Responsive image
博碩士論文 etd-0601116-003430 詳細資訊
Title page for etd-0601116-003430
論文名稱
Title
具光色轉換特性之玻璃螢光體於白光固態照明應用之研究
Investigation of glass phosphor with color conversion capability for solid-state white lightings
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-18
繳交日期
Date of Submission
2016-07-15
關鍵字
Keywords
白光有機發光二極體、白光發光二極體、玻璃螢光體、固態照明、色穩定性、演色性
Solid-state lighting, CRI, White LEDs, Color stability, Glass phosphor, White OLEDs
統計
Statistics
本論文已被瀏覽 5830 次,被下載 93
The thesis/dissertation has been browsed 5830 times, has been downloaded 93 times.
中文摘要
近年來全球都在提倡環境維護及綠色能源議題,固態照明具有高效率、低耗電、壽命長等特點,遂成為新一代照明光源之發展重點。本論文利用具有優異熱穩定性之玻璃螢光體,分別運用於無機發光二極體(Light-Emitting Diode, LED)與有機發光二極體(Organic Light-Emitting Diode, OLED)元件作為光色轉換層,透過調整螢光材料濃度形成不同光色之白光元件,分別製作高演色性與寬廣色溫白光LED,以及高效率白光OLED。
論文第一部份以玻璃螢光體做為白光LED的色轉換層,藉由調整摻雜綠色(Lu3Al5O12:Ce3+)、黃色(Y3Al5O12:Ce3+)及紅色(CaAlClSiN3:Eu2+)螢光材料濃度,摻雜濃度為綠色8 wt%及紅色2 wt%(G8R2)厚度在0.95 mm時,其1931 CIEx,y色座標為(0.335, 0.342)最為接近正白光,且演色性可達87。藉由改變玻璃螢光體厚度控制藍光強度,使光色產生廣域的變化,達到調變色溫之目的,厚度由1.2-0.8mm其色溫變化範圍為4246~6711 K,且演色性及發光效率分別可維持80及90 lm/W以上。此研究利用簡易改變玻璃螢光體濃度及厚度,使白光LED具有寬廣色溫調變範圍,同時具有高演色性與高發光效率,使白光LED具有更加靈活的照明運用。
論文第二部份以玻璃螢光體做為OLED元件基板,藉由基板內螢光材料達到光色轉換的特性,搭配藍光OLED元件形成白光元件。在黃和紅螢光材料摻雜濃度分別為3 wt%及5 wt%之螢光基板,其元件在13.6 V操作電壓下,1931 CIEx,y色座標為(0.339,0.409),色溫為5313 K,演色性可達81。元件最大外部量子效率為7.2 %,最大亮度為6819 cd/m2(@14.8V),在亮度為42 cd/m2有最大功率效率及電流效率分別為7.9 lm/W和17.1 cd/A。元件在不同操作電壓下,在亮度865 cd/m2增加至6722 cd/m2,其1931 CIEx,y色座標由(0.33,0.40)略為變化至(0.34,0.41),演色性均可維持80以上。本研究利用單色發光層結合光色轉換之螢光基板,形成光色豐富之多波段白光元件,其元件結構簡單不易隨操作電壓改變產生光色偏移,因此提高色穩定性且維持演色性表現,可提升白光OLED在照明運用之競爭力。
Abstract
In recent years, due to the rising global environmental consciousness, solid-state lightings with high efficiency, low power consumption and long lifetime have become promising for the next-generation of lighting applications. In this dissertation, we utilize glass phosphors as the color converted layer for LED (Light-Emitting Diode) and OLED (Organic Light-Emitting Diode) devices. We propose the solutions for realizing white LEDs with wide range of CCT and highly efficient white OLED.
In the first part of this dissertation, we used glass phosphor as the color converted layer for white LEDs. The glass phosphors were made by dispersing green (Lu3Al5O12:Ce3+), yellow (Y3Al5O12:Ce3+) and red (CaAlClSiN3:Eu2+) phosphor crystals with a suitable proportion into sodium-based glass matrix. The CIE coordinates of the white LEDs with the 0.95 mm thick glass phosphor composite of LuAG:Ce and CASN:Eu in a doping weight ratio of 8:2 was (CIEx,y=0.335,0.342) and the CRI of the white LEDs reached 87. Through adjusting the thickness of the glass phosphors, the white LEDs exhibit CCT ranging from 4246K to 6711K with CRI ranging and yield luminous efficiency up to 80 and 90 lm/W, respectively. The glass phosphor in this work provides an effective way for white LEDs to achieve both chromaticity tailorability and high efficiency.
In the second part of the dissertation, we utilized glass phosphor as the substrate for white OLEDs. Prompted by the strong light-scattering ability of the fluorescent substrate (glass phosphor), it is possible to serve as a scattering color-conversion layer for white OLEDs. At a driving voltage of 13.6V, the CIE coordinates, CCT, and CRI of the white OLEDs with the substrate doped with YAG:Ce and CASN:Eu in a weight ratio of 3:5(Y3R5) were (CIEx,y=0.339,0.409), 5313K, and 81, respectively. The device exhibited maximum external quantum efficiency of 7.2%, maximum luminance of 6819 cd/m2. The maximum current efficiency and power efficiency of the device were 7.9 lm/W and 17.1cd/A, respectively. The device showed an excellent color rendering and color stability. The CIE coordinates of the device changed slightly with the driving voltage. In this work, we proposed a simplified white OLEDs composed by a blue OLED and a fluorescent substrate. Benefiting from its simplified device structures, the device exhibited excellent color stability and color rendering, this contribution shows the great potential of this kind of white OLEDs for the high color-quality lighting applications.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2研究動機與目的 4
1-2-1以玻璃螢光體實現高演色性及寬廣色溫白光LED 5
1-2-2以玻璃螢光體製作高演色性與高效率白光OLED之研究 8
1-3章節提要 10
第二章 基礎理論 12
2-1 LED發光原理 12
2-2 白光LED結構 14
2-3 螢光材料組成 15
2-4 發光機制 16
2-5 OLED發光原理 18
2-6 OLED基本元件結構 19
2-7 白光OLED結構 20
2-7-1多重發光層(Multiple emissive layers) 20
2-7-2多摻雜發光層(Multiple dopants emissive layer) 21
2-7-3 色轉換法(Down conversion) 22
2-8 出光效率(Light Outcoupling efficiency, ηc) 23
2-9 色彩學原理 26
2-9-1 CIE色度座標(Chromaticity Diagram) 26
2-9-2 色溫(Color temperature) 29
2-9-3演色性係數(Color rendering index, CRI) 30
第三章 以玻璃螢光體實現高演色性及寬廣色溫白光LED之研究 32
3-1 實驗材料 32
3-1-1玻璃原料 32
3-1-2螢光材料 34
3-2製作步驟 36
3-3 量測儀器及原理 38
3-3-1光致螢光光譜儀(Fluorescence Spectrophotometer) 38
3-3-2 X光繞射儀(X-Ray Diffraction, XRD) 39
3-3-3紫外-可見光光譜儀(UV-Visible Spectrophotometer, UV-Vis) 40
3-3-4積分球(Integrating Sphere) 41
3-4 結果與討論 42
3-4-1應用於高演色性白光LED之玻璃螢光體開發 42
3-4-2應用於寬廣色溫白光LED之玻璃螢光體開發 45
3-5 結論 48
第四章 以玻璃螢光體製作高演色性與高效率白光OLED之研究 50
4-1 螢光基板備製 50
4-2 OLED元件製作 51
4-2-1 實驗材料 51
4-2-2元件製作步驟 52
4-2-3 元件量測系統 54
4-3 製程及量測儀器原理 55
4-3-1磁控濺鍍系統(Sputter) 55
4-3-2純化系統-管式高溫爐 (Purification system) 56
4-3-3 高真空熱蒸鍍系統(Thermal evaporation) 56
4-3-4 原子力顯微鏡(Atomic force microscope, AFM) 57
4-3-5 霧度(Haze) 58
4-4 結果與討論 59
4-4-1 螢光基板光學特性 59
4-4-2白光OLED元件特性 62
4-5 結論 70
第五章 結論 71
參考文獻 73
個人著作(Publications) 79
參考文獻 References
1. IEK Workshop on New Energy Indicators for Buildings and Appliances: LEDs-The Future of Lighting April 11 (2008).
2. 洪瑞華、陳建宇、賴芳儀、呂紹旭、吳孟奇、黃麒甄、梁從主、歐崇仁、林俊良、劉如熹、黃琬瑜、朱紹舒、郭文凱、謝其昌,LED工程師基礎概念與應用,五南圖書出版(2012)。
3. S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers”, Spinger, Berlin (1997).
4. J. K. Kim, E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting”, OSA Optics Express, vol.16, no.26, pp.21835-21842 (2008).
5. 陳金鑫、陳錦地、吳忠幟,白光OLED照明,五南圖書出版(2009)。
6. 林志勳、黃孟嬌,全球固態照明產業發展趨勢,機械工業雜誌,375期(2014)。
7. 羅元村,高功率藍光發光二極體高溫加速老化光場及電性研究,國立中山大學光電所,碩士論文 (2008)。
8. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED”, Optical Materials, vol.33, pp.688-691 (2011).
9. C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, W. H. Cheng, “Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor- Converted White Light-Emitting Diodes”, IEEE Journal of Display Technology, vol. 9, no. 6 (2013).
10. P. R. Boyce, “The Impact of Light in Buildings on Human Health”, Indoor and Built Environment, vol. 19, no.1 (2010).
11. 陳金鑫、黃孝文,夢幻顯示器:OLED材料與元件,五南圖書出版 (2007)。
12. C. F. Madigan, M.-H. Lu, J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification”, Applied Physics Letters, vol.76, 1650 (2000).
13. A.A. Bergh, R. H. Saul, US Patent No. 3,739,217 (1973).
14. S. Moller, S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays”, Journal of Applied Physics, vol. 91, 3324 (2002).
15. T. Nakamura, N. Tsutsumi, N, Juni, H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer”, Journal of Applied Physics, vol. 96, pp. 6016-6022 (2004).
16. J. J. Shiang, A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes”, Journal of Applied Physics, vol. 95, no. 5, pp. 2880-2888 (2004).
17. W. J. Hyun, J. J. Park, S. H. Im, O. O. Park, B. D. Chin, “ White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer”, Journal of Physics D: Applied Physics, vol. 46, 095107 (2013).
18. 劉偉仁、姚中業、黃建豪、鐘淑茹、金風,LED螢光粉技術,五南出版 (2014)。
19. 吳承龍、陳錦地,第一代、第二代與第三代OLED發光材料,化學,72卷,第4期,199-211頁(2014)。
20. 管鴻、許進明,LED及OLED照明,科學發展,483卷(2013/3)。
21. M. Pope, H. P. Kallmann, P. Magnante,“Electroluminescence in Organic Crystals”, Journal of Physical Chemistry, vol.38, pp.2042 (1963).
22. 葉昆明、陳雲,有機電激發光顯示技術,科學發展,385卷(2005/1)。
23. J. Kido, M. Kimura, K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device”, Science, vol. 267, no. 5202, pp. 1332-1334 (1995).
24. S. J. Su, E. Gonmori, H. Sasabe, J. Kido, “Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off”, Advanced Material, vol. 20, pp. 4189-4194 (2008).
25. R. H. Jordan, A. Dodabalapur, M. Strukelj, T. M. Miller, “Organic light-emitting devices for illumination quality white light”, Applied Physics Letters, vol. 80, pp. 3470-3472 (2002).
26. B. W. D’Andrade, M. E. Thompson, S. R. Forrest, “Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices”, Advanced Material, vol. 14, pp. 147-151 (2002).
27. E. Fred Schubert, “Light-Emitting Diodes second edition”, Cambridge University Press (2006).
28. C. H. Chang, Y. H. Lin, C. C. Chen, C. K. Chang, C. C. Wu, L. S. Chen, W. W. Wu, Y. Chi, “Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange–red osmium complex”, Organic Electronics, vol. 10, pp. 1235–1240 (2009).
29. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer”, Applied Physics Letters, vol. 82, pp.2422-2424 (2003).
30. C. C. Lin and R. S. Liu,“Advances in Phosphors for Light-emitting Diodes,” Journal of Physical Chemistry Letters, vol.2, pp.1268-1277 (2011).
31. A. R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, “Organic light-emitting devices for illumination quality white light”, Applied Physics Letters, vol. 80, pp. 3470-3472 (2002).
32. B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, “Highly efficient white organic light-emitting diode”, Applied Physics Letters, vol. 88, 113506 (2006).
33. L. Y. Chen, J. K. Chang, W. C. Cheng, J. C. Huang, Y. C. Huang, W. H. Cheng,“Tailorable Glass-Based Phosphor- Converted White Light-Emitting Diodes with High Color Rendering Index”, OSA Optics Express, vol. 23, no. 15 (2015).
34. W. Youn, J. Lee, M. Xu, R. Singh, F. So, “Corrugated Sapphire Substrates for Organic Light-Emitting Diode Light Extraction”, ACS Applied Materials & Interfaces, vol. 7, pp. 8974−8978 (2015).
35. A. Beiser, “Concepts of Modern Physics”, McGrew-Hill (2003).
36. 大田登、陳鴻興、陳詩涵,色彩工程學:理論與應用,全華圖書股份有限公司(2008)。
37. ANSI_NEMA_ANSLG C78.377-2008, Specifications for the Chromaticity of Solid State Lighting Products (2008).
38. ENERGY STAR®, Program Requirements for CFLs ENERGY STAR Eligibility Criteria Energy-Efficiency Criteria—Version 4.1, Department of Energy (2008).
39. S. Chhajed, Y. Xi, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes”, Journal of Applied Physics, vol. 97, 054506 (2005).
40. P. A. Levermore, A. B. Dyatkin, Z. M. Elshenawy, H. Pang, R. C. Kwong, R. Ma, M. S. Weaver, J. J. Brown, “Phosphorescent OLEDs: Enabling Solid State Lighting with Lower Temperature and Longer Lifetime”, Proceeding of SID Symposium Digests, vol. 42(72.2), pp.1060 (2011).
41. 邱標麟,玻璃製造學,復文書局(1992)。
42. L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin, W. H. Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion”, OSA Optical Materials Express, vol. 4, no.1, pp. 121-128 (2013).
43. W. C. Cheng, C. C. Tsai, J. K. Chang, S. Y. Huang, J. H. Chen, S. S. Hu, Y. C. Huang, W. H. Cheng,”Fabrication of Low-Temperature Ce3+:YAG Doped Glass for Phosphor-Converted White-Light-Emitting Diodes”, 17th Opto-Electronics and Communications Conference (OECC 2012), P2-3 (2012).
44. 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181期,100-108頁 (2002/1)。
45. 陳繼弘,低溫玻璃螢光體製程及均勻度分析,中山大學光電工程系,碩士論文(2012)。
46. S. Fujita, A. Sakamoto, S. Tanabe,“Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED”, IEEE Journal of Selected Topics In Quantum electronics, vol. 14, no. 5, pp.1387-1391 (2008).
47. 鄭韋治,高效率與高可靠度玻璃螢光體於白光照明模組之研究,中山大學光電工程系,博士論文(2014)。
48. L. Y. Chen, W. C. Cheng, C. C. Tsai, J. K. Chang, Y. C. Huang, J. C. Huang, W. H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs”, OSA Optics Express, vol. 22, no. S3, pp. A671-A678 (2014).
49. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor”, OSA Optics Letter, vol. 29, pp.2001-2003 (2004).
50. C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, W. E. Jones, “Probing Forster and Dexter Energy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensore”, Journal of Physical Chemistry B, vol. 108(5), pp. 1537-1543 (2004).
51. 蕭惠真,利用具雙載子傳輸特性的主體材料製作磷光發光元件之研究,國立中山大學,碩士論文 (2013)。
52. 周孝嘉,具雙極性載子傳輸特性之材料於有機發光元件應用之研究,國立中山大學,碩士論文 (2014)。
53. 李其紘,原子力顯微鏡的基本介紹,科學研習,no.52-5,pp. 18-21 (2013/5)。
54. C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer”, Organic Electronics, vol. 13, pp.1073-1080 (2012).
55. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, “Efficient, deep-blue organic electrophosphorescence by guest charge trapping”, Applied Physics Letters, vol. 83, no.18, pp.3818-3820 (2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code