Responsive image
博碩士論文 etd-0601113-202958 詳細資訊
Title page for etd-0601113-202958
論文名稱
Title
以植生復育技術處理受戴奧辛及汞污染土壤之研究
Treatment of Dioxin and Mercury Contaminated Soil by Phytoremediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-13
繳交日期
Date of Submission
2013-07-01
關鍵字
Keywords
植生復育、添加劑、汞、呋喃、戴奧辛
Dioxins, Phytoremediation, Amendment, Mercury, Furans
統計
Statistics
本論文已被瀏覽 5705 次,被下載 663
The thesis/dissertation has been browsed 5705 times, has been downloaded 663 times.
中文摘要
本研究係利用植生復育技術來處理受PCDD/Fs及Hg污染之土壤,目的在瞭解土壤中高濃度PCDD/Fs及Hg對植物生長的影響及PCDD/Fs或Hg於植體內傳輸及分布之趨勢;探討添加試劑(檸檬酸、戴奧辛降解菌P. mendocina NSYSU及EDTA)對促進植物吸收PCDD/Fs及Hg之影響,評估植物對去除土壤中PCDD/Fs及Hg之成效。預期此一研究成果,未來將可提供植生復育技術應用於整治污染場址之重要參考依據。本研究土壤樣品係來自台南中石化安順廠污染土壤,實驗設計採用溫室盆栽方式進行,植物種類的選擇包括大花咸豐草、銀合歡、培地茅、海雀稗、白竹仔菜、玉米、痲瘋樹及南瓜等具快速生長特性之植物種,作為不同階段試驗之植物種。
本研究結果顯示,PCDD/Fs及Hg毒性均會抑制植物生長。其中,當PCDD/Fs濃度越高,植物株高度及生物質量則會明顯下降。種植物的土壤總菌落數及菌性多樣性高於未種植物土壤,顯示植物根部有助於促進根圈微生物活性之功能。PCDD/Fs污染土壤與植物根部及地上部中PCDD/Fs同源物組成具高度正相關性,pearson相關檢定係數在0.958 - 1.000之間,顯示土壤中PCDD/Fs同源物之種類及濃度係影響植物體內PCDD/Fs同源物分布之主要因素,而且證實植體內之PCDD/Fs主要以植物萃取之吸收途徑為主,由根部吸收後,再移轉至地上部。然而,所量測出的根部PCDD/Fs及Hg濃度均遠高於地上部。再由添加實驗之結果顯示,檸檬酸、P. mendocina NSYSU及EDTA等添加有助於植物對PCDD/Fs及Hg的吸收功能,而添加P. mendocina NSYSU之菌株可增加培地茅及玉米之PCDD/Fs的吸收濃度,而EDTA的添加則可有效的提高培地茅及玉米的Hg吸收濃度。至於植物組織內之PCDD/Fs及Hg的總累積量,實驗結果顯示培地茅的表現優於玉米,此乃因培地茅具較佳的耐受性及高生物質量。此外,針對土壤中PCDD/Fs及Hg之去除率而言,添加P. mendocina NSYSU之培地茅系統,其PCDD/Fs去除率達8.41%,玉米系統之PCDD/Fs去除率可達13.98%。添加EDTA之培地茅系統,其Hg去除率達28.47%,玉米之Hg去除率達10.42%。整體而言,採用玉米做為植生復育植系統之PCDD/Fs去除率大於採用培地茅之植生復育系統的PCDD/Fs去除率,而培地茅系統之Hg去除率大於玉米系統之Hg去除率。土壤中污染物之去除效果將會隨植物種類的不同,而有所差異。綜論之,培地茅及玉米等植生復育系統對於土壤中的PCDD/Fs或Hg的削減去除,均有良好的處理成效,因此建議可做為此類污染址場址植生復育系統之候選植物種。
Abstract
The purpose of this study is to investigate the treatment efficiencies of PCDD/Fs and Hg contaminated soil by phytoremediation, and to learn the translocation and distribution of PCDD/Fs and Hg in the plant tissues. In addition, the object of tests of adding amendments (citric acid, P. mendocina NSYSU and EDTA) into the testing systems are to assess the effects of plants on removal rates of PCDD/Fs and Hg from the contaminated soil. The results of this research were expected to provide important reference for remediating similar contaminated sites in the future. In this study, the pot tests in greenhouse were conducted by using the contaminated soils sampled from China Petrochemical Development Corporation (CPDC) An-shun site located in Tainan City, Taiwan. The selected plant species included Bidens pilosa, Leucaena glauca, Vetiver, Paspalum vaginatum, Commelina diffusa, Maize, Physic Nut and Squash. These plant species were all characterized as rapid growth, so it would be helpful and convenient for using them in different stages of test runs.
The experimental results showed that the toxicity of PCDD/Fs and Hg might inhibit the growth of plants. The higher the concentrations of PCDD/Fs were controlled in soils, the less the height and biomass of the plant were observed. In addition, the plant roots were found able to promote the activities and diversity of microbial in the areas of rhizosphere. Besides, the congener profiles and concentration levels of PCDD/Fs between the contaminated soil and the shoot and root of plant species are highly positive correlation. In this study, it is also confirmed that the PCDD/Fs and Hg were first phytoextracted into the plant roots, and then were translocated into the shoot. However, the concentrations of PCDD/Fs and Hg of root were measured much higher than the shoot. The results of tests of adding amendments showed that citric acid, P. mendocina NSYSU and EDTA would promote the uptake ability of plants for PCDD/Fs and Hg, especially the plant species of vetiver and maize. In additions, adding EDTA into test systems presented effective improvement for the plant species of vetiver and maize uptaking Hg. The experimental results for PCDD/Fs and Hg accumulating in plant tissues showed that the species of vetiver performed better than the species of maize, which meant that the species of vetiver exhibited better resistance and higher biomass than the species of maize. Moreover, the removal rates of PCDD/Fs from soils were found higher for the species of maize than the species of vetiver. However, for Hg removal rates, the experimental results indicated that the species of vetiver was found greater than the species of maize. Thus, the removal effects of PCDD/Fs and Hg from contaminated soils would vary with the different plant species. It was concluded that the higher capability of extracting PCDD/Fs and Hg into plant tissues and the ability of promoting the rhizosphere microbial activity make both species of vetiver and maize become suitable candidates for phytoremediation in soils contaminated by PCDD/Fs and Hg.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
表目錄 x
圖目錄 xi
第一章 研究緣起與目的 1
1.1研究緣起 1
1.2目的 2
第二章 文獻回顧 4
2.1戴奧辛之來源及物化性質 4
2.2戴奧辛對健康及環境的危害 8
2.3汞之來源及性質 11
2.4汞對健康及環境的危害 15
2.5台南中石化安順廠簡介 16
2.6 土壤污染整治技術 18
2.7植生復育原理與機制 21
2.8植物、根分泌物及根圈微生物 23
2.9植生復育技術之優點與限制 24
2.10添加劑 25
2.11 國內外研究進展 27
2.11.1戴奧辛 27
2.11.2汞 30
2.12 植物種之選擇 33
2.13整治技術成本之比較 37
第三章 實驗材料與方法 39
3.1研究架構及實驗流程 39
3.2實驗植物 39
3.3 實驗土壤來源與前處理 42
3.4 添加劑種類 42
3.5 盆栽試驗 43
3.6 植物與土壤的採集 43
3.7 實驗分析方法 44
3.7.1含水率 44
3.7.2 土壤酸鹼值 44
3.7.3 土壤有機碳 45
3.7.4 土壤有機氮 45
3.7.5土壤總菌落數 46
3.7.6戴奧辛分析 47
3.7.7汞分析 50
3.8品保與品管 52
3.9 數據計算與統計分析 52
第四章 結果與討論 53
4.1 耐受性試驗-PCDD/Fs 53
4.1.1 土壤基本性質 53
4.1.2 PCDD/Fs對植物株高及生物質量的影響 55
4.1.3 PCDD/Fs對土壤總菌落數之影響 60
4.1.4 PCR-DGGE分析 62
4.1.5 植物組織之PCDD/Fs吸收濃度及累積量 64
4.1.6 PCDD/Fs同源物之相關性分析 68
4.2 耐受性試驗-PCDD/Fs及Hg 71
4.2.1 土壤基本性質 71
4.2.2 PCDD/Fs及Hg對植物株高及生物質量的影響 74
4.2.3 植物組織之PCDD/Fs吸收濃度及累積量 78
4.2.4 植物組織之Hg吸收濃度及累積量 83
4.3 添加實驗 87
4.3.1 植物生長高度及生物質量 87
4.3.2 土壤總菌落數 91
4.3.3 植物組織之PCDD/Fs吸收濃度及累積量 94
4.3.4 植物組織之Hg吸收濃度及累積量 99
4.3.5 土壤中PCDD/Fs之去除率 104
4.3.6 土壤中Hg之去除率 108
4.3.7 現地模場與盆栽實驗比較 112
第五章 結論與建議 115
5.1結論 115
5.2建議 116
參考文獻 118
參考文獻 References
英文部分:
Abbas, M.H., Abdelhafez, A.A., 2013. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere, Vol. 90, pp.588-594.
Alcock, R.E, Jones, K.C., 1997. Pentachlorophenol (PCP) and Chloranil as PCDD/F sources to sewage sludge and sludge amended soils in the UK. Chemosphere, Vol. 35, pp.2317-2330.
Álvarez, A., Yañez, M.L., Benimeli, C.S. , Amoroso, M.J., 2012. Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. International Biodeterioration and Biodegradation, Vol. 66, pp.14-18.
Amelia, H., 2003. Effect of drought, flooding, and potassium stress onthe quantity and composition of root exudates in axenic culter. Utah state University.
Armstrong, W., 1978. Root aeration in the wetland condition, In: Hork, D.D. and Crawford, R.M.M., Eds. Plant Life Anaerobic Environments. Ann Arbor Science, pp.269-297.
Blaylock, M.J., Dushenkov. S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Salt, D.E., Raskin, I., 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science Technology, Vol. 31, pp.860-865.
Briggs, G.G., Bromilow, R.H., Evans, A.A., 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pesticide Science, Vol. 13, pp.495-504.
Bullock, O. R., 2000. Current methods and research strategies for modeling atmospheric mercury. Fuel Processing Technology, Vol. 65-66, pp.459-471.
Chen, H.L., Liao, P.C., Su, H.J., Guo, Y.L., Chen, C.H., Lee, C.C., 2005. Profile of PCDD/F levels in serum of general Taiwanese between different gender, age and smoking status. The Science of the Total Environment , Vol.337, pp.31-43
Ciura, J., Poniedziałek, M., Sękara, A., Jędrszczyk, E., 2005. The possibility of using crops as metal phytoremediants. Polish Journal of Environmental Studies, Vol. 14, No. 1, pp.17-22.
Clarkson, W.T., 1997. The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences, Vol. 34, pp.369-403.
Clemens, S., 2001. Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. International Journal of Occupational Medicine and Environmental Health, Vol. 14, pp. 235-239.
Cluis, C., 2004. Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach Journal, Vol. 2, pp. 61-67.
Compant, S., Duffy, B., Nowak, J., Clément, C., Barka, E.A., 2005. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiolbiology, Vol. 7, pp. 4951-4959.
Cunninghan, S.D. and Ow, D.W., 1996. Promises and prospects of phytoremediation. Plan Physiol, Vol. 110, pp.715-719.
Doloressa, G., Nikolai, V. B., Ludmyla, G. B., Ralf, K., Alexander, P.,Marina, S., Slavid, D., Sithes, L., Yuri, Y.G., and Ilya, R., 1999. Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 11, pp. 5973-5977 .
Ensley, B.D., Blaylock, M.J., Dushenkov, S., Kumar, N.P.B.A. and Kapulnik, Y., 1999. Inducing hyper accumulation of metal in plant shoots. US Patent 5917-117.
EPA, 2000. Introduction to Phytoremediation, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-99/107.
Ficko, SA, Rutter, A., Zeeb, B.A., 2010. Potential for phytoextraction of PCBs from contaminated soils using weeds. Science of the Total Environment, Vol. 408, pp.469-3476.
Fiedler, H., 2003. Dioxins and Furans (PCDD/PCDF). The Handbook of Environmental Chemistry, Vol. 3, Part O, Springer, pp.126-201.
Food and Agriculture Organization (FAO), Pesticide Disposal Series: Prevention and Disposal of Obsolete Pesticides. Food and Agriculture Organization of the United Nations, New York, http://www.fao.org/icatalog/inter-e.htm.
Geebelen, W., Vangronsveld, J., Adriano, D.C., Van Poucke, L.C., Clijsters, H., 2002. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plant, Vol. 115, pp.377-384.
Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenber, B.M., 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potenial and chanllenges. Plant Science, Vol. 176, pp. 20-30.
Gupta, D.K., Srivastava, A., Singh, V.P., 2008. EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. Journal of Environmental Biology, Vol. 29, No. 6, pp.903-906.
Hideyuki, I., Taketo, W., Keiko, G., Kim, Y. S., Heesoo, E., 2008. Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere, Vol. 73, pp.1602-1607.
Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution, Vol. 130, pp.465-76.
Hulster, A., Muller, J.F., Marschner, H., 1994. Soil-plant transfer of polychlorinated dibenzo-P-dioxins and dibenzofurans to vegetables of the cucumber family(cucurbitaceae). Environmental Science and Technology, Vol. 28, No. 6, pp.1110-1115.
Hussein, H.S., Ruiz, O.N., Terry, N., and Daniell, H., 2007. Phytoremediation ofmercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environmental Science Technology, Vol. 41, pp.8439-8446.
Jadia, C.D., Fulekar, M.H., 2009. Phytoremediation of heavy metals: Recent techniques. Journal of Biotechnology, Vol. 8, No. 6, pp. 921-928.
Jean, L., Bordas, F., Gautier-Moussard, C., Vernay, P., Hitmi, A., Bollinger, J.C., 2008. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environmental Pollution, Vol. 153, pp.555-563.
Jou, J.J., Chung, J.C., Weng, Y.M., Liaw, S.L., Wang, M.K., 2007. Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils. Journal of Hazardous Materials, Vol. 149, pp.174-179.

Kirk, J.L., Klironomos, J.N., Lee, H., Trevors, J.T., 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, Vol. 133, pp. 455-465.
Kacálková, L., Tlustoš, P., Száková, J., 2009. Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environment, Vol. 55, pp.295-304.
Kao, C.M., Liu, J.K., Chen, Y.L., Chai, C.T., Chen, S.C., 2005, Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU. Journal of Hazardous Materials, Vol. 124, Issues 1-3, pp. 68-73.
Kogevinas, M., 2001. Human health effects of dioxins: cancer, reproductive and endocrine system effects. Hum Reprod Update, Vol. 7, pp.331-339.
Kiflom,W.G., Wandiga, S.O., Nganga, P.K., Kamau, G.N., 1999. Variation of plant p,p’-DDT uptake with age and soil type and dependence of dissipation on temperature. Environmental Intternational, Vol. 25, No. 4, pp.479-487.
Kopf-Johnson, E., 2006. In situ phytoextraction of polychlorinated biphenyls (PCBs) by native weed species in Southern Ontario. 4th Year Honour Thesis. Kingston: Queen's University.
Lai, H.Y., Chen, Z.S., 2004. Effects of EDTA on solubility of cadmium, Zinc and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, Vol. 55. pp.421-430.
Lemieux, P.M., Lutesb, C.C., Santoianni, D.A., 2004. Emissions of organic air toxics from open burning: a comprehensive review. Progress in Energy and Combustion Science, Vol. 30, pp.1-32.
Lomonte, C., Doronila, A.I., Gregory, D., Baker, A.J., Kolev, S.D., 2010. Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. Journal of Hazardous Materials, Vol. 173, Issues 1-3, pp.494-501.
Luo, L., Zhang, S., Shan, X.Q., Zhu, Y.G., 2006. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils. Chemosphere, Vol. 63, No. 8, pp.1273-1279.
Lutter, R., Irwin, E., 2002. Mercury in the environment:A volatile problem. Environment, vol. 44, No. 9, pp.27-35.
Macek, T., Mackova, M. and Kas, J., 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, Vol. 18, pp. 23-34.
McCrady, J.K., McFarlane, C., Gander, L.K., 1990. The transport and fate of 2,3,7,8-TCDD in soybean and corn. Chemosphere, Vol. 21, pp. 356-376.
McKay, 2002. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, Vol. 86, pp. 343-368.
Masunaga, S., Takasuga, T., Nakanishi, J., 2001. Dioxin and dioxin-like PCB impurities in some japanese agrochemical formulations. Chemosphere, Vol. 44, pp.873-885.
McConnell, E., Huff, J., Hejtmancik, M., Peter, A., Persing, R., 1991. Toxicology and carcinogenesis studies of two grades of pentachlorophenol in B6C3F1 mice. Fundamental and Applied Toxicology, Vol. 17, pp.519-532.
Matthias, K., Wilhelm, K., Wolfgang, R., 2001. Source identification of PCDD/Fs in a sewage treatment plant of A German village. Chemosphere, Vol. 43, pp.737-741.
Meagher, R.B., Rugh, C.L., Kandasamy, M.K., Gragson, G., Wang, N.J., 2000. Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. Phytoremediation of contaminated soil and water, pp.203-221.
Meagher, R.B., Heaton, A.C., 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. Journal of Industrial Microbiology and Biotechnology, Vol. 32, pp. 502-513.
Mo, C.H., Cai, Q.Y., Li, H.Q., Zeng, Q.Y., Tang, S.R., Zhao, Y.C., 2008. Potential of different species for use in removal of DDT from the contaminated soils. Chemosphere, Vol. 73, pp.120-125.
Moreno-Jime’nez, E., Gamarra, R., Carpena-Ruiz, Milla’n, R. Pen˜alosa, J. M. and Esteban, E., 2006. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almade’n area. Chemosphere, Vol. 63, pp.1969-1973.
Moreno, F.N., Anderson, C.W.N., Stewart, R.B. and Robinson, B.H., 2004. Phytoremediation of Mercury-Contaminated Mine Tailings by Induced Plant-Mercury Accumulation. Environmental Practice, Vol. 6, pp.165-175.
Moreno, F.N., Anderson, C.W.N., Stewart, R.B., Robinson, B. H., 2005. Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental Pollution, Vol. 136, pp.341-352.
Nardi, S., Sessi, E., Pizzeghello, D., Sturaro, A., Rella, R., Parvoli, G., 2002. Biological activity of soil organic matter mobilized by root exudates. Chemosphere, Vol. 46, pp.1075-1081.
Nascimento, C.W.A., Amarasiriwardena, D., Xing, B., 2006. Comparison of natural organic acids and synthetics chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, Vol.140, pp.114-123.
Rodriguez, L., Rinc´on, J., Asencio, I., Rodr´ ıguez-Castellanos, L., 2007. Capability of selected crop plants for shoot mercury acculation from polluted soils : phytoremediation perspectives. International Journal of Phytoremediation, Vol. 9, pp.1-13.
Romken, P., Bouwman, L., Japenga, J., Draaisma, K., 2002, Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, Vol. 116, pp.109-121.
Rugh, C., Wilde, D., Stack, N.M., Thompson, D.M., Summers, A.O., Meagher, R.B., 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences USA, Vol. 93, No. 8, pp.3182-3187.
Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 49, pp.643-668.
Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L.,Carreira, L.H., 1995. Phytoremediation of organic and nutrient contaminants. Environmental Science Technology, Vol. 29, pp. 318-323.
Sekara, A., Poniedzialek, M., Ciura, J., Jedrszczyk, E., 2005. Zinc and Copper Accumulation and Distribution in the Tissues of Nine Crops: Implications for Phytoremediation. Polish Journal of Environmental Studies, Vol. 14, No. 6, pp.829-835.
Siciliano, S.D., Germida, J.J., 1997. Bacterial inoculants of foragegrasses that enchance degradation of 2-chlorobenzoic acid in soil. Environmental Toxicology and Chemistry, Vol. 16, pp.1098-1104.
Sarand, I., Timonen, S., Nurmiaho-Lassila, E.L., Koivula, T., Haahtela, K., Romantschuk, M., Sen, R., 1998. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pinemycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiology Ecology, Vol. 27, pp.115-126.
Smith, S.E., Read, D.J., 1997. Growth and carbon economy of VA mycorrhizal plants. Mycorrhizal Symbiosis, Elsevier, pp.105-125.
Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S.M., Canada, K.A., Burken, J.G., Wood, T.K., 2000. Rhizosphere competitiveness of trichloroethylened egrading poplar-colonizing recombinant bacteria. Applied and Environmental Microbiology, Vol. 66, pp.4673-4678.
Singer, A.C., Crowley, D.E., Thompson, L.P., 2003. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol, Vol. 21, pp.123-130.
Singer, A.C., Smith, D., Jury, W.A., Hathuc, K., Crowley, D.E., 2003. Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environmental Biotechnology, Vol. 22, pp. 1998-2004.
Singh, S., Melo, J.S., Eapen, S., D’Souza, S.F., 2008. Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicology and Environmental Safety, Vol. 7, pp.671-676.
Smolinska, B., Cedzynska, K., 2007. EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere, Vol. 69, pp. 1388-1395.
Smolińska, B., Król, K., 2012. Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. Journal of Chemical Technology and Biotechnology, Vol. 87, Issue 9, pp.1360-1365.
Srogi, K., 2008. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and humans samples: a review. Environmental Chemistry Letters, Vol. 6, pp.1-28.
Susarla, S., Victor, F., Medina B., Steven, C. M., 2002. Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, Vol. 18, pp.647-658.

Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., Sutton, D., 2003. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, Vol. 18, pp.149-175.
Terry, N., Pilon-Smits, E., Zhu, Y.L., 2003. Heavy metal phytoremediation. U.S., The Regents of the University of California.
Truong, P., Mason, F., Waters, D., Moody, P., 2000. Application of Vetiver Grass Technology in off-site pollution control:Trapping agrochemicals and nutrients in agricultural lands. Proceedings Second International Vetiver Conference., pp.296-302.
Uegaki, R., Seike, N., Otani, T., 2006. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice plants: Possible contaminated pathways. Chemosphere, Vol. 65, pp.1537-1543.
Wu, Q.T., Deng, J.C., Long, X.X., Morel, J.L., Schwartz, C., 2006. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Journal of Environmental Sciences, Vol. 18, No. 6, pp.1113-1118.
Van den Berg, M., Birnbaum, L., Bosveld, A.T.C, Brunström, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Wærn, F., Zacharewski, T., 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives, Vol. 106, pp.775-792.
Walker, T.S., Bais, H.P., Grotewold, E., Vivanco, J.M., 2003. Root exudation and rhizosphere biology. Plant Physiol, Vol. 132, pp. 44-51.
Wang, Y., Oyaizu, H., 2009. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials. Journal of Hazardous Materials, Vol. 168, pp.760-764.
Wang, Y.D., Greger, M., 2006. Use of iodide to enhance the phytoextraction of mercury-contaminated soil. Science of the Total Environment, Vol. 368, pp.30-39.
Wang,Y., 2004. Phytoremediation of mercuryby terrestrial plants, Doctoral thesis.
Watanabe, S., Kitamura, K., Nagahashi, M., 1999. Effect of dioxins on human health: a review. Journal of Epidemiology, Vol. 9, pp.1-13.
Wagrowski, D.M., Hites, R.A., 1998. Partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans between the air and corn. Environmental Science Technology, Vol. 32, pp.2389-2393.
Weber, R., Gaus, C., Tysklind, M., Johnston, P., Forter, M., Hollert, H., Heinisch, E., Holoubek, I., Lloyd-Smith, M., Masunaga, S., Moccarelli, P., Santill,o D., Seike, N., Symons, R., Machado Torres, J.P., Verta, M., Varbelow, G., Vijgen, J., Watson, A., Costner, P., Woelz, J., Wycisk, P., Zennegg, M., 2008. Dioxin- and POP-contaminated sites – contemporary and future relevances and challenges. Environmental Science and Pollution Research, Vol. 15, pp.363-393.
White, J.C., 2001. Plant-facilitated mobilization and translocation of weathered2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p’-DDE) from an agricultural soil. Environmental Toxicology and Chemistry, Vol. 20, pp.2047-2052.
White, J.C., Kottler, B.D., 2002. Citrate-mediated increase in the uptake of weathered 2,2-bis(p-chlorophenyl) 1,1-dichloroethylene residues by plants. Environmental Toxicology and Chemistry, Vol. 21, No.3, pp.550-556.
White, J.C., 2002. Differential bioavailability of field-weathered p,p’-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere, Vol. 49, pp.143-152.

White, J. C., Parrish, Z. D., Isleyen, M., Gent, M. P., William, I. B., Eitzer, B. D., Mattina, M.J.I., 2005. Influence of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene by cucurbits. Environmental Toxicology and Chemistry, Vol. 4, pp.987-994.
White, J.C., Zakia, D.P., 2006. Soil Amendments, Plant Age, and Intercropping Impact p,p’-DDE Bioavailability. Journal of Environmental Quality, Vol. 35, pp.992-1000.
Whitfield, M.L., Zeeb, B.A., Rutter, A., Reimer, K.J., 2007. In situ phytoextraction of polychlorinated biphenyl(PCB) contaminated soil. Science Total Environment, Vol. 1, pp.1-12.
Whitfield, M. L., Rutter, A., Reimer, K. J., Zeeb, B. A., 2008. The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Science of Total Environment, Vol. 405, pp.14-25.
Wu, L.H., Luo, Y.M., Christie, P.M., Wong, H., 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere, Vol. 50, pp.819-822.
Wu, N.Y., Zhang, S.Z., Huang, H. L., Shan, X. Q., Peter, C., Wang, Y. S., 2008. DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution, Vol. 151, pp.569-575.
Zhao, M., Zhang, S., Wang, S., Huang, H., 2012. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize. Journal of Environmental Sciences, Vol. 24, pp.402-409.
Zeeb, B. A., Amphlett, J. S., Rutter, A., Reimer, K. J., 2006. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. International journal of phytoremediation, Vol. 8, pp.199-221.
Zeeb, B., Amphlett, J., Lunney, A., and Reimer, K., 2004. Phytoextraction of Organochlorines (PCBs and DDT) Greenhouse Treatability and Pilot Scale Field Studies. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. 4E-14.
Zhang, H.J., Chen, J.P., Ni, Y.W., Zhang, Q., Zhao, L., 2009. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. Chemosphere, Vol. 76, pp.740-746.

中文部分:
中石化/台全公司,1999,台南市安順廠區汞及五氯酚污染調查。
行政院環境保護署,2004,台南市中石化安順廠整治場址土壤及地下水污染範圍調查及整治工作建議計畫。
呂世宗,1980,鹼氯工廠環境汞污染之調查研究,工業污染防治報告。
林霧霆,2004,PCDD/F污染水域水生物及鳥類之生物濃縮及生物放大研究,成功大學環境醫學研究所碩士論文。
楊磊、鄭秀珍,吳裕民,2007,以植物復育技術整治中石化(台鹼)安順場址污染土壤可行性之評估研究,中石化(台鹼)安順場址土壤及底泥整治技術研討會。
黃煥彰,2002,失落的記憶~台鹼安順廠,《看守台灣》(台北),第4卷,第2期,第80-88頁。
蘇明德,2008,汞的自述,科學發展,第429期,第64-70頁。
施英隆,2000,五南出版。
侯丞、何啟功,1999,淺談汞對健康的危害,高醫醫訊月刊,第十八卷第十期。
張添晉,2010,永續產業發展雙月刊,No.48。
蔡啟堂,2002,五氯酚分解菌之生理特性探討,中山大學生物科學系,碩士論文。
王裕文,2000,培地茅(Vetiveria zizanioides)簡介,中華民國雜草學會會刊,第21卷第1期,第59-63頁。
林春吉,2009,台灣水生與溼地植物生態大圖鑑,天下遠見出版股份有限公司。
環保署簡訊,2004,第二十期,第1-3頁。
張祖恩、劉仲康、高志明、楊磊、吳哲宏、黃介辰,2011,毒性物質污染場址植生復育整合技術研發:以安順廠場址為案例(第一年),行政院國家科學委員會補助產學合作研究計畫報告書。

網路部分:
台南市環境保護局,中石化安順廠污染防治手冊,網址:http://epb3.tainan.gov.tw/cpdc/ch/upload/Case120120521132723.pdf,查考日期:2010.10.5。
莊溪,http://kplant.biodiv.tw/365plant/index.htm,查考日期:2009.3。
台灣大百科全書,http://taiwanpedia.culture.tw/web/index,文化部,查考日期:2010.3。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code