, Hunters Point Shipyard, San Francisco, California, Prepared for Naval Facilities Engineering Command-Southwest Division, July 2003.
48. Texas Natural Resources Conservation Commission, Risk Reduction Rule Implementation, July 23, 1998.
49. Texas Natural Resources Conservation Commission, Risk-Based Corrective Action for Leaking Storage Tank Sites, January 1994.
50. Thomas E. McKone, Kenneth T. Bogen, Predicting the Uncertainties in Risk Assessment, Environmental Science & Technology, Vol. 25, No. 10, 1991.
51. Thomas, M., and Christy, P.E., A Permeable Membrane Sensor for the Detection of Volatile Compounds in Soil, NGWA Outdoor Action Conference, Las Vegas, NV., Westerville, OH, May 1996.
52. US Environmental Protection Agency, Guidance for Evaluating Technical Impracticability of Ground-Water Restoration, USEPA, Office of Solid Waste and Emergency Response, Washington, DC 20460, September 1993.
53. US Environmental Protection Agency, Preliminary Remediation Goals (PRGs), Region 9, 1998b.
54. US Environmental Protection Agency Region III, Risk Based Concentration Table, EPA Region 3, March 7, 1995.
55. US Environmental Protection Agency Region III, Risk Based Concentration Table, EPA Region 3, April 2007.
56. US Environmental Protection Agency, Risk Assessment Guidance for Superfund Volume I:Human Health Evaluation Manual Part E, Supplemental Guidance for Dermal Risk Assessment, Office of Emergency and Remedial Response, Washington DC., USA, 2004.
57. US Environmental Protection Agency, Risk Assessment Guidance for Superfund Sites, EPA/540/1-89/002, 1989.
58. US Environmental Protection Agency, Risk Assessment Guidance for Superfund, EPA/9285/6-03, 1991.
59. US Environmental Protection Agency, Soil Screening Guidance: Technical Background Document Part 2: Development of Pathway-Specific Soil Screening Levels, 1996.
60. US Environmental Protection Agency, Soil Screening Guidance: User’s Guide, 1996.
61. US Environmental Protection Agency, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, 2002.

62. US Environmental Protection Agency, Using the Triad Approach to Streamline Brownfields Site Assessment and Cleanup, Office of Solid Waste and Emergency Response, Brownfields Technology Support Center, USEPA Contract 68-W-02-034, June 2003.
63. US Environmental Protection Agency, Advancing best management practices: Applying the Triad approach in the Superfund program, Office of Superfund Remediation and Technology Innovation, Interoffice Memorandum, Washington D.C. 20460, 2006.
64. 吳偉智、陳大麟、黃文彥,RBCA健康風險評估中數學模型之探討,第四屆地下水資源與水質保護研討會論文集,屏東科技大學,2001年。
65. 吳偉智、陳大麟、黃文彥,健康風險評估模式之不確定性分析,第一屆海峽兩岸土壤及地下水污染整治研討會論文集,台北,台灣大學,2002年。
66. 連興隆,環境奈米技術在地下環境應用之回顧與展望,環境工程會刊,2004年。
67. 陳大麟、黃文彥,土壤與地下水污染場址之健康風險評估方法-風險基準矯正行動(RBCA),工業污染防治,第19卷,第75期,pp. 26-48,2000年。
68. 習良孝、黃文彥、謝爵安、吳雪蘋、黃于峰、汪俊育、林威州,含氯系有機溶劑污染源區域整治問題初探,台灣土壤及地下水環境保護協會季刊,第八期,pp. 2-6,2003年。
69. 黃文彥、王才宇、王奕森,應用風險基準矯正行動模式探討土壤�地下水污染之曝露風險問題,工業污染防治工程實務技術研討會論文集,經濟部工業局編印,台中,1999年。
70. 黃文彥、盧哲明、劉博文,土壤�地下水污染健康風險評估決策支援系統之應用,第三屆地下水資源及水質保護研討會論文集,桃園,中央大學,1999年。
71. 黃文彥、吳建輝、黃于峰、吳雪蘋、習良孝、蔡文賢、蔡俊銘,污染場址地下環境調查方法之新思維,第一屆海峽兩岸土壤及地下水污染整治研討會論文集,台北,台灣大學,2002年。
72. 黃文彥、吳建輝、黃于峰、蔡文賢,地下污染之現地即時偵測技術-MIP與FFD,台灣土壤及地下水環境保護協會季刊,第四期,2002年。
73. 黃文彥、吳雪蘋、汪俊育、習良孝,空間化污染概念模式建立之初探,第十五屆環境工程年會及第一屆土壤及地下水污染技術研討會論文集,台中,中興大學,2003年。
74. 黃文彥、陳大麟、高志明,地下浮油回收技術之發展與創新,第二屆海峽兩岸土壤及地下水污染與修復研討會論文集,中國大陸天津,南開大學,2004年。
75. 黃文彥、侯善麟、陳大麟、蔡文賢、林鼎祥、林舜隆,輸油管線漏油事件之緊急應變與善後處理,第一屆資源工程研討會論文集,台南,國立成功大學,2004年。
76. 黃文彥、盧哲明、劉博文,應用健康風險評估模式探討土壤�地下水污染之暴露風險問題,工業污染防冶季刊,第73期,2004年。
77. 黃文彥、林耿立、楊瑞興、蔡文賢、李芷儀、李依穎,石化場址地下環境整治之去瓶頸技術,工安環保報導,第31期,pp. 15-17,2006年。
78. 蔡在唐、黃文彥、潘時正,複合式整治技術處理受油品污染土壤之成效評估,第一屆資源工程研討會論文集,台南,國立成功大學,pp. 815-822,2004年。
79. 蔡文賢、習良孝、黃文彥、吳雪蘋、詹立偉,地下環境污染調查技術發展之現況與趨勢,第一屆資源工程研討會論文集,台南,國立成功大學,2004年。
80. 蔡文賢、黃文彥、楊瑞興、李芷儀,經濟型地下污染現地即時偵測暨顯像模擬仿真系統,產業環保工程實務研討會,台北,台灣大學,pp. 141,2005年。
81. 簡慧貞、阮國棟,我國毒性物質風險評估資料庫及其應用,工業污染防治,第46 期,pp. 145-170,1993年。
82. 饒瑞萍、黃文彥、吳偉智、高志明、侯善麟,污染場址健康風險評估參數之敏感性分析,環境資訊研討會,中華民國環境工程學會,2006年。
83. 行政院環境保護署,土壤及地下水污染整治費申報、審理及稽核等相關作業計畫,民國93年12月。
84. 行政院環境保護署,土壤及地下水污染場址健康風險評估評析方法及撰寫指引,民國95年4月26日。
85. 行政院環境保護署,土壤及地下水場址監測式自然衰減整治法講習會,民國95年10月26~27日。
86. http://ivy4.epa.gov.tw/HRisk/,健康風險評估電腦計算程式系統,行政院環保署。
87. http://ww2.epa.gov.tw/SoilGW/index.asp,土壤及地下水污染整治基金管理委員會土壤及地下水污染整治網,行政院環境保護署。
88. http://www.frtr.gov
89. http://www.iarc.fr
90. http://www.triadcentral.org/index.cfm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.38.125
論文開放下載的時間是 校外不公開

Your IP address is 18.218.38.125
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code