Responsive image
博碩士論文 etd-0601115-135001 詳細資訊
Title page for etd-0601115-135001
論文名稱
Title
水熱法製備鋯與氮共摻雜二氧化鈦及增強可見光之觸媒活性
Synthesis of Zirconium and Nitrogen Codoped Titanium Oxide by Hydrothermal Process with Enhanced Photocatalytic Activities in Visible-Light Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-17
繳交日期
Date of Submission
2015-07-01
關鍵字
Keywords
循環應用性質、可見光、光降解、水熱法、鋯氮共摻雜二氧化鈦
visible-light, photodegradation, cyclic photocatalysis, zirconium and nitrogen co-doped titanium oxide, hydrothermal
統計
Statistics
本論文已被瀏覽 5674 次,被下載 796
The thesis/dissertation has been browsed 5674 times, has been downloaded 796 times.
中文摘要
本研究中成功經由水熱法制備鋯氮共摻雜粉末並使用於分解有機汙染物之應用,將使用X繞射儀 (XRD) 、掃描式電子顯微鏡 (FM-SEM )、紫外光可見光漫反射 (UV-vis DRS) 、比表面積分析儀 (BET) 和X射線光電子能譜儀 (XPS) 對共摻雜粉末進行鑑定。本實驗中改質後的二氧化鈦以 Anatase 晶相結構為主,透過提高水熱溫度的方式雖然提升大量摻雜的結果卻引起量子尺寸效應, Zr<SUP>4+</SUP> 摻雜量高於/低於 10 mole % 會呈現不同的規律性將造成晶粒尺寸明顯地變化 (8.0 ~ 15.7 nm) ,適當的 Zr<SUP>4+</SUP> 摻雜能有效地提升可見光下的催化反應,例如 0.5 mole % Zr<SUP>4+</SUP> 具有最高的光降解效率 (81.0 %),但過量的 Zr<SUP>4+</SUP> 摻雜量將造成可見光吸收的下降與能隙上升 (3.01 → 3.25 eV) 之結果,此外不同煅燒的溫度可改善顆粒的比表面積和相組成比例,然而光觸媒的降解能力隨著多次循環催化反應而降低。增加光觸媒可見光下的催化效果將從良好的相組成、高比表面積與孔洞、大範圍的可見光吸收、較小的能隙值及抑制電子電洞複合之速度,鋯和氮二者在共摻雜二氧化鈦扮演著重要的腳色也提升了光催化之特性。
Abstract
Zirconium and Nitrogen co-doped titanium oxide photocatalyst are successfully prepared via a hydrothermal process and applied for organic pollutants decomposing. The products are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FM-SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), surface area and porosimetry analyzer (BET) and x-ray photoelectron spectrometer, (XPS). This study indicates that modified titanium oxide mainly has anatase-type structure. Raising hydrothermal temperature increases the donor into titanium oxide lattice, but result induces a quantum effect. Crystalline size notably changes (8.0 ~ 15.7 nm) in the different order for above/below 10 mole % Zr<SUP>4+</SUP> doped. Although appropriately Zr<SUP>4+</SUP> doped can effectively improve photocatalysis in visible-light region, e.g. 0.5 mole % of Zr<SUP>4+</SUP> has the highest photodegradation efficiency (81.0 %), excess Zr<SUP>4+</SUP> doped will decrease visible-light absorption and raising energy gap (from 3.01 to 3.25 eV). In addition, different calcination temperature improves surface area and phase composition of particles. However, photodegradation ability of the photocatalyst will reduce by multiple cyclic photocatalysis. The enhanced visible-light activity of photocatalyst is attributed to the well phase composition, high surface area, broad visible light absorption, narrow energy gap and suppressed electron-hole recombination rate. Zirconium and Nitrogen not only play an important role in co-doped titanium oxide but also enhance photocatalytic property.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1研究背景 1
1.2研究動機 1
第二章 文獻回顧 4
2.1光觸媒簡介 4
2.1.1 半導體性質 4
2.1.2光觸媒催化原理 5
2.2 影響光觸媒降解因素 7
2.2.1光的強度 7
2.2.2酸鹼值 7
2.2.3溫度 8
2.2.4有機汙染物濃度 8
2.2.5光觸媒劑量 9
2.3 二氧化鈦簡介 9
2.3.1 二氧化鈦結構及特性 9
2.3.2 二氧化鈦顆粒之製備方式 11
2.4 孔洞結構型態 13
2.4.1孔洞結構分類 13
2.4.2等溫吸脫附曲線 13
2.5 二氧化鈦的改質 15
2.5.1 金屬離子摻雜 15
2.5.2 非金屬離子摻雜 16
2.5.3 鋯與氮共摻雜 16
第三章 實驗方法 18
3.1 實驗藥品 18
3.2 實驗流程 18
3.3 樣品代號 21
3.4實驗儀器分析方法 22
3.4.1 X光粉末繞射儀(X-ray diffractometer, XRD) 22
3.4.2可見光光催化實驗 22
3.4.3比表面積分析儀( Surface Area and Porosimetry Analyzer ) 24
3.4.4紫外光-可見光漫反射光譜分析( Diffuse Reflectance spectroscopic, DRS ) 24
3.4.5場發射掃描式電子顯微鏡( Field Emission Scanning Electron Microscope, SEM ) 25
3.4.6 X射線光電子能譜儀( X-ray Photoelectron Spectrometer, XPS) 25
第四章 結果與討論 27
4.1 摻雜對二氧化鈦性質之影響 27
4.1.1 X光繞射分析 27
4.1.2 紫外-可見光 DRS分析 28
4.1.3 SEM電子顯微鏡分析 30
4.1.4 顆粒比表面積與孔洞結構分析 32
4.1.5 X射線光電子能譜儀分析 33
4.1.6 光催化活性試驗與分析 38
4.1.7 摻雜效應之討論 40
4.2水熱溫度的效應 41
4.2.1 X光繞射分析 42
4.2.2 紫外-可見光 DRS分析 44
4.2.3 光催化活性試驗與分析 46
4.2.4 水熱效應之討論 47
4.3 不同鋯離子摻雜量的效應 48
4.3.1 X光繞射分析 48
4.3.2紫外-可見光 DRS分析 50
4.3.3 SEM電子顯微鏡分析 52
4.3.4 顆粒比表面積與孔洞結構分析 53
4.3.5 光催化活性試驗與分析 54
4.3.6 鋯離子摻雜量效應之討論 56
4.4 不同煅燒溫度對於ZNT-1的影響 59
4.4.1 X光繞射分析 59
4.4.2紫外-可見光 DRS分析 61
4.4.3 SEM電子顯微鏡分析 63
4.4.4 顆粒比表面積與孔洞結構分析 63
4.4.5 光催化活性試驗與分析 66
4.4.6煅燒溫度之討論 67
4.5 光催化循環應用性質實驗 68
第五章 結論 71
第六章 建議未來工作 72
參考文獻 73
參考文獻 References
1. A. Fujishima; K. Honda; K. Univ; Yokohama, Nature 1972, 238, 378.
2. S. K. Kansal; M. Singh; D. Sud, J. Hazard. Mater. 2007, 141, 581-90.
3. Z. Liu; X. Zhang; T. Murakami; A. Fujishima, Sol. Energy Mater. Sol. Cells 2008, 92, 1434-1438.
4. C. C. Trapalis; P. Keivanidis; G. Kordas; M. Zaharescu; M. Crisan; A. Szatvanyi; M. Gartner, Thin Solid Films 2003, 433, 186-190.
5. M. N. Chong; B. Jin; C. W. Chow; C. Saint, Water Res. 2010, 44, 2997-3027.
6. M. Grätzel, J. Photochem. Photobiol., A 2004, 164, 3-14.
7. A. L. Linsebigler; G. Lu; J. John T. Yates, Chem. Rev. 1995, 95, 735-758.
8. J. N. T. Bak; M. Rekas; C. C. Sorrell, Int. J. Hydrogen Energy 2002, 27, 991 – 1022.
9. S.-C. Moon; H. Mametsuka; S. Tabata; E. Suzuki, Catal. Today 2000, 58, 125-132.
10. S. Sakthivel; H. Kisch, Angew. Chem. Int. Ed. 2003, 42, 4908-11.
11. L. Lin; W. Lin; J. Xie; Y. Zhu; B. Zhao; Y. Xie, Appl. Catal. B- Environ. 2007, 75, 52-58.
12. R. Asahi; T. Morikawa; T. Ohwaki; K. Aoki; Y. Taga, Science 2001, 293, 269-71.
13. J. C. Yu; J. Yu; W. Ho; Z. Jiang; L. Zhang, Chem. Mater. 2002, 14.
14. T. Umebayashi; T. Yamaki; H. Itoh; K. Asai, Appl. Phys. Lett. 2002, 81, 454.
15. X. Chen; S. S. Mao, Chem. Rev. 2007, 107, 2891-959.
16. F. Du; S. Yu, J. Nanosci. Nanotechnol. 2014, 14, 6965-6969.
17. P. Zhang; Y. Yu; E. Wang; J. Wang; J. Yao; Y. Cao, ACS Appl. Mat. Interfaces 2014, 6, 4622-4629.
18. W. D. Kingery; H. K. Bowen; D. R. Uhlmann, 2nd ed.; Wiley, 1976.
19. S. Sato, Chem. Phys. Lett. 1986, 123, 126-128.
20. Ryuhei Nakamura; T. Tanaka; Y. Nakato, J. Phys. Chem. B 2004, 108, 10617-10620.
21. H. Irie; Y. Watanabe; K. Hashimoto, J. Phys. Chem. B 2003, 103, 5483-5486.
22. M. Xing; J. Zhang; F. Chen, J. Phys. Chem. C 2009, 113, 12848–12853.
23. A. Kubacka; B. Bachiller-Baeza; G. Colón; M. Fernández-García, Appl. Catal. B- Environ. 2010, 93, 274-281.
24. A. N. Ren-De Suna, Toshiya Watanabe , Kazuhito Hashimoto, J. Photochem. Photobiol., A 2003, 154, 203-209.
25. U. I. Gaya; A. H. Abdullah, J. Photochem. Photobiol., C 2008, 9, 1-12.
26. D. Curcó; J. Giménez; A. Addardak; S. Cervera-March; S. Esplugas, Catal. Today 2002, 76, 177–188.
27. C. Karunakaran; S. Senthilvelan, Catal. Commun. 2005, 6, 159-165.
28. D. Bahnemann; D. Bockelmann; R. Goslich, Sol. Energy Mater. 1991, 24, 564-583.
29. M. N. Chong; S. Lei; B. Jin; C. Saint; C. W. K. Chow, Sep. Purif. Technol. 2009, 67, 355-363.
30. J. Sun; X. Wang; J. Sun; R. Sun; S. Sun; L. Qiao, J. Mol. Catal. A: Chem. 2006, 260, 241-246.
31. S. Malato; P. Fernández-Ibáñez; M. I. Maldonado; J. Blanco; W. Gernjak, Catal. Today 2009, 147, 1-59.
32. M. Saquib; M. Muneer, Dyes Pigm. 2003, 56, 37–49.
33. A. Mills; S. L. Hunte, J. Photochem. Photobiol., A 1997, 108, 1-35.
34. I. K. Konstantinou; T. A. Albanis, Appl. Catal. B 2004, 49, 1-14.
35. A. E. Cassano; O. M. Alfano, Catal. Today 2000, 58, 167-197.
36. M. Lazzeri; A. Vittadini; A. Selloni, Phys. Rev. B: 2001, 63, 155409.
37. R. Ren; Z. Yang; L. L. Shaw, J. Mater. Sci. 2000, 35, 6015-6026.
38. M. Andersson; L. Osterlund; S. Ljungstrom; A. Palmqvist, J. Phys. Chem. B 2002, 106, 10674-10679.
39. E. A. Barringer; H. K. Bowen, Langmuir 1985, 1, 414-420.
40. J. B. Condon, Academic Press, 1982.
41. R. Pierott; J. Rouquerol, Pure Appl. Chem. 1985, 57, 603-619.
42. R. Baba; S. Nakabayashi; A. Fujishima; K. Honda, J. Am. Chem. Soc. 1987, 109, 2273-2277.
43. W. Choi; A. Termin; M. R. Hoffmann, J. Phys. Chem. 1994, 98, 13669-13679.
44. H. Liu; G. Liu; X. Shi, Colloids Surf., A 2010, 363, 35-40.
45. H. Feng; M.-H. Zhang; L. E. Yu, Appl. Catal. A 2012, 413-414, 238-244.
46. D. Kapusuz; J. Park; A. Ozturk, J. Phys. Chem. Solids 2013, 74, 1026-1031.
47. J. Wang; Y. Yu; S. Li; L. Guo; E. Wang; Y. Cao, J. Phys. Chem. C 2013, 117, 27120-27126.
48. P. Goswami; J. N. Ganguli, Dalton Trans. 2013, 42, 14480-90.
49. Bo Chi; L. Zhao; T. Jin, J. Phys. Chem. C 2007, 111, 6189-6193.
50. X. Chen; C. Burda, J. Phys. Chem. B 2004, 108, 15446-15449.
51. N. T. Nolan; D. W. Synnott; M. K. Seery; S. J. Hinder; A. Van Wassenhoven; S. C. Pillai, J. Hazard. Mater. 2012, 211-212, 88-94.
52. M. Sathish; B. Viswanathan; R. P. Viswanath; C. S. Gopinath, Chem. Mater. 2005, 17, 6349-6353.
53. C.-C. Hu; T.-C. Hsu; S.-Y. Lu, Appl. Surf. Sci. 2013, 280, 171-178.
54. I. Takano; S. Isobe; T. A. Sasaki; Y. Baba, Appl. Surf. Sci. 1989, 37, 25-32.
55. S. Tsunekawa; K. Asami; S. Ito; M. Yashima; T. Sugimoto, Appl. Surf. Sci. 2005, 252, 1651-1656.
56. M. Zhang; X. Yu; D. Lu; J. Yang, Nanoscale Res. Lett. 2013, 8, 543.
57. M. Srinivasan; T. White, Environ. Sci. Technol. 2007, 41, 4405-4409.
58. J. C. Yu; L. Zhang; J. Yu, Chem. Mater. 2002, 14, 4647-4653.
59. Z. Liu; D. D. Sun; P. Guo; J. O. Leckie, Chem. Eur. J. 2007, 13, 1851-5.
60. Q. Meng; T. Wang; E. Liu; X. Ma; Q. Ge; J. Gong, PCCP 2013, 15, 9549--9561.
61. H. Liu; S. S. Thind; G. Wu; J. Wen; A. Chen, J. Electroanal. Chem. 2015, 736, 93-100.
62. B. Gao; T. M. Lim; D. P. Subagio; T.-T. Lim, Appl. Catal. A- Gen 2010, 375, 107-115.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code