Responsive image
博碩士論文 etd-0601115-132843 詳細資訊
Title page for etd-0601115-132843
論文名稱
Title
針對具有非匹配擾動之非線性系統設計終端順滑模態控制器
Design of Terminal Sliding Mode Controllers for Nonlinear Systems with Mismatched Perturbations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-25
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
奇異點、多輸入、非匹配雜訊、終端順滑模態控制、有限時間
multi input, finite time, mismatched perturbation, terminal sliding mode, singular point
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
本文針對含有匹配及非匹配式雜訊之多輸入非線性系統,提出一快速終端順滑模態控制架構,用以解決系統狀態回歸之問題。首先設計順滑模態面,接著再設計相對應的順滑模態控制器。藉由引入擾動估測器的架構,能避免在奇異點問題發生時控制增益會過大之問題。在本文中可看見受控系統之穩定度將不會被奇異點所影響,且在此控制架構下確實能使狀態在有限時間內到達順滑模態面和平衡點並停留在那。最後,本文提供一數值及一實際範例來驗證其可行性。
Abstract
In this thesis a fast terminal sliding mode control strategy is proposed for a class of multi input nonlinear systems with matched and mismatched perturbations to solve state regulation problems. The sliding surface is firstly designed, and then the sliding mode controller is designed accordingly. A perturbation estimation mechanism is also embedded in the proposed control scheme, hence extremely large control gain is avoid when singularity problems occur . It is shown that the singular points will not affect the stability of the proposed control systems, and the control strategy can indeed drive the states into the sliding surface as well as equilibrium point within finite time, and stay thereafter. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control strategy.
目次 Table of Contents
論文審定書 ……………………………………………………………………… i
致謝 ……………………………………………………………………………… ii
中文摘要 ………………………………………………………………………… iii
Abstract ………………………………………………………………………… iv
List of Figures …………………………………………………………………… vii
Chapter 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . .. . . . .3
Chapter 2 Design of Terminal Sliding Mode Controllers 4
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 4
2.2 Design of Sliding Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 5
2.3 Design of Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 9
2.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 10
Chapter 3 Computer Simulation and Practical Application 18
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .20
Chapter 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .34
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .34
Appendix . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .41
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .41
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .41
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .42
參考文獻 References
[1] A. J. Koshkouei and A. S. I. Zinober, “Sliding mode state observation for non-linear
systems,” International Journal of Control, vol. 77, no. 2, pp. 118-127, 2004.
[2] G. Song, R. W. Longman, and R. Mukherjee, “Integrated sliding-mode adaptive
robust control,” IEE Proceedings - Theory and Applications, vol. 146, no. 4, pp.
341-347, 1999.
[3] Y. He and F. L. Luo, “Sliding-mode control for dc to dc converters with constant
switching frequency,” IEE Proceedings Control Theory and Applications, vol. 153,
no. 1, pp. 37-45, 2006.
[4] M. C. Kim, S. K. Park, H. G. Ahn, and S. S. Yoon, “Robust passivity based control
with sliding mode for dc-to-dc converters,” SICE-ICASE International Joint
Conference, pp. 736-738, 2006.
[5] D. Ahmad and B. Bertan, “A fast settling oversampled digital sliding-mode dc-dc
converter,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1019-1027,
2015.
[6] O. K. Teresa, D. Mateusz, and S. Krzysztof, “Adaptive sliding-mode neuro-fuzzy
control of the two-mass induction motor drive without mechanical sensors,” IEEE
Transactions on Industrial Electronics, vol. 57, no. 2, pp. 553-564, 2010.
[7] B. Oscar and A. Patxi, “Position control of the induction motor using an adaptive
sliding-mode controller and observers,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6556-6565, 2014.
[8] C. F. Hsu, “Intelligent total sliding-mode control with dead-zone parameter modification for a DC motor driver,” IET Control Theory and Applications, vol. 8, no. 11,
pp. 916-926, 2014.
[9] Y. Guo and P. Y. Woo, “An adaptive fuzzy sliding mode controller for robotic manipulators,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 33, no. 2, pp. 149-159, 2003.
[10] D. Xu, D. Zhao, J. Yi, and X. Tan, “Trajectory tracking control of omnidirectional
wheeled mobile manipulators: robust neural network-based sliding mode approach,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp. 788-799, 2009.
[11] S. Islam and X. P. Liu, “Robust sliding mode control for robot manipulators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2444-2453, 2011.
[12] J. Zhang and Y. Xia, “Design of static output feedback sliding mode control for uncertain linear systems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2161-2170 , 2010.
[13] J. Yang, J. Su, S. Li, and X. Yu, “High order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 604-614, 2014.
[14] Y. Chang and C. C. Cheng, “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IEE Proceedings, Control Theory and Applications, vol. 1, no. 1, pp. 417-421, 2007.
[15] C. C. Cheng and Y. Chang, “Design of decentralized adaptive sliding mode controllers for large-scale systems with mismatched perturbations,” International Jour-nal of Control, vol. 81, no. 10, pp. 1507-1518, 2008.
[16] C. C. Wen and C. C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability,,” Journal of the Franklin Institute, vol. 345, pp. 926-941, 2008.
[17] C. C. Cheng, C. C. Wen, and W. T. Lee, “Design of decentralized sliding surface for a class of large-scale systems with mismatched perturbations,” International Journal of Control, vol. 82, no. 11, pp. 2013-2025, 2009.
[18] M. Zak, “Introduction to terminal dynamics,” Complex Systems, vol. 7, no. 1, pp. 59-87, 1993.
[19] M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 44, no. 11, pp. 1065-1070, 1997.
[20] L. Y. Wang, T. Y. Chai, and L. F. Zhai, “Neural-Network-Based terminal sliding
mode control of robotic manipulators including actuator dynamics,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3296-3304, 2009.
[21] Y. Feng, X. Yu, and F. Han, “On nonsingular terminal sliding-mode control of
nonlinear systems,” Automatica, vol. 49, no. 7, pp. 2287-2291, 2013.
[22] T. Binazadeh and M. H. Shafiei, “Nonsingular terminal sliding-mode control of a
tractor trailer system,” Systems Science and Control Engineering, vo2. 1, no. 1, pp.
168-174, 2014.
[23] Y. Tang , “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, no.
1, pp. 51-56, 1998.
[24] Y. Wu, X. Yu, and Z. Man, “Terminal sliding mode control design for uncertain
dynamic systems,” Systems and Control Letters, vol. 34, no. 5, pp. 281-287, 1998.
[25] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid
manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, 2002.
[26] S. Li, M. Zhou, and X. Yu, “Design and implementation of terminal sliding mode
control method for PMSM speed regulation system,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1879-1891 , 2013.
[27] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for
nonlinear magnetic bearing system,” IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 636-643 , 2011.
[28] L. Yang and J. Yang, “Nonsingular fast terminal sliding-mode control for nonlinear
dynamical systems,” International Journal of Robust and Nonlinear Control, vol.
21, no. 16, pp. 1865-1879, 2011.
[29] S. Khoo, L. Xie, and Z. Man, “Integral terminal sliding mode cooperative control
of multi-robot networks,” IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pp. 969-973, 2009.
[30] X. Yu, M. Zhihong, Y. Feng, and Z. Guan, “ Nonsingular terminal sliding mode
control of a class of nonlinear dynamical systems ,” Proceedings of the 15th IFAC
World Congress , 2002.
[31] Y. Feng, X. Han, Y.Wang, and X. Yu, “Second-order terminal sliding mode control
of uncertain multivariable systems,” International Journal of Control, vol. 80, no.6,
pp. 856-862, 2007
[32] S. D. Xu, C. C. Chen, and Z. L. Wu, “Study of nonsingular fast terminal slidingmode
fault-tolerant control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6,
pp. 3906-3913, 2015.
[33] L. Zhao and Y. Jia, “Finite-time attitude tracking control for a rigid spacecraft using
time-varying terminal sliding mode techniques,” International Journal of Control,
vol. 88, no. 6, pp. 1150-1162, 2015.
[34] R. Zhang, L. Dong, and C. Sun, “ Adaptive nonsingular terminal sliding mode control
design for near space hypersonic vehicles,” IEEE/CAA Journal of Automatica
Sinica, vol. 1, no. 2, pp. 155-161, 2014.
[35] Y. Feng, F. Han, and X. Yu, “Chattering free full-order sliding-mode control,”
Automatica, vol. 50, no. 4, pp. 1310-1314, 2014.
[36] X. Yu and M. Zhihong, “Fast terminal sliding-mode control design for nonlinear
dynamical systems,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 49, no. 2, pp. 261-264, 2002.
[37] Y. S. Lin and C. C. Cheng, “Design of terminal block backstepping controllers for
perturbed systems in semi-strict feedback form,” International Journal of Control,
DOI:10.1080/00207179.2015.1035757.
[38] C. C. Cheng and M. W. Chang, “Design of derivative estimator using adaptive
integral variable structure technique,” American Control Conference, Minneapolis,
pp. 14-16, 2006.
[39] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications,
London: Taylor and Francis, 1998.
[40] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge: Cambridge
University Press, 1988.
[41] C. F. Chuang, W. J. Wang, Y. J. Sun, and Y. J. Chen, “T-S fuzzy model based H
finite-Time synchronization design for chaotic systems,” International Journal of
Fuzzy Systems, vol. 13, no. 4, pp. 358-368, 2011.
[42] R. Ma and J. Zhao, “Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings,” Automatica, vol.
46, no. 11, pp. 1819-1823, 2010.
[43] S. Lin and S. K. Singh, “Decentralized adaptive controller design for large-scale
systems with higher order interconnections,” IEEE Transactions on Automatic Control, vol. 37, no. 8, pp. 1106-1118, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.26.246
論文開放下載的時間是 校外不公開

Your IP address is 3.149.26.246
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code