Responsive image
博碩士論文 etd-0601116-091057 詳細資訊
Title page for etd-0601116-091057
論文名稱
Title
鉻-­氧與鐵­-氧-­氫成分系奈米凝聚物的脈衝雷射合成與特殊晶界、多型體和光學性質鑑定
Special grain boundaries, polytypes and optical properties of the nanocondensates in the Cr-O and Fe-O-H systems: pulsed laser ablation synthesis and characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
294
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-30
繳交日期
Date of Submission
2016-07-01
關鍵字
Keywords
奈米凝聚物、α-氧化鉻、層錯、脈衝雷射剝熔蝕、序化、特殊晶界面、方鐵礦
wüstite, α-Cr2O3, nanocondensates, pulsed laser ablation (PLA), ordering, fault, special grain boundary
統計
Statistics
本論文已被瀏覽 5777 次,被下載 17
The thesis/dissertation has been browsed 5777 times, has been downloaded 17 times.
中文摘要
摘要

本文是關於鉻-氧系統以及鐵-氧-氫系統,在動態製程形成緻密堆積結晶構造凝聚物,其特殊晶界、變體與光性的研究。鉻-氧系統第一部份(Part A1)是在大氣中短時間內脈衝雷射剝熔蝕鉻靶所形成的α-氧化鉻奈米凝聚物的研究,在穿透式電子顯微鏡下可觀察到菱狀(r)、翅狀(w)和棒狀(b)等形貌,而且具有基面、稜面和錐面等表面。這些表面彼此間會競爭以進行奈米凝聚物的旋轉貼合,而進一步依某特定(hkil)面接合形成特殊晶界面,各自對應於能量低谷,如其未弛態二維共位晶格(CSL)所示。鉻-氧系統第二部份(Part A2),是關於這些α-氧化鉻奈米凝聚物,其中依(0001)面聚簇形成基面雙晶與鄰近誘發疊差的穿透式電子顯微鏡觀察以及理論計算。結論為二者皆有伯格斯向量 =1/3[-1100],其比界面能(specific interface energy)與晶面厚度、晶格尺度和沿著c軸的基層疊合數相關。

至於鐵-氧-氫系統部分(Part B),是關於脈衝雷射在水中分別剝熔蝕金屬態α-鐵靶和具三價鐵的赤鐵礦微米粉末,所產生具有緻密堆積結晶構造凝聚物的結構與光學特性。根據穿透式電子顯微鏡觀察,這些由鐵、氧和氫元素組成的緻密結構主要是方鐵礦基底相奈米顆粒依特定(hkl)面序化以及聚簇所形成的多樣貌疇域(domain)。其中雙漏斗形、花形和絮形疇域是具有第一型和第二型序化之方鐵礦奈米凝聚物幾乎或完美磊晶貼合的疇域,殘留依特定(hkl)面分佈的水分子、含水離子、配比錯層(commensurate fault)、扭轉界面以至於變體,類似黏土礦物之多型體,因而有不同的光學性質。
Abstract
Abstract

This thesis deals with the special grain boundaries, polytypes and relevant optical properties of the dynamically fabricated nanocondensates with close-packed crystal structure in the Cr-O and Fe-O-H systems. In the first part (Part A1), the α-Cr2O3 nanocondensates prepared by short pulsed laser ablation (PLA) of metallic Cr plate in oxygen atmosphere were identified by transmission electron microscopy (TEM) to have rhomb (r), wing (w), bar (b) etc. shapes with basal, prismatic, pyramidal etc. faces. Such faces enabled hierarchical (hkil)-specific coalescence to form some special grain boundaries with fair 2-D coincidence site lattice (CSL) corresponding to an energy cusp as reconstructed in nonrelaxed state. In the inter-related second part (Part A2), the planar defects, i.e. the basal twin- and the associated bilayer-faults, due to the (0001)-specific coalescence event of the α-Cr2O3 nanocondensates by PLA of metallic Cr plate in oxygen atmosphere were characterized to have the Burgers vector b = 1/3[-1100]. First-principles calculation indicates basal layer thickness/ c-dimension/assembling-number dependent fault energetics in accordance with the observed interspacing of the twin and faults.

As for the Fe-O-H system (Part B), PLA of metallic α-iron plate versus hematite powders of micron size in water were used to fabricate nanocondensates with some novel close-packed and ordered structures. The phase selection and assembly to form domains with varied size and shape in such a case is all about wüstite-based phases in (hkl)-specific ordering and coalescence. The bifunnel-, flower- and floccus-like domains are due to almost (partial) to exactly epitaxial coalescence of the type-I and -II ordered wüstite nanocodensates with (hkl)-specific interlayer water molecules, hydrous ions, commensurate faults, twist boundaries and even polytypes analogous to clay minerals to affect optical properties.
目次 Table of Contents
Contents

論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
Contents vi
List of Figures ix
List of Tables xxv


Part A1
The special grain boundaries and corresponding CSLs of (hkil)-specifically coalesced α-Cr2O3 nanocondensates

A1-1. Introduction 2
A1-2. Experimental 4
A1-3. Coalescence types of α-Cr2O3 nanocondensates 5
A1-4. The special grain boundaries and CSLs of (hkil)-specifically coalesced α-Cr2O3 nanocondensates 12
A1-5. Qualitative energetics of the special grain boundaries by (hkil)-specific coalescence of the α-Cr2O3 nanocondensates 26
A1-6. Selection of basal and pyramidal twin boundaries 29


Part A2
The basal twin- or bilayer-fault of α-Cr2O3 via pulsed laser ablation condensation and first-principles calculations on thickness/c-dimension/assembling-number dependent fault energetics

A2-1. Introduction 31
A2-2. Experimental 35
A2-3. The real units of α-Cr2O3 crystal system 36
A2-4. The periodic bond chains of α-Cr2O3 crystal system 45
A2-5. The Burgers vector of the basal twin-fault in α-Cr2O3 48
A2-6. The fault energy of the basal twin-fault in α-Cr2O3 52
A2-7. The beneficial lower fault energy of the contracted basal twin-fault in α-Cr2O3 53
A2-8. The c-dimension dependent fault energy of the basal twin-fault in α-Cr2O3 55
A2-9. The basal-assembling number dependent energetics for unifying the twinned bicrystal of α-Cr2O3 58
A2-10. The tetrahedral sites of α-Cr2O3 lattice 62
A2-11. The Burgers vector of the basal bilayer-fault in α-Cr2O3 68
A2-12. The fault energy of the basal bilayer-fault in α-Cr2O3 74
A2-13. The beneficial lower fault energy of the expanded basal bilayer-fault in α-Cr2O3 79
A2-14. The stress due to the interior coherency strain 81

Summary of Part A 88


Part B
Polytypes and optical properties of the nanocondensates in the Fe-O-H system: pulsed laser ablation synthesis and characterization

B-1. Introduction 90
B-2. Experimental 93
Sample list 95
B-3.0. Appearances of PLA samples under naked eye 97
B-3.1. Optical polarized micrographs of PLA-H samples 100
B-3.2. Optical polarized micrographs of PLA-I samples 102
B-4.1. PL/Raman spectra of the PLA-H samples 103
B-4.2. PL/Raman spectra of the PLA-I samples 105
B-5. XRD of PLA-H and PLA-I samples 107
B-6. TEM observations of PLA-H and PLA-I samples 125
B-7. Dynamic phase selection in Fe-O-H system 137
B-8. PLA parameter dependent ordering and nonstoichiometry of wüstite 140
B-9. Defect chemistry of highly nonstoichiometric wüstite in water 141
B-10. (hkl)-specific ordering of highly nonstoichiometric wüstite 142
B-11. (111)-specific coalescence of particles to form twist boundary and multiple twins for wüstite and magnetite, respectively 143

Summary of Part B 144

Conclusions 145
References 146

Appendix A. References for Raman modes assignment of iron (hydr)oxides 153
Appendix B. References for PL bands of iron (hydr)oxides 156

Supplement 1. Optical polarized micrographs of PLA-H and PLA-I samples 157
S1-1. Optical polarized micrographs of PLA-H samples 157
S1-2. Optical polarized micrographs of PLA-I samples 190
Supplement 2. PL/Raman spectra of PLA-H and PLA-I samples 201
S2-1. PL/Raman spectra of PLA-H samples 201
S2-1.1. PL/Raman spectra of the bifunnel-like particles 201
S2-1.2. PL/Raman spectra of the flower-like particles 203
S2-1.2.1. The flower-like particles with primary luminescence at ca. 550 nm 203
S2-1.2.2. The flower-like particles with primary luminescence at ca. 410 nm 208
S2-1.3. PL/Raman spectra of the floccus-like particles 209
S2-1.3.1. The floccus-like particles with progressively stronger luminescence at ca. 550 nm 209
S2-1.3.2. The floccus-like particles with progressively weaker luminescence at ca. 550 nm 212
S2-1.3.3. The floccus-like particles with progressively stronger then weaker luminescence at ca. 550 nm 214
S2-1.4. PL/Raman spectra of the sol-gel matrix 216
S2-1.4.1. The sol-gel matrix with primary luminescence at ca. 550 nm 216
S2-1.4.2. The sol-gel matrix with primary luminescence at ca. 410 nm 220
S2-1.5. PL/Raman spectra of other particles 222
S2-1.6. PL/Raman spectra of the particles/precipitates in a PLA-H-hpc sample subjected to dwelling in water 223
S2-2. PL/Raman spectra of PLA-I samples 230
S2-2.1. PL/Raman spectra of the brownish colonies 230
S2-2.2. PL/Raman spectra of the gel mixed with the brownish colonies 235
S2-2.3. PL/Raman spectra of the fin-like colonies 240
S2-2.4. PL/Raman spectra of the wrinkle-like colonies 242
S2-2.5. PL/Raman spectra of the newly developed particles/precipitates 247
S2-2.6. PL/Raman spectra of the bright particles 257
參考文獻 References
References

Blake RL, Hessevick RE, Zoltai T, Finger LW. (1966) Refinement of the hematite structure, Am. Mineral. 51:123.
Bora DK, Deb P. (2009) Fatty acid binding domain mediated conjugation of ultrafine magnetic nanoparticles with albumin protein. Nanoscale Res. Lett. 4(2):138.
Buffat PA, Flüeli M, Spycher R, Stadelmann P, Borel JP. (1991) Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 92:173.
Chen MW, McCauley JW, Dandekar DP, Bourne NK. (2006) Dynamic plasticity and failure of high-purity alumina under shock loading. Nat. Mater. 5:614.
Cherian M, Rao MS, Yang W, Jehng J, Hirt AM, Deo G. (2002) Oxidative dehydrogenation of propane over Cr2O3/Al2O3 and Cr2O3 catalysts: Effects of loading, precursor and surface area. Appl. Catal. A 233:21.
Chi M, Gu H. (2004) Comparison of segregation behaviors for special and general boundaries in polycrystalline Al2O3 with SiO2-TiO2 impurities. Interface Sci. 12(2):335.
Colomban P. (2011) Chapter 28. Potential and drawbacks of Raman (micro)spectrometry for the understanding of iron and steel corrosion, LADIR, CNRS – Université Pierre-et-Marie-Curie, France. New Trends and Developments in Automotive System Engineering, Ed. Chiaberge M, InTech.
Cornell RM, Schwertmann U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Wiley-VCH, Weinheim, Germany.
Darken LS, Gurry RW. (1935) Physical Chemistry of Metals. McGraw-Hill, New York.
Fang D, Yu Y, Xu Z, Liang J, Zhou L. (2016) Enhanced catalytic performance of β-FeOOH by coupling with single-walled carbon nanotubes in a visible-light-Fenton-like process. Sci. Eng. Compos. Mater. (Ahead of print).
Fender BEF, Riley FD. (1969) Thermodynamic properties of Fe1-xO. Transitions in the single phase region. J. Phys. Chem. Solids 30:793.
Ferrage E. (2004) Etude expérimentale de l’hydratation des smectites par simulation des raies 00l de diffraction des rayons X. Implications pour l’étude d’une perturbation thermique sur la minéralogie de l’argilite du site Meuse-Haute Marne. Ph.D. thesis, University of Grenoble I, France.
Finger LW, Hazen RM. (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 51:5362.
Finger LW, Hazen RM, Hofmeister AM. (1986) High‐pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): Comparisons with silicate spinels. Phys. Chem. Miner. 13:215.
Freund HJ, Kuhlenbeck H, Staemmler V. (1996) Oxide surfaces. Rep. Prog. Phys. 59:283.
Geipel T, Bilde-Sørensen JB, Lawlor BF, Pirouz P, Lagerlöf KPD, Heuer AH. (1996) On basal slip and basal twinning in sapphire (α-Al2O3)—III. HRTEM of the twin/matrix interface. Acta Mater. 44(5):2165.
Gleeson B, Hadavi SMM, Young DJ. (2000) Isothermal transformation behavior of thermally-grown wüstite. Mater. High Temp. 17(2):311.
Gouadec G, Colomban P. (2007) Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53(1):1.
Han Q, Liu ZH, Xu YY, Chen ZY, Wang TM, Zhang H. (2007) Growth and properties of single-crystalline γ-Fe2O3 nanowires. J. Phys. Chem. C 111(13):5034.
Harrison PG, Lloyd NC, Daniell W. (1998) The nature of the chromium species formed during the thermal activation of chromium-promoted tin(IV) oxide catalysts: An EPR and XPS study. J. Phys. Chem. B 102(52):10672.
Hartman P, Perdok WG. (1955a) On the relations between structure and morphology of crystals. I Acta Crystallogr. 8(1):49.
Hartman P, Perdok WG. (1955b) On the relations between structure and morphology of crystals. II Acta Crystallogr. 8(9):521.
Hausner DB, Bhandari N, Pierre-Louis AM, Kubicki JD, Strongin DR. (2009) Ferrihydrite reactivity toward carbon dioxide. J. Colloid Interface Sci. 337(2):492.
Hazen RM, Jeanloz R. (1984) Wüestite (Fe1-xO): A review of its defect structure and physical properties. Rev. Geophys. Space Phys. 22(1):37.
Henrich VE, Cox PA. (1994) The Surface Science of Metal Oxides. Cambridge University Press. And references therein.
Heuer AH, Jia CL, Lagerlöf KPD. (2010) The core structure of basal dislocations in deformed sapphire (α-Al2O3). Science 330(6008):1227.
Hiemstra T. (2013) Surface and mineral structure of ferrihydrite. Geochim. Cosmochim. Acta 105:316.
Huang BH, Chen SY, Shen P. (2008a) {10-11} and {11-21}-specific growth and twinning of ZnO whiskers. J. Phys. Chem. C 112(4):1064.
Huang BH, Shen P, Chen SY. (2008b) {10-11} artificial epitaxy of ZnO on glass via pulse laser deposition. J. Eur. Ceram. Soc. 28(13):2545.
Huang CN, Chen SY, Tsai MH, Shen P. (2007) Laser ablation condensation and phase change of Ni1−xCoxO nanoparticles. J. Cryst. Growth 305(1):285.
Huang CN, Chen SY, Zheng Y, Shen P. (2008) Structure and phase behavior of gold nanocondensates: Effects of laser ablation parameters and carbon catalysis. J. Phys. Chem. C 112(38):14965.
Hull D, Bacon DJ. (2001) Introduction to Dislocations, 4th ed. Oxford University Press, Butterworth-Heinemann.
Hu Q, Kim DY, Yang W, Yang L, Meng Y, Zhang L, Mao HK. (2016) FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature 534(7606):241.
Hwang SL, Shen P, Yui TF, Chu HT. (2003) On the mechanism of resorption zoning in metamorphic garnet. J. Metamorph. Geol. 21(8):761.
Hwang SL, Shen P, Chu HT, Yui TF, Iizuka Y. (2015) Origin of rutile needles in star garnet and implications for interpretation of inclusion textures in ultrahigh-pressure metamorphic rocks. J. Metamorph. Geol. 33(3):249.
Hwang SL, Shen P, Chu HT, Yui TF. (in review) On the forbidden crystallographic variant of rutile inclusion in garnet: implication for the selection of hetero tilt boundaries in complicated inclusion-host systems. J. Appl. Crystallogr.
Iijima S, Ichihashi T. (1986) Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56(6):616.
Inkson BJ. (2000) Dislocations and twinning activated by the abrasion of Al2O3. Acta Mater. 48(8):1883.
Kahani SA, Jafari M. (2009) A new method for preparation of magnetite from iron oxyhydroxide or iron oxide and ferrous salt in aqueous solution. J. Magn. Magn. Mater. 321(13):1951.
Kamali KZ, Alagarsamy P, Huang NM, Ong BH, Lim HN. (2014) Hematite nanoparticles-modified electrode based electrochemical sensing platform for dopamine. Sci. World J. 2014:396135.
Kern R, Masson A, Métois JJ. (1971) Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: II. Partie théorique. Surf. Sci. 27(3):483.
Ketteler G, Weiss W, Ranke W, Schlögl R. (2001) Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure. Phys. Chem. Chem. Phys. 3(6):1114.
Khachaturyan AG, Shapiro SM, Semenovskaya S. (1991) Adaptive phase formation in martensitic transformation. Phys. Rev. B 43:10832.
Koga K, Ikeshoji T, Sugawara K. (2004) Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 92(11):115507.
Kröger FA, Vink HJ. (1956) Relations between the concentrations of imperfections in solids. Solid State Phys. 3:307.
Kuo LY, Shen P. (1997) On the rotation of non-epitaxy crystallites on single crystal substrate. Surf. Sci. 373(1):L350.
Kuo LY, Shen P. (2000) Shape dependent coalescence and preferred orientation of CeO2 nanocrystallites. Mater. Sci. Eng. A 277(1–2):258.
Langmuir D. (1971) Particle size effect on the reaction goethite = hematite + water. Am. J. Sci. 271(2):147.
Lee WH, Shen P. (1999) On the coalescence and twinning of cubo-octahedral CeO2 condensates. J. Cryst. Growth 205(1–2):169.
Lin CH, Shen P, Chen SY, Zheng Y. (2008) Condensation and crystallization of amorphous/lamellar chromium sesquioxide. J. Phys. Chem. C 112(45):17559.
Lin CH, Chen SY, Ho NJ, Gan D, Shen P. (2009) Shape-dependent local internal stress of α-Cr2O3 nanocrystal fabricated by pulsed laser ablation. J. Phys. Chem. Solids 70(12):1505.
Liu P, Cai W, Zeng H. (2008) Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112(9):3261.
Majzlan J, Navrotsky A, Schwertmann U. (2004) Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (˜Fe(OH)3), schwertmannite (˜FeO(OH)3/4(SO4)1/8), and ɛ-Fe2O3. Geochim. Cosmochim. Acta 68(5):1049.
Masson A, Métois JJ, Kern R. (1971) Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: I. Partie expérimentale. Surf. Sci. 27(3):463.
McCammon CA, Liu LG. (1984) The effects of pressure and temperature on nonstoichiometric wüstite, FexO: The iron-rich phase boundary. Phys. Chem. Miner. 10(3):106.
Mejias JA, Staemmler V, Freund HJ. (1999) Electronic states of the Cr2O3(0001) surface from ab initio embedded cluster calculations. J. Phys.: Condens. Matter 11(40):7881.
Métois JJ, Gauch M, Masson A, Kern R. (1972) Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: III. Cas de l'aluminium sur kcl; Précisions sur le mécanisme de glissement. Surf. Sci. 30(1):43.
Métois JJ. (1973) Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: IV. Mobilité de cristallites sur une surface: Décoration de gradins monoatomiques de surface. Surf. Sci. 36(1):269.
Meunier A. (2006) Why are clay minerals small? Clay Miner. 41(2):551.
Navrotsky A. (2001) Thermochemistry of nanomaterials. Rev. Mineral. Geochem. 44(1):73.
Navrotsky A, Mazeina L, Majzlan J. (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319(5870):1635.
Padhi DK, Parida K. (2014) Facile fabrication of α-FeOOH nanorod/RGO composite: a robust photocatalyst for reduction of Cr(VI) under visible light irradiation. J. Mater. Chem. A 2(26):10300.
Pan C, Chen SY, Shen P. (2006) Laser ablation condensation, coalescence, and phase change of dense γ-Al2O3 particles. J. Phys. Chem. B 110(48):24340.
Patil PP, Phase DM, Kulkarni SA, Ghaisas SV, Kulkarni SK, Kanetkar SM, Ogale SB, Bhide VG. (1987) Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron. Phys. Rev. Lett. 58(3):238.
Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. (1992) Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64:1045.
Pecharromán C, González-Carreño T, Iglesias JE. (1995) The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 22(1):21.
Perdew JP, Burke K, Ernzerhof M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18):3865.
Putnis A, McConnell JDC. (1980) Principles of Mineral Behaviour. Elsevier, New York.
Putnis A. (1992) Introduction to Mineral Sciences. Cambridge University Press. p. 134.
Rehbein C, Michel F, Harrison NM, Wander A. (1998) Ab initio total energy studies of the α-Cr2O3 (0001) and (01-12) surfaces. Surf. Rev. Lett. 5(1):337.
Rohr F, Bӓiumer M, Freund HJ, Mejias JA, Staemmler V, Miiller S, Hammer L, Heinz K. (1997) Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations. Surf. Sci. 372:L291.
Sadat ME, Kaveh Baghbador M, Dunn AW, Wagner HP, Ewing RC, Zhang J, Xu H, Pauletti GM, Mast DB, Shi D. (2014) Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 105(9):091903.
Sasaki T, Shimizu Y, Koshizaki N. (2006) Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids. J. Photochem. Photobiol. A 182(3):335.
Saylor DM, Cherry KW, Rohrer GS. (2001) Capillarity vector reconstruction of the relative energies of [0001] tilt boundaries in alumina. Proceedings of the First Joint International Conference on Grain Growth, Eds. Gottstein G and Molodov DA, Springer, Aachen, Germany. p.429.
Scarano D, Zecchina A, Bordiga S, Ricchiardi G, Spoto G. (1993) Interaction of CO with α-Cr2O3 surface: A FTIR and HRTEM study. Chem. Phys. 177:547.
Shen P, Bassett WA, Liu LG. (1983) Experimental determination of the effects of pressure and temperature on the stoichiometry and phase relations of wüstite. Geochim. Cosmochim. Acta 47(4):773.
Shen P, Lee WH. (2001) (111)-Specific coalescence twinning and martensitic transformation of tetragonal ZrO2 condensates. Nano Lett. 1(12):707.
Sørensen OT (Ed.). (1981) Nonstoichiometric Oxides. Academic Press, New York. pp. 28–31; 64–65.
Sun J, Stirner T, Matthews A. (2006) Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3. Surf. Coat. Technol. 201:4205.
Tabbal M, Kahwaji S, Christidis TC, Nsouli B, Zahraman K. (2006) Pulsed laser deposition of nanostructured dichromium trioxide thin films. Thin Solid Films 515:1976.
Tasker PW. (1979a) The stability of ionic crystal surfaces. J. Phys. C 12:4977.
Tasker PW. (1979b) The surface energies, surface tensions and surface structure of the alkali halide crystals. Philos. Mag. A 39(2):119.
Tsai MH, Chen SY, Shen P. (2004) Imperfect oriented attachment:  Accretion and defect generation of nanosize rutile condensates. Nano Lett. 4(7):1197.
Vanderbilt D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11):7892.
Van der Geest AG, Islam MM, Couvant T, Diawara B. (2013) Energy ordering of grain boundaries in Cr2O3: Insights from theory. J. Phys.: Condens. Matter 25:485005.
Wang HL, Cui JY, Jiang WF. (2011) Synthesis, characterization and flocculation activity of novel Fe(OH)3–polyacrylamide hybrid polymer. Mater. Chem. Phys. 130(3):993.
Wang Y, Fang H, Zacherl CL, Mei Z, Shang S, Chen LQ, Jablonski PD, Liu ZK. (2012) First-principles lattice dynamics, thermodynamics, and elasticity of Cr2O3. Surf. Sci. 606(17-18)1422.
Watanabe T, Yoshida H, Ikuhara Y, Sakuma T, Muto H, Sakai M. (2002) Grain boundary sliding and atomic structures in alumina bicrystals with [0001] symmetric tilt grain boundaries. Mater. T. JIM 43(7):1561.
Weckler B, Lutz HD. (1998) Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ). Eur. J. Solid State Inorg. Chem. 35(8–9):531.
Welberry TR, Christy AG. (1995) A paracrystalline description of defect distributions in wüstite, Fe1-xO. J. Solid State Chem. 117(2):398.
Welberry TR, Christy AG. (1997) Defect distribution and the diffuse X-ray diffraction pattern of wüstite, Fe1-xO. Phys. Chem. Miner. 24(1):24.
Wu TC, Bassett WA, Burnley PC, Weathers MS. (1993) Shear-promoted phase transitions in Fe2SiO4 and Mg2SiO4 and the mechanism of deep earthquakes. J. Geophys. Res. 98(B11):19767.
Yang GW. (2007) Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater Sci. 52(4):648.
Zhang Y, Liu W, Wu C, Gong T, Wei J, Ma MX, Wang K, Zhong M, Wu D. (2008) Photoluminescence of Fe2O3 nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes. Mater. Res. Bull. 43(12):3490.
Zheng Y, Lin CH, Shen P, Chen SY. (2012) Spontaneous bending of the coalesced α-Cr2O3 nanocondensates: Implications for multilayer coating systems. J. Nanopart. Res. 14:994.
Zheng Y, Lin CH, Shen P, Chen SY. (2013) The basal twin of α-Cr2O3 nanocondensates: Occurrence and first-principles calculations. CrystEngComm 15:6374.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code