Responsive image
博碩士論文 etd-0602101-175821 詳細資訊
Title page for etd-0602101-175821
論文名稱
Title
平面天線於無線通訊之實際應用設計
Some practical planar antenna designs for wireless communication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-05-25
繳交日期
Date of Submission
2001-06-02
關鍵字
Keywords
3G頻帶、GPS頻帶、ISM頻帶、GSM頻帶、微帶天線、平面天線
GSM band, ISM band, Microstrip antenna, Planar antenna, 3G band, GPS band
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
在本篇論文中,一開始時,我們主要是探討平面天線在無線通訊的一些實際應用及其所面臨的挑戰,之後我們亦針對目前比較廣泛使用的頻帶來作一些天線設計,如ISM頻帶使用微擾技術的圓極化寬槽孔天線及環型金屬片負載的平面單偶極天線設計;3G頻帶的短路堆疊天線設計;結合GSM/GPS雙頻帶之車用型微帶天線設計以及滿足個人行動通訊和區域網路跨系統頻帶的GSM/ISM短路堆疊天線設計;最後我們也提出了結合ISM 5.2及5.8 GHz雙ISM頻帶的低成本高增益堆疊天線設計;在這些天線設計中,我們除了要求其必須滿足各系統的頻寬規定之外,對於天線場型、增益的性能表現,也希望其亦能達到最佳的性能表現的。
Abstract
In this paper, at the beginning, we focused our studies on the practical planar antenna designs for wireless communication. We also proposed several antenna designs operating at the widely used bands, such as the ISM, GSM, GPS, 3G bands and their combinations. For the antenna designs at these bands, the circularly polarized wide slot antenna and planar monopole antenna with the conducting plate loading for ISM band application, shorted stacked mircostrip antenna for 3G band application, and the low cost high gain 8Í8 stacked patch array for dual ISM band application have been presented. To provide mobile communication and the accurate position of the user as well, the GSM/GPS dual-band antenna suitable for vehicle application is presented. Finally, the GSM/ISM dual-band antenna designed for the personal communication and wireless local area network is also shown. The performance we have achieved in these antenna designs not only satisfy the specific requirements of the system, but also show good antenna pattern, and gain.
目次 Table of Contents
文字目錄
頁次
文字目錄 i
圖形目錄 iii
參考文獻目錄 viii

第一章 前言(Introduction)
1.1 平面天線在實際應用上的概況 1
1.2 論文內容 5

第二章 應用於RF-ID之圓極化正方形槽孔天線設計(Circularly Polarized Square Slot Antenna for RF-ID Application)
2.1 設計概念說明 6
2.2 實驗結果與討論 7

第三章 應用於ISM頻帶之平面單極天線設計(Planar Monopole Antenna Design for ISM Band Operation)
3.1 設計概念說明 19
3.2 實驗結果與討論 19

第四章 應用於DCS及ISM頻帶之短路堆疊微帶天線設計(Two Integrated Stacked Shorted Patch Antennas for DCS/WLAN Dual-Band Operation)
4.1 設計概念說明 29
4.2 實驗結果與討論 31

第五章 應用於第三代行動電話之短路堆疊微帶天線設計(Stacked Shorted Patch Antenna for 3G Mobile Phone Operation)
5.1 設計概念說明 54
5.2 實驗結果與討論 55

第六章 應用於GSM及GPS頻帶之微帶天線設計(Two Integrated Patch Antennas for GSM/GPS Dual-Band Operation)
6.1 設計概念說明 66
6.2 實驗結果與討論 67

第七章 應用於ISM 5.2及5.8GHz頻帶之低成本高增益8Í8堆疊微帶陣列天線設計(Low Cost High Gain 8Í8 Stacked Patch Array for Dual ISM Band Operation)
7.1 設計概念說明 81
7.2 實驗結果與討論 82

第八章 結論(conclusions) 100













圖形目錄
圖2.1 典型的無線識別RF-ID系統 9
圖2.2 單饋入之圓極化槽孔天線設計 10
圖2.3 共平面饋入之圓極化槽孔天線設計 11
圖2.4 具有長方形金屬負載之正方形圓極化槽孔天線設計 12
圖2.5 實驗所量測得到的返回損失圖……………..…………………..13
圖2.6 實驗所量測得到的圓極化軸比圖 14
圖2.7 實驗所量測得到的天線增益圖 15
圖2.8 於 平面所量測得到的天線場型圖 16
圖2.9 於 平面所量測得到的天線場型圖 17
圖3.1 正方形金屬負載之平面單偶極天線;h1 = 10 mm, L = 20mm 21
圖3.2 正方形環狀金屬負載之平面單偶極天線結構圖;h1 = 6.4 mm, h2 = 0.8 mm, L = 18 mm, l = 4 mm 22
圖3.3 不同的環型金屬片尺寸在相同饋入點下實驗所量測到的返回損失圖 23
圖3.4 x-z平面所量測到的天線場型圖;中心頻率為2450 MHz 24
圖3.5 y-z平面所量測到的天線場型圖;中心頻率為2450 MHz 25
圖3.6 x-y平面所量測到的天線場型圖;中心頻率為2450 MHz 26
圖3.7 x-y平面所量測到的最大天線增益圖;中心頻率為2450 MHz 27
圖4.1 以空氣為基板的倒置式F型天線;(a)整面短路設計(b)部分短路設計 33
圖4.2 以微波材料為基板的倒置式F型天線;(a)中心短路棒短路設計(b)兩端短路棒短路設計 34
圖4.3 操作在ISM頻帶的短路堆疊式天線設計;(a)立體圖 (b)剖面圖 35
圖4.4 耦合圈在不同寄生金屬片長度下的軌跡圖(a) L = 12 mm (b) L = 11 mm 36
圖4.5 耦合圈在不同寄生金屬片長度下的軌跡圖(a) L = 10 mm (b) L = 9 mm 37
圖4.6 實驗所量測到的返回損失圖,中心頻率為2450 MHz 38
圖4.7 實驗所量測到的天線增益圖,中心頻率為2450 MHz 39
圖4.8 實驗所量測到的天線場型圖,中心頻率為2450 MHz 40
圖4.9 共平面、雙(三頻)倒置式F型天線設計 41
圖4.10 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線設計 42
圖4.11 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線剖面圖 43
圖4.12 從DCS結構饋入端所量測得到的返回損失圖,中心頻率為1800 MHz 44
圖4.13 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
DCS頻帶下所量測到的天線增益圖,中心頻率為1800
MHz 45
圖4.14 從ISM結構饋入端所量測得到的返回損失圖,中心頻
率為2450 MHz 46
圖4.15 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
ISM頻帶下所量測到的天線增益圖,中心頻率為2450
MHz 47
圖4.16(a) 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
DCS頻帶、x-z平面下所量測到的天線場型圖,中心頻
率為1800 MHz 48
圖4.16(b) 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
DCS頻帶、y-z平面下所量測到的天線場型圖,中心頻
率為1800 MHz 49
圖4.17(a) 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
ISM頻帶、x-z平面下所量測到的天線場型圖,中心頻
率為2450 MHz 50
圖4.17(b) 整合式雙饋入、雙頻(DCS/ISM)的短路堆疊平面天線在
ISM頻帶、y-z平面下所量測到的天線場型圖,中心頻
率為2450 MHz 51
圖4.18 從DCS及ISM饋入端所量測得到的隔離度圖 52
圖5.1 用於第三代行動電話之平面天線結構圖;W = 20 mm, L = 28 mm, l = 5 mm, w1 = 5 mm, w2 = 2 mm 57
圖5.2 用於第三代行動電話之平面天線剖面圖及其相關尺寸 58
圖5.3 實驗所量測得到的返回損失圖 59
圖5.4 實驗所量測得到的最大天線增益圖 60
圖5.5 在x-z, y-z平面所量測得到天線場型圖;中心頻率在1900 MHz 61
圖5.6 在x-z, y-z平面所量測得到天線場型圖;中心頻率在2000 MHz 62
圖5.7 在x-z, y-z平面所量測得到天線場型圖;中心頻率在2100 MHz 63
圖5.8 在x-z, y-z平面所量測得到天線場型圖;中心頻率在2200 MHz 64
圖6.1 圓極化正方形圓環截角微帶天線 69
圖6.2 正方形金屬片負載之平面單偶極天線 70
圖6.3 整合式之雙饋入、雙頻帶(GPS/DCS)平面天線結構圖 71
圖6.4(a) DCS天線所量測到的返回損失圖,中心操作頻率為1800 MHz 72
圖6.4(b) DCS天線所量測到的天線增益圖,中心操作頻率為1800 MHz 73
圖6.5(a) GPS天線所量測到的返回損失圖 74
圖6.5(b) GPS天線所量測到的圓極化軸比圖 75
圖6.5(c) GPS天線所量測到的天線增益圖 76
圖6.6 DCS天線所量測到的天線場型圖,中心頻率為1800 MHz 77
圖6.7 GPS天線所量測到的天線場型圖,中心頻率為1575 MHz 78
圖7.1 探針饋入的單一天線元件:d = 3mm, a = 20 mm, h1 =
1.5 mm, b = 17 mm, h2 = 3 mm 84
圖7.2 探針饋入之單一天線元件所量測及模擬得到返回損失圖;a = 20 mm, h1 = 1.5 mm, h2 = 3, b = 17 mm, 饋入點離邊緣3 mm 85
圖7.3 探針邊緣饋入的單一天線元件:a = 20 mm, h1 = 1.5 mm 86
圖7.4 微帶線邊緣饋入的單一天線元件:a = 20 mm, h1 = 1.5 mm 87
圖7.5 8Í8微帶堆疊陣列天線結構圖 88
圖7.6(a)、(b) 單一天線元件在微帶線邊緣饋入時,在相同堆疊的高度之下,耦合圈針對不同的寄生金屬片尺寸所產生的軌跡圖:a = 20 mm, h1 = 1.5 mm, h2 = 3 mm. (a) b = 15 mm, (b) b = 18 mm 89
圖7.6(c)、(d) 單一天線元件在微帶線邊緣饋入時,在相同堆疊的高度之下,耦合圈針對不同的寄生金屬片尺寸所產生的軌跡圖:a = 20 mm, h1 = 1.5 mm, h2 = 3 mm. (c) b = 20 mm, (d) b = 22 mm 90
圖7.7(a)、(b) 單一天線元件在微帶線邊緣饋入時,在不同堆疊的高度之下,耦合圈針對不同的寄生金屬片尺寸所產生的軌跡圖:a = 20 mm, h1 = 1.5 mm (a) b = 20 mm, h2 = 1.5 mm, (b) b = 19, h2 = 3 mm 91
圖7.7(c) 單一天線元件在微帶線邊緣饋入時,在不同堆疊的高度之下,耦合圈針對不同的parasitic patch尺寸所產生的軌跡圖:a = 20 mm, h1 = 1.5 mm (c) b = 18 mm, h2 = 4.5 mm. 92
圖7.8 單一微帶線邊緣饋入的天線元件在最佳化尺寸下a = 20 mm, h1 = 1.5 mm, b = 18, h2 = 3 mm,耦合圈的軌跡圖 93
圖7.9 8Í8微帶陣列天線所量測到的返回損失圖 94
圖7.10(a) 8Í8微帶陣列天線在不同的操作頻率下所所量測到的天線場型圖(a) f = 5200 MHz 95
圖7.10(b) 8Í8微帶陣列天線在不同的操作頻率下所所量測到的天線場型圖(b) f = 5500 MHz 96
圖7.10(c) 8Í8微帶陣列天線在不同的操作頻率下所所量測到的天線場型圖(c) f = 5800 MHz 97

















參考文獻目錄
第二章參考文獻 18
第三章參考文獻 28
第四章參考文獻 53
第五章參考文獻 65
第六章參考文獻 .79
第七章參考文獻 98






















參考文獻 References
CH2參考文獻
[1] R. E. Floyd, “Radio Frequency Identification,” 1993 Canadian Conf. on Electrical and Computer Engineering, pp. 377-380.
[2] R. E. Floyd, “Radio Frequency Identification,” 1993 IEEE Proceedings, Southeastcon’93, 4 pages.
[3] J. Jun and Y. Lee, “Triplate printed antenna with circular slot,” 1998 IEEE AP-S Symp. Dig., pp. 2128-2131.
[4] R. M. Sorbello and A. I. Zaghloul, “Wideband high efficiency circularly polarized slot antenna elements,” 1989 IEEE AP-S Int. Symp. Dig., pp. 1473-1475.
[5] T. N. Chang and C. P. Wu, “Microstripline-fed circularly-polarized aperture antenna,” 1998 IEEE AP-S Int. Symp. Dig., pp. 1372-1375.
[6] X. Qing and Y. W. Chia, ”A novel single-fed circular polarized slotted loop antenna,” 1999 IEEE AP-S Int. Symp. Dig., pp. 248-251.
[7] S. Matsuzawa and K. Ito, “Circularly polarized printed antenna fed by coplanar waveguide,” Electron. Lett., vol. 32, pp. 2035-2036, 1996.
[8] E. A. Soliman, S. Brebels, E. Byne and G. A. E. Vandenbosch, “Circularly polarized aperture antenna fed by CPW and built in MCD-D technology,” Electron. Lett., vol. 35, pp. 250-251, 1996.

CH3參考文獻
[1] C. Delaveaud, P. Leveque and B. Jecko, “New kind of microstrip antenna: the monopolar wire-patch antenna,” Electron Lett., vol. 30, pp. 1-2, 1994
[2] B. A. Burberry and P. R. Foster, “New kind of microstrip antenna: the monopolar wire patch antenna,” Electron Lett., vol. 30, pp. 745, 1994
[3] B. Jecko, “New kind of microstrip antenna: the monopolar wire-patch antenna,” Electron Lett., vol. 30, pp. 1819, 1994
CH4參考文獻
[1] H. K. Han and R. B. Waterhouse, “Size reduction technique for shorted patches,” Electron. Lett., vol. 35, pp. 948-949, 1999.
[2] R. B. Waterhouse, “Small microstrip patch antenna,” Electron. Lett., vol. 31, pp. 604-605, 1995.
[3] R. B. Waterhouse, S. D. Targonski, and D. M. Kokotoff, “Design and performance of small printed antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1629-1633, 1998.
[4] Z. D. Liu, P. S. Hall, and D. Wake, “Dual-band antenna for hand held portable telephones,” IEEE Trans. Antennas Propagat., vol. 45, pp. 1451-1458, 1997.
[5] B. L. Ooi and C. L. Lee, “Broadband air-filled stacked U-slot patch antenna,” Electron. Lett., vol. 35, pp. 515-516, 1999.
[6] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Wideband aperature coupled stacked patch antenna thick substrates,” Electron. Lett., vol. 32, pp. 1941-1942, 1996.
[7] R. B. Waterhouse, J. T. Rowley, and K. H. Joyner, “Stacked shorted patch antenna,” Electron. Lett., vol. 34, pp. 612-614, 1998.
[8] R. B. Waterhouse, “Broadband stacked shorted patch,” Electron. Lett., vol. 35, pp. 98-100, 1999.
[9] C. T. P. Song, P. S. Hall, H. Ghafouri-Shiraz, and D. Wake, “Triple band planar inverted F antenna for handheld devices,” Electron. Lett., vol. 36, pp. 112-114, 2000.
[10] Z. D. Liu and P. S. Hall, “Dual-band antenna for hand held portable telephones,” Electron. Lett., vol. 32, pp. 609-610, 1996.
CH5參考文獻
[1] P. M. Mistry, “Third generation cellular (3G):W-CDMA & TD-CDMA,” 1998 Proc. Northcon/98 Conf., pp. 35-39.
[2] B. Gudmundson, “UMTS/IMT2000 based on wideband CDMA,” 1998 Proc. Int. Conf. Communication Tech., pp. 490-494.

CH6參考文獻
[1] J. M. Tranquilla and S. R. Best, “A study of the quadrifilar helix antenna for global positioning system (GPS) applications,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1545-1550, 1990.
[2] P. K. Shumaker, C. H. Ho and K. B. Smith, “Printed half-wavelength quadrifilar helix antenna for GPS marine applications,” Electron Lett. vol. 32, pp. 153-154, 1996.
[3] K. L. Wong, W. S. Hsu, and C. K. Wu, “Single-feed circularly polarized microstrip antenna with a slit,” Microwave Opt Technol Lett. vol. 18, pp. 306-308, 1998.
[4] M. Haneishi, T. Nambara, and Yoshida, “Study on elliptical properties of single-fed circularly polarized microstrip antennas,” Electron Lett. vol. 18, pp. 191-193, 1982.
[5] M. C. Pan and K. L. Wong, “Circularly polarized microstrip antenna with dual-CPW feed,” 2000 IEEE AP-S Int. Symp. Dig., pp. 996-999.
[6] B. F. Wang, “Two-port circularly polarized microstrip antennas,” 1989 IEEE AP-S Int. Symp. Dig., pp. 107-111.
[7] W. S. Chen, C. K. Wu and K. L. Wong, “Single-feed square-ring microstrip antenna with truncated corners for compact circular polarization operation,” Electron Lett. vol. 34, pp. 1045-1047, 1998.
[8] E. Lee, P. S. Hall and P. Gardner, “Dual band folded monopole/loop antenna for terrestrial communication system,” Electron Lett. vol. 36, pp. 1990-1991, 2000.
[9] E. Lee, P. S. Hall and P. Gardner, “Compact wideband planar monopole antenna,” Electron Lett. vol. 35, pp. 2157-2158, 1999.
[10] L. Economou and R. J. Langley, “Patch antenna equivalent to simple monopole,” Electron Lett. vol. 33, pp. 727-729, 1997.
[11] K. W. Chan, K. F. Tong, and K. M. Luk, “Wideband circular patch antenna operated at TM01 mode,” Electron Lett. vol. 35, pp. 2070-2071, 1999.
[12] C. Delaveaud, P. Leveque and B. Jecko, “New kind of microstrip antenna: the monopolar wire-patch antenna,” Electron Lett. vol. 30, pp. 1-2, 1994.
[13] B. A. Burberry and P. R. Foster, “New kind of microstrip antenna: the monopolar wire patch antenna,” Electron Lett. vol. 30, pp. 745, 1994.
[14] B. Jecko, “New kind of microstrip antenna: the monopolar wire-patch antenna,” Electron Lett. vol. 30, pp. 1819, 1994.
[15] J. S. Row, S. H. Yeh and K. L. Wong, A broadband low-profile cylindrical monopole antenna, Microwave Opt Technol Lett., vol. 29, pp. 77-79, 2001.

CH7參考文獻
[1] Measured return loss o D. H. Schaubert, D. M. Pozar, and A. Adrian, “Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment,” IEEE Trans. Antennas Propagat., vol. 37, pp. 677-682, 1989.
[2] E. Chang, S. A. Long, and W. F. Richards, “An experimental investigation of electrically thick rectangular microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 37, pp. 1345-1354, 1989.
[3] H. F. Pues and A. Van de Capelle, “An impedance matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 34, pp. 767-772, 1986.
[4] H. An, B. Nauwelaers, and A. Van de Capelle, “Matching network design of microstrip antennas with simplified real frequency technique,” Electron. Lett., vol. 27, pp. 2295-2297, 1991.
[5] A. J. Svitak, D. M. Pozar, and R. W. Jackson, “Optically fed aperture-coupled microstrip patch antennas,” IEEE Trans. Antennas Propagat., vol. 40, pp. 85-90, 1992.
[6] F. Croq and A. Papiernik, “Large bandwidth aperture-coupled microstrip antenna,” Electron. Lett., vol. 26, pp. 1293-1294, 1990.
[7] A. N. Tulintseff, S. M. Ali, and J. A. Kong, “Input impedance of a probe-fed stacked circular microstrip antenna,” IEEE Trans. Antennas Propagat., vol. 39, pp. 381-390, 1991.
[8] F. Croq and D. M. Pozar, “Millimeter wave design of wide-band aperture coupled stacked microstrip antenna,” IEEE Trans. Antennas and Propagat., vol. 39, pp. 1770-1776, 1991.
[9] J. F. Zurcher, “The SSFIP: A global concept for high performance broadband planar antennas,” Electron. Lett., vol. 24, pp. 1433-1435, 1988.
[10] H. Iwasaki, “A circular polarized rectangular microstrip antenna using single-fed proximity-coupled method,” IEEE Trans. Antennas Propagat., vol. 43, pp. 895-897, 1995.
[11] J. S. Row, “Characteristics of a rectangular patch antenna using foam substrate,” Proc. PIERS 1997 (Progress In Electromagnetics Research Symposium), pp. 17.
[12] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of wide-band aperture-stacked patch microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1245-1251, 1998.
[13] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “An aperture coupled stacked patch antenna with 50% bandwidth,” 1996 IEEE AP-S Int. Symp. Dig., pp. 18-12.
[14] K. M. Luk, K. F. Tong, and T. M. Au, “Offset dual-patch microstrip antenna,” Electron. Lett., vol. 29, pp. 1635-1636, 1993.
[15] A. Henderson and J. R. James, “Low-cost flat-plate array with squinted beam for DBS reception,” Proc. IEE, vol. 134, pt. H, pp. 509-514, 1987.
[16] P. S. Hall and C. M. Hall, “Coplanar corporate feed effects in microstrip patch a rray design,” Proc. IEE, vol. 135, pt. H, pp. 180-186, 1988.




























電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.184.214
論文開放下載的時間是 校外不公開

Your IP address is 18.218.184.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code