Responsive image
博碩士論文 etd-0601117-021536 詳細資訊
Title page for etd-0601117-021536
論文名稱
Title
海洋擬球藻(TF-11)培養最佳化及應用之研究
Culture Optimization and Applications of Nannochloropsis Oculata (TF-11)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
326
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-23
繳交日期
Date of Submission
2017-07-01
關鍵字
Keywords
魚塭廢水、生活污水、海洋擬球藻(TF-11)、生物量、廣鹽性
fish farm wastewater, euryhaline, biomass, Nannochloropsis oculata (TF-11), municipal wastewater
統計
Statistics
本論文已被瀏覽 5663 次,被下載 12
The thesis/dissertation has been browsed 5663 times, has been downloaded 12 times.
中文摘要
微藻生長所需的營養鹽及二氧化碳,可分別藉由污水廠及電廠所排放的污水及煙道氣中來獲得,因此整個培養系統能同時達到微藻培養、水質淨化及碳封存等目的,所生產的微藻能做為魚塭飼料之用,或者進行加工轉換成具有經濟價值的副產物,如肥料、生質柴油及保健食品等。此外,微藻的生長將會受到氮源及碳源影響外,光照等其他的環境因子亦將影響微藻之生長。
本研究首先探討海洋擬球藻(TF-11)在各個環境及操作條件下,對於生物量及油脂積累的影響,所探討的因子包括有氮濃度、磷濃度、鹽度、pH值、曝氣比、氮源種類(低濃度)、氮源種類(高濃度)、光強度及碳源,接著利用上述實驗所得到的結果中,選出某些主要的生長因子,再進行培養成本最佳化實驗。其中選定的因子包括有鹽度、氮源及碳源,最後再進行應用性實驗,探討海洋擬球藻(TF-11)是否能夠處理魚塭及生活污水(二級處理),以達到水質淨化之目的,並同時產出高生物量的藻液,以作為飼料之用途。
海洋擬球藻(TF-11)在各種的鹽度範圍內(0.76-40 PSU),根據實驗結果顯示,此藻種具有廣鹽性,尤其是在鹽度0.76 PSU之下亦能生長,而在各種的光照強度範圍內(300-6000 lux),根據實驗結果顯示使用3000 lux的生長情況與6000 lux並無差異。
在處理生活污水實驗中,約5天時間即可將30.36±0.54 mg L-1的總無機氮給去除率達96 %,而在處理魚塭廢水實驗中,約3天的時間即可將2.95±0.25 mg L-1的總無機氮達去除率76 %。
此外,根據二氧化碳進氣改良之實驗結果顯示,本實驗每單位的培養液只需4.4 mL min-1 L-1的二氧化碳進氣量,即可使pH從8.4下降至2.4,此二氧化碳使用量只需傳統進氣方式的1/13。
Abstract
The nutrient salts and carbon dioxide (CO2) required for the growth of microalgae can be respectively obtained from waste water and flue gases emitted by wastewater plants and power plants. Therefore, a microalgae culture system can simultaneously attain multiple goals such as mciroalgae cultivation, water purification, and carbon storage. The produced microalgae can be used as fish feeds or processed and converted to economic by-products, including fertilizers, biodiesels, and health food. The growth of microalgae is affected by nitrogen and carbon sources as well as other environmental factors such as illumination.
Experiments were first conducted to investigate the effects of various environmental and operating factors on the biomass and oil accumulation of Nannochloropsis oculata (TF-11); these factors were nitrogen concentration, phosphorous concentration, salinity, pH, aeration ratio, high- and low-concentration nitrogen sources, light intensity, and carbon sources. According to the experimental results, the most influential growth factors, namely, salinity, nitrogen sources, and carbon sources, were selected to optimize the cultivation cost. Finally, experiments were conducted to examine whether N. oculata (TF-11) can be used to perform secondary treatment for fish farm and municipal wastewater to purify water and produce high-biomass algal solutions as animal feeds.
Applying various salinity levels (0.76–40 PSU) confirmed the euryhaline property of N. oculata (TF-11); in particular, the microalgae could grow under a salinity of merely 0.76 PSU. Regarding light intensity (300–6000 lux), the growth of N. oculata differed nonsignificantly between 3000 and 6000 lux.
The experiment on municipal wastewater showed that N. oculata completely removed 30.36 ± 0.54 mg L−1 total inorganic nitrogen in approximately 5 days, and the experiment on fish farm wastewater confirmed that the algae completely removed 2.95 ± 0.24 mg L−1 total inorganic nitrogen in approximately 3 days, attaining a removal rate of 76%.
The culture optimization experiment on the CO2 influx rate showed that the culture medium only required a CO2 influx of 4.4 mL min−1 L−1 to reduce the pH by 2.4; this influx rate was only 1/13 of the conventional method.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xv
第一章. 緒論 1
1.1. 研究緣起 1
1.2. 研究目的 2
第二章. 文獻回顧 3
2.1. 藻類介紹 3
2.1.1. 藻類生命週期 3
2.1.2. 光合作用 4
2.2. 影響藻類生長的因子 6
2.2.1. 光 6
2.2.2. 溫度 8
2.2.3. 碳源 8
2.2.4. 營養鹽 9
2.2.5. 酸鹼值 10
2.3. 藻類培養系統 11
2.3.1. 開放式系統培養 12
2.3.2. 封閉式系統培養 13
2.3.3. 開放及封閉式曝氣系統 14
2.4. 藻類之應用 17
2.4.1 生質柴油 18
2.4.2 保健食品 19
2.4.3 飼料添加劑 21
2.4.4 廢水處理 21
2.4.5 二氧化碳減量 22
2.5. 藻類的收集 23
2.5.1. 化學 23
2.5.2. 物理 24
2.5.3. 生物 25
第三章. 實驗材料與方法 26
3.1 實驗流程 26
3.2 藻種來源 30
3.3 培養基與藥品 31
3.4 實驗儀器與設備 34
3.4.1. 培養裝置 34
3.4.2. 分析儀器 36
3.5 生物體組成分析 37
3.5.1. 微藻乾重分析 37
3.5.2. 比生長速率 37
3.5.3. Nile Red染色 39
3.6 營養鹽組成分析 40
3.6.1 亞硝酸鹽分析 40
3.6.2 硝酸鹽分析 40
3.6.3 氨氮分析 41
3.6.4 磷酸鹽分析 42
3.7 現場數值測定 43
3.7.1. 光照強度測定 43
3.7.2. 酸鹼值測定 43
3.7.3. 鹽度 44
3.8 統計 45
第四章. 結果與討論 46
4.1. 海洋擬球藻之生長特性試驗 46
4.1.1. 不同氮濃度對海洋擬球藻生長之探討 46
4.1.2. 不同磷濃度對海洋擬球藻生長之探討 64
4.1.3. 不同鹽度對海洋擬球藻生長之探討 73
4.1.4. 不同pH值對海洋擬球藻生長之探討 85
4.1.5. 不同曝氣比對海洋擬球藻生長之探討 97
4.1.6. 不同氮源種類(低濃度)對海洋擬球藻生長之探討 109
4.1.7. 不同光源強度對海洋擬球藻生長之探討 123
4.1.8. 不同CO2濃度對海洋擬球藻生長之探討 135
4.1.9. 不同氮源種類(高濃度)對海洋擬球藻生長之探討 145
4.1.10. 綜合討論-海洋擬球藻生理特性 163
4.2. 處理魚塭及生活廢水試驗 165
4.2.1. 魚塭廢水不同接種濃度對海洋擬球藻生長之探討 165
4.2.2. 魚塭廢水不同稀釋倍數對海洋擬球藻生長之探討 176
4.2.3. 魚塭廢水有無滅菌對海洋擬球藻生長之探討 189
4.2.4. 魚塭廢水額外添加氮源對海洋擬球藻生長之探討 198
4.2.5. 生活污水(二級處理)應用於海洋擬球藻生長之探討 211
4.2.6. 生活污水(二級處理)有無滅菌於海洋擬球藻生長之探討 226
4.2.7. 綜合討論-廢水處理 239
4.3. 海洋擬球藻培養系統改良 241
4.3.1. 不同進氣操作策略(二氧化碳) 241
4.3.2. 瓶杯試驗機-2L 259
4.3.3. 瓶杯試驗機-5 L 269
4.3.4. 磁石攪拌機-20 L 281
4.3.5. 綜合討論-二氧化碳進氣效率 293
第五章. 結論與建議 294
5.1. 結論 294
5.2. 建議 295
參考文獻 296
參考文獻 References
Alemán-Nava, G. S., Cuellar-Bermudez, S. P., Cuaresma, M., Bosma, R., Muylaert, K., Ritmann, B. E., & Parra, R. (2016). How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. Journal of Microbiological Methods, 128, 74-79.
Álvarez-Díaz, P., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M., & Perales, J. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research.
Barra, L., Chandrasekaran, R., Corato, F., & Brunet, C. (2014). The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Marine drugs, 12(3), 1641-1675.
Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164-173.
Becker, E. W. (1994). Microalgae: biotechnology and microbiology (Vol. 10): Cambridge University Press.
Borowitzka, M. A., & Moheimani, N. R. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18(1), 13-25.
Brown, L. M., & Zeiler, K. G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion and Management, 34(9), 1005-1013.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., & Lin, C.-S. (2008). Reduction of CO 2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology, 99(9), 3389-3396.
Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and CO 2 utilization of Nannochloropsis oculata in response to CO 2 aeration. Bioresource technology, 100(2), 833-838.
Colla, L. M., Bertolin, T. E., & Costa, J. A. V. (2004). Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Zeitschrift für Naturforschung C, 59(1-2), 55-59.
Concas, A., Lutzu, G. A., Pisu, M., & Cao, G. (2012). Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100%(v/v) CO 2. Chemical engineering journal, 213, 203-213.
Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151.
Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource technology, 102(1), 2-9.
de Jesus Raposo, M. F., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life sciences, 93(15), 479-486.
Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174.
Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), 389-406.
Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2016). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology.
El-Sheekh, M. M., Khairy, H. M., Gheda, S. F., & El-Shenody, R. A. (2016). Application of Plackett–Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculata. The Egyptian Journal of Aquatic Research, 42(1), 57-64.
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied microbiology and biotechnology, 80(1), 1-14.
Fernández-Sevilla, J. M., Fernández, F. A., & Grima, E. M. (2010). Biotechnological production of lutein and its applications. Applied microbiology and biotechnology, 86(1), 27-40.
Flottweg. (2017). Flottweg Separation Technology. from https://www.flottweg.com/applications/edible-fats-and-oils-biofuels/algae/
Grima, E. M., Belarbi, E.-H., Fernández, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology advances, 20(7), 491-515.
Helm, M. M., Bourne, N., & Lovatelli, A. (2004). Hatchery culture of bivalves: a practical manual: Food and agriculture organization of the United Nations.
Hoshida, H., Ohira, T., Minematsu, A., Akada, R., & Nishizawa, Y. (2005). Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO 2 concentrations. Journal of Applied Phycology, 17(1), 29-34.
Hu, C.-C., Lin, J.-T., Lu, F.-J., Chou, F.-P., & Yang, D.-J. (2008). Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry, 109(2), 439-446.
Hwang, K.-J., & Lin, S.-J. (2014). Filtration flux–shear stress–cake mass relationships in microalgae rotating-disk dynamic microfiltration. Chemical Engineering Journal, 244, 429-437.
Illman, A., Scragg, A., & Shales, S. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631-635.
Imaizumi, Y., Nagao, N., Yusoff, F. M., Taguchi, S., & Toda, T. (2014). Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO 2. Bioresource technology, 162, 53-59.
Jaime, L., Rodríguez-Meizoso, I., Cifuentes, A., Santoyo, S., Suarez, S., Ibáñez, E., & Señorans, F. J. (2010). Pressurized liquids as an alternative process to antioxidant carotenoids' extraction from Haematococcus pluvialis microalgae. LWT-Food Science and Technology, 43(1), 105-112.
Johnson, P. H. R. G. B. (2002). Biology (6 ed.): McGraw-Hill.
Khairy, H. M., & El-Sayed, H. S. (2012). Effect of enriched Brachionus plicatilis and Artemia salina nauplii by microalga Tetraselmis chuii (Bütcher) grown on four different culture media on the growth and survival of Sparus aurata larvae. African Journal of Biotechnology, 11(2), 399-415.
Kishi, M., Kawai, M., & Toda, T. (2015). Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Research, 11, 428-434.
Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel processing technology, 86(10), 1059-1070.
Krawezy, T. (1993). Biodiesel—alternative fuel makes in roads but hurdles remain; 7: 800–15. Shay EG. Diesel fuel from vegetable oil; status and opportunities. Biomass and Bioenergy, 4, 227-242.
Lananan, F., Yunos, F. H. M., Nasir, N. M., Bakar, N. S. A., Lam, S. S., & Jusoh, A. (2016). Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant. International Biodeterioration & Biodegradation, 113, 391-396.
Maoka, T. (2011). Carotenoids in marine animals. Marine drugs, 9(2), 278-293.
Martınez, M., Sánchez, S., Jimenez, J., El Yousfi, F., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource technology, 73(3), 263-272.
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.
Myers, J. A., Curtis, B. S., & Curtis, W. R. (2013). Improving accuracy of cell and chromophore concentration measurements using optical density. BMC biophysics, 6(1), 4.
Nguyen, T. T., Bui, X. T., Pham, M. D., Guo, W., & Ngo, H. H. (2016). Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor. Bioresource technology, 208, 1-6.
Ometto, F., Pozza, C., Whitton, R., Smyth, B., Torres, A. G., Henderson, R. K., . . . Villa, R. (2014). The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture. Water research, 53, 168-179.
Philips, S. (1997). A biology of the algae (Second ed.): Cambridge University Press.
Plaza, M., Herrero, M., Cifuentes, A., & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159-7170.
Powell, E., & Hill, G. (2009). Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chemical Engineering Research and Design, 87(9), 1340-1348.
Pruvost, J., Van Vooren, G., Cogne, G., & Legrand, J. (2009). Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource technology, 100(23), 5988-5995.
Ranga Rao, A., Sarada, R., & Ravishankar, G. (2007). Influence of CO~ 2 on Growth and Hydrocarbon Production in Botryococcus braunii. Journal of microbiology and biotechnology, 17(3), 414.
Rao, A. B., & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental science & technology, 36(20), 4467-4475.
Raven, K. A. M. P. H. (2016). Biology (11 ed.): McGraw-Hill Education.
Razzak, S. A., Ali, S. A. M., & Hossain, M. M. (2017). Biological CO 2 fixation with production of microalgae in wastewater–A review. Renewable and Sustainable Energy Reviews, 76, 379-390.
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO 2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renewable and Sustainable Energy Reviews, 27, 622-653.
Riccioni, G., D’Orazio, N., Franceschelli, S., & Speranza, L. (2011). Marine carotenoids and cardiovascular risk markers. Marine drugs, 9(7), 1166-1175.
Richmond, A. (2008). Handbook of microalgal culture: biotechnology and applied phycology: John Wiley & Sons.
Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas-Valdivia, V., Hernández-García, A., & Cano-Europa, E. (2012). Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl 2-caused oxidative stress and renal damage. Food chemistry, 135(4), 2359-2365.
Rubio, F. C., Fernandez, F., Perez, J., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1), 71-86.
Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., & Karube, I. (1995). Chlorella strains from hot springs tolerant to high temperature and high CO 2. Energy Conversion and Management, 36(6), 693-696.
Salim, S., Bosma, R., Vermuë, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of applied phycology, 23(5), 849-855.
Sawayama, S., Inoue, S., Dote, Y., & Yokoyama, S.-Y. (1995). CO 2 fixation and oil production through microalga. Energy Conversion and Management, 36(6), 729-731.
Scragg, A., Morrison, J., & Shales, S. (2003). The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology, 33(7), 884-889.
Skjånes, K., Lindblad, P., & Muller, J. (2007). BioCO 2–a multidisciplinary, biological approach using solar energy to capture CO 2 while producing H 2 and high value products. Biomolecular engineering, 24(4), 405-413.
Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource technology, 158, 127-134.
Thompson, A., Rhodes, J., & Pettman, I. (1988). Culture collection of algae and protozoa: catalogue of strains.
Tredici, M. R. (2004). Mass production of microalgae: photobioreactors. Handbook of microalgal culture: Biotechnology and applied phycology, 1, 178-214.
Van Gerpen, J. (2005). Biodiesel processing and production. Fuel processing technology, 86(10), 1097-1107.
Van Haver, L., & Nayar, S. (2017). Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications. Algal Research, 24, 167-180.
Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource technology, 184, 363-372.
Wang, L., Kisi, O., Zounemat-Kermani, M., Hu, B., & Gong, W. (2016). Modeling and Comparison of hourly photosynthetically active radiation in different ecosystems. Renewable and Sustainable Energy Reviews, 56, 436-453.
Wu, Z., Wu, S., & Shi, X. (2007). Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. Journal of food process engineering, 30(2), 174-185.
Yang, C., Hua, Q., & Shimizu, K. (2000). Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6(2), 87-102.
Yoshimura, K., Tanaka, K., & Yoshimatsu, T. (2003). A novel culture system for the ultra-high-density production of the rotifer, Brachionus rotundiformis—a preliminary report. Aquaculture, 227(1), 165-172.
王姿月 (2009) 油脂藻 Botryococcus braunii 與 Chlorella vulgaris 生長特性之探討,逢甲大學環境工程與科學研究所碩士論文,1-75。
李中光,劉新校,侯佳蕙 (2012) 淺談利用微藻固定 CO2實現碳減排。環保簡訊,16,1-7。
李文哲 (2006) 以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中CO2之研究。成功大學環境工程學系學位論文,1-113。
孫鶴娟 (2011) 高脂質累積潛力微藻之分離及利用廢水產生生質柴油之可行性研究。中興大學環境工程學系所學位論文,1-89。
郭致廷 (2011) BioEnergyToday 生質能源趨勢:藻類生質能源(四)收集技術。 from https://bioenergytoday.net/2011/08/28/algaefuel_04/。
陳芃 (2010) 從微小變為顯著--微藻引領第三代生質燃料發展。能源報導 23-26。
黃愛蘋 (2010) 利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究。中興大學環境工程學系所學位論文,1-108。
劉康克 (1992) 化學與生活專輯─化學與全球變遷。科學月刊,23(9),661-668。
賴芃劭 (2008) 高脂質累積潛力微藻之分離及生質柴油生成限制因子之探討。中興大學環境工程學系所學位論文,1-163。
簡雋杰、張格銓 (2014) 生物活性肽在水產飼料之應用。水試專訊,46,49-51。
蘇惠美 (2014) 水試所微藻種原之收集與應用。水試專訊(446),25-29。
吳朝榮、江紫綾 (2009) 鹽度(Salinity)。科技部高瞻自然科學教學資源平台,from http://highscope.ch.ntu.edu.tw/wordpress/?p=3789。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code