Responsive image
博碩士論文 etd-0602104-131440 詳細資訊
Title page for etd-0602104-131440
論文名稱
Title
光纖光柵外部共振腔雷射研製及特性之研究
Fabrication and Characteristics of Fiber Grating External Cavity Lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-04-20
繳交日期
Date of Submission
2004-06-02
關鍵字
Keywords
光纖光柵外部共振腔雷射
Fiber Grating External Cavity Lasers
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
本研究提出製造高耦光效率雙曲線光纖透鏡(Tapered hyperbolic-endfibers, THEFs)之新技術,利用獨特氫氟酸蝕刻及熔燒技術來研製雙曲線光纖透鏡,製造過程其蝕刻及光纖尖端熔燒成雙曲線形狀之製程,必須保持錐形光纖之對稱性。當雷射發散角長短軸比為1:1.5 時,有高達82%之耦光效率。本研究由實驗及理論計算進行,實驗方面證實錐形光纖透鏡之非對稱性係影響耦光效率的重要因素之一,軸向對稱的雙曲線光纖透鏡之遠場分佈顯示完美的近似高斯分佈,而不對稱的錐形雙曲線光纖透鏡則顯示嚴重的偏離高斯分佈。理論方面由模擬分析證實半球形光纖透鏡正規化光程差(OPD)之像差(Aberration)較錐形雙曲線光纖透鏡大,所以半球形光纖透鏡(Hemispherical-end fiber)之波前(Wavefront)有較大相位變化,因此雙曲線光纖透鏡之耦光效率比目前普遍應用的半球形光纖透鏡改善2dB 以上。本研究最重要貢獻之一為發現雙曲線光纖透鏡比半球形光纖透鏡有較佳波前匹配,此印證後者耦光效率較前者低之主要原因。本論文也探討無鍍抗反射膜(Non-AR-coated)光纖光柵透鏡與1.55µm FP 雷射半導體所組成光纖光柵外部共振腔雷射(Fiber grating externalcavity laser, FGECL)構裝之研究,FGECL 探討包含不同耦光效率及不同布拉格(Bragg)光柵反射率之特性變化及比較無鍍抗反射膜及鍍抗反射膜(HR/AR-coated)之特性變化。實驗證明耦光效率72%與光柵反射率0.52 組成之FGECL 有較強之共振回授,並且有較高光功率(>5mW)輸出及較低之閥值(Threshold)工作電流,其單縱模頻譜特性之旁模壓抑比(SMSR)高達45dB 以上。然而FGECL 在耦光效率68%及光柵反射率0.35組合,其特性對於工作電流及溫度之變化有較平穩的旁模壓抑比。本研究同時對各種不同耦光效率及光柵反射率的組合對旁模壓抑比之響應作數值模擬,計算值結果與量測實驗值相當一致,並證實雷射與單模光纖之高耦光效率可增進FGECL 之性能,因此本FGECL 研究結果對於製造高性能單縱模雷射模組提供有助益之參考數據。
Abstract
A new scheme of fabricating the tapered hyperbolic-end fibers (THEFs)microlenses using unique etching and fusion techniques is proposed. TheTHEFs were fabricated by symmetrically tapering the fiber during theetching process and hyperbolically lensing the tip during the fusing process.The tapered hyperbolic microlenses have demonstrated up to 82% couplingefficiency for a laser with an aspect ratio of 1:1.5. The influence of the tapering asymmetry on the coupling has also been investigated
experimentally and theoretically. The axially symmetrical taperedmicrolenses of the THEFs showed that far-field profiles were well approximated to a Gaussian profile, while the asymmetric taper had deviated significantly from a Gaussian profile. A theoretical analysis illuminated a
larger wavefront transformation of the hemispherical microlenses. A lesser phase aberration of the normalized optical path difference (OPD) was found in the hyperbolic-end lens, and that resulted in more than 2 dB improvement
in the coupling efficiency when compared to the currently available hemispherical microlenses. The high-coupling performance of the hyperbolic microlens was due to an improved wavefront matching between the laser and
the fiber, which was one of the most important contributions in this study.The 1.55 µm fiber grating external cavity lasers (FGECLs), packaged with THEF microlens for coupling the fiber grating external cavity, have been investigated for different combinations of coupling efficiency (η) and Bragg reflectivity (Rg). Various tapered hyperbolic-end fiber microlenses
with different coupling efficiency have been fabricated for this study. The FGL of higher η = 72% and Rg = 0.52 has a stronger resonant feedback as the spectral output showed a single longitudinal mode with the side-mode-suppression-ratio (SMSR) greater than 45dB, a high output power of greater than 5mW, and a lower threshold current. However, for the case of η = 68% and Rg = 0.35, the FGL exhibited a more stable SMSR against the variation of pumping current and temperature. Numerical simulations have also been performed on the SMSR at different coupling efficiencies and Bragg reflectivity for the FGLs. The high performance of the FGLs can be achieved through a higher coupling efficiency between a laser diode and a single-mode fiber. The calculated SMSR showed an excellent agreement with the measured data.
目次 Table of Contents
ix
圖2.1 布拉格光纖光柵的製造方法。------------------------------- 12
圖2.2 布拉格光纖光柵的反射及透射。--------------------------- 12
圖2.3 光經過布拉格光纖光柵的繞射現象。-------------------- 12
圖2.4 布拉格光纖光柵的頻譜量測。------------------------------ 18
圖2.5 光纖透鏡與無鍍抗反射模
光纖光柵雷射之耦光架構。----------------------------------- 19
(a) 錐形角θ =30°光纖透鏡,曲率半徑Rl=11µm。
(b) FP 雷射。
圖2.6 光纖透鏡(不含光柵)之耦光效率
為耦光距離的函數。-------------------------------------------- 20
圖2.7 FP 雷射特性。(a)L=I 及I-V 響應。(b)和(c)
分別為水平方向及垂直方向之遠場光束發
散角,25°×45°(橫向×縱向)。-------------------------------- 22
圖2.8 (a)和(b)分別為光纖光柵Rg=0.86 時之穿透
及反射頻譜。------------------------------------------------------ 23
圖2.9 光纖光柵外部共振腔雷射的等效模型。---------------- 24
圖2.10 當φ = 0°及φ=5°時,光柵反射率Rg 為0.5,0.7,
0.86 之偏壓電流對光功率(L-I)對應曲線。----------- 24
圖2.11 峰值波長與電流密度及輸出光功率與
電流密度之響應值。-------------------------------------------- 25
圖2.12 電流密度與旁模壓抑比對應值,黑圓點
為實驗值,空心圓為計算值。------------------------------ 32
圖2.13 光纖光柵雷射的考慮光回授之耦合架構圖。-------- 33
圖2.14 FP 雷射前端面鍍不同反射率,光柵反射
率對閥值電流得變動響應。--------------------------------- 39
圖2.15 不同光柵反射率Rg = 0.4,0.5,0.7,0.86,
FP 雷射前端面鍍不同反射率對閥值電流
之變動響應。---------------------------------------------------- 40
(a)雷射前端面反射率R2 由0 至0.32。
(b)雷射前端面反射率R2 由0 至0.05。
圖2.16 耦光效率η=50%之不同光柵反射率對閥值電流之影響。---------------------------------------------------- 41
(a)長度分別為200 µm 及300 µm 的固態雷射,
其端面反射率R1=0.92, R2=1×10-5。
(b)長度為300 µm 的固態雷射,其端面反射率
R1=0.92, R2 分別為10-5,10-2 和0.32。
Itho 為固態雷射閥值電流,Ith 為雷射加光纖
光柵後外部共振腔之閥值電流。
圖2.17 耦光效率η=50%,光纖光柵反射率Rg= 0.7,
R1=0.92 及R2 分別為10-4,10-2 和0.32 時,
dP/dI 之變化與相位偏移(ωτ)之響應。---------------- 43
圖2.18 耦光效率η=50%,雷射端面反射率R1=0.92
及R2=0.32,光纖光柵反射率Rg=0.4, 0.5, 0.7,
0.86 時, dP/dI 之變化與相位移(ωτ)之響應。---- 43
圖2.19 耦光效率η=50%,雷射端面反射率R1=0.92 及
R2 分別為10-4,10-2 和0.32 時,不同反射率的
光纖光柵Rg=0.4, 0.5, 0.7, 0.86,∆P /∆I 的變化
值對相位移(ωτ)之對應關係。---------------------------- 44
圖3.1 光纖透鏡的蝕刻示意圖,包含氫氟酸溶液
、機油層、光纖固定器及光纖。---------------------------- 51
圖3.2 機油密度對錐形角的影響。--------------------------------- 53
(a)氫氟酸與機油的混合可分成三層。
(b)計算所得的錐形角為機油密度的函數。
圖3.3 錐形角與機油厚度及蝕刻時間之關係。---------------- 54
圖3.4 FP 雷射FWHM 遠場發散角
(a)水平方向(b)垂直方向。------------------------------------ 55
圖3.5 為雷射與錐形雙曲線光纖透鏡間
耦光效率量測之裝置。----------------------------------------- 56
圖3.6 耦光效率與光纖透鏡曲率半徑之關係。---------------- 58
(a)部份實驗取樣數。
(b)偏位移小於1 µm 取樣數。
圖3.7 以幾何原理說明光纖透鏡入射光路徑。----------------- 59
圖3.8 (a)入射角跟曲率半徑的關係及。--------------------------- 61
(b)模場直徑與曲率半徑的比與入射角的關係。
圖3.9 光纖透鏡中心於光纖軸的橫向偏位移及座標。------ 62
(a)側視圖(b)端視圖。
圖3.10 (a)不對稱錐形光纖(b)不對稱錐形光纖透鏡
  (c)偏位移3.4 µm 之不對稱錐形光纖透鏡旋
轉90o 側視圖。------------------------------------------------ 64
圖3.11 軸向對稱錐形光纖透鏡之中心與光纖軸重合。---- 65
圖3.12 光纖透鏡曲率半徑8 至10 µm 實驗值之耦光。
效率與偏位移關係,與曲率半徑9 µm 模擬
值之耦光效率與偏位移關係之比較。----------------- 65
圖3.13 錐形雙曲線光纖透鏡曲率半徑之橫向偏位移
對耦合效率的敏感性
(a) 9~14 µm (b)14.1~20 µm 及(c)21~26 µm。------- 66
圖3.14 光纖透鏡的清潔步驟會影響耦合效率
(a)利用酒精及(b)利用丙酮清潔。---------------------- 67
圖3.15 高斯分佈FWHM 及1/e2 之量測。---------------------- 69
圖3.16 遠場(Far field)量測示意圖。------------------------------- 71
圖3.17 錐形雙曲線光纖透鏡之遠場強度分佈。-------------- 72
(a)平端單模光纖及透鏡偏位移為
(b)1.2 µm,(c)2.8 µm,(d)8.7 µm
之遠場強度分佈。
圖3.18 錐形雙曲線光纖透鏡曲線描繪。------------------------ 75
圖3.19 從圖4.11 透鏡尖端放大的影像
所建立的模擬雙曲線。-------------------------------------- 76
圖3.20 水平遠場發散角為20°時,耦光效率與雷射
遠場發散角寬高比之對應關係。------------------------ 78
圖3.21 錐形雙曲線與半球形光纖透鏡之比較。
(a)錐形雙曲線光纖透鏡,Rl =9.4 µm
  (b)半球形光纖透鏡,Rl =9.9 µm-------------------------- 80
圖3.22 (a)半球形光纖透鏡與(b)錐形雙曲線光纖透鏡
光程路徑之比較。--------------------------------------------- 82
圖3.23 錐形雙曲線與半球形光纖透鏡,在波長
1.55 µm 之正規化光程差之像差比較。--------------- 83
圖3.24 錐形雙曲線與半球形
光纖透鏡耦光效率之比較。------------------------------- 83
圖4.1 光纖透鏡耦光架構。------------------------------------------ 91
圖4.2 光纖透鏡之耦光效率(η)與橫向對準容差度
(Lateral alignment tolerance)
參考文獻 References
第一章
[1] E. Brinkmayer, W. Brennecke, M. Zurn, and R. Ulrich, “Fiber Bragg reflector for mode selection and line- narrowing of injection laser,”
Electron. Lett., vol. 22, pp. 134–135, 1986.
[2] D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A., Fatah, and K. H.Cameron, “Narrow line semiconductor laser using fiber grating,”Electron. Lett., vol. 27, pp. 1115–1116, 1991.
[3] P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, and H. M. Presby, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett., vol. 64, pp. 2634–2636, 1994.
[4] F. N. Timofeev, P. Bayvel, L. Reekie, J. Tucknott, J. E. Midwinter, and D. N. Payne, “Spectral characteristics of a reduced cavity singlemode
semiconductor fiber grating laser for applications in dense WDM systems,” in Proc. 21st European Conf. Optic. Commun. (ECOC’95),Brussels, Belgium, paper Tu.P.26, pp. 477–480, 1995.
[5] P. A. Morton, V. Mizrahi, S. G. Kosinski, L. F. Mollenauer and T.Tanbunek, “Hybrid soliton pulse source with fiber external cavity and Bragg reflector,” Electron. Lett., vol. 28, pp. 561–562, 1992.
[6] R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback laser,” IEEE J. Lightwave Technol., vol. 4,pp. 1655–1661, 1986.
[7] C. R. Giles, T. Erdogan, and V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon. Technol. Lett., vol. 6,
pp. 907–909, 1994.
[8] B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. M.
Demayo, “Wavelength and intensity stabilization of 980 nm diode lasers coupled to fiber Bragg gratings,” Electron. Lett., vol. 30, pp. 2147–2148,1994.
第二章
[1] K. O. Hill, Y. Fujii, D. C. Johnson, and B.S. Kawasaki, “ Photosensitivity
in optical fiber waveguides: application to reflection filter fabribcation,”
Appl. Phys. Lett., vol. 32, pp. 647-649, 1978.
[2] T. Erdogan, “ Fiber grating spectra,” IEEE J. Lightwave Technol., vol. 15,
no. 8, pp. 1277~1294, 1997.
[3] I. Riant, “UV-photoinduced fiber gratings for gain equalization,” Opt.
Fiber Technol., no. 8, pp. 171-194, 2002.
[4] M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E.
Sipe, “Long-period fiber gratings as band-rejection filter,” J. Lightwave
Technol., no.14, pp. 58-65, 1996.
[5] P. J. Lemaire, R. M. Atkins, V. Mizarahi, W. A. Reed, “High pressure H2
loading as a technique for achieving ultrahigh UV photosensitivity and
thermal sensitivity in GeO2 doped optical fibres,” Electron Lett., vol. 29
no. 13, pp. 1191-1193, 1993.
[6] R. M. Atkins, P. J. Lemaire, T. Erdogn, V. Mizrahi, “Mechanisms of
enhanced UV photosensitivity via hydrogen loading in germanosilicate
glasses,” Electron Lett., vol. 29, no. 14 , pp. 1234-1235, 1993.
[7] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg
gratings fabricated in monomode photosensitive optical fiber by UV
exposure through a phase mask,” Appl. Phys Lett. vol. 62, pp. 1035-1037,
1993.
[8] G. Metz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in
optical fiber by a transverse holographic method,” Opt. Lett. vol. 14, pp.
823-825, 1989.
[9] A. Othonos, X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonic Tech. Lett., vol. 7, no. 10, pp.1183-1185, 1995.
[10] H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys., vol.
78, no. 5, pp. 2940–2945, 1995.
[11] H. Kogelink, “Coupling and conversion coefficients for optical modes in quasioptics,” Microwave Research Institute Symposia Series, New York Polytechnic Press, 1964, vol. 14, pp. 333-347.
[12] J. Mork, B.Tromborg,and .L.Christiansen, "Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron., vol. 24, pp. 123-133,1988.
[13] K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentschler “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers”, Appl. Phys. Lett. vol. 42(1), pp. 6~8, 1983.
[14] B. Tromborg, J. Osmundsen and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,’ IEEE J. Quantum Electron.,
QE-20, pp. 1023-1032, 1984.
[15] T. Lee, C. A. Burrus, J. A. Copeland, and A. G. Dental “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single
-longitudinal-mode power on cavity length,” IEEE J. Quantum Electronics, QE-18, no. 7, pp.1101~1112, 1982.
[16] K. Petermann, “Laser Diode Modulation and Noise,” Kluwer Academic Publishers, MA, Chap. 9, 1988.
[17] C. W. and D. Kincaid. “Numerical Mathematics and Computing,” Cole Publishing Company, Montery, CA, Chap. 8, 1994.
[18] B. Hillerich, “Shape analysis and coupling loss of microlenses on singlemode fiber tips,” Applied Optics, vol. 27, no.15, pp. 3102-3106,
1988.
[19] J. M. Senior, “Optical fiber communications: principles and practice,”Prentice-Hall International Series in Optoelectronics, UK,1985.
[20] R. Lang, ,and K. Kobayashi, “External optical feedback effects on
semiconductor injection laser properties,” IEEE J. Quantum Electron.,vol. QE-16, pp. 347-355, 1980.
[21] J. Sigg, “Effects of optical feedback on the light-current characteristicsof semiconductor lasers,” IEEE J. Quantum Electron., vol. 29, no. 5, pp.1262-1270, 1993.
[22] K. Petermann, “Laser Diode Modulation and Noise,” Kluwer Academic Publishers, MA, Chap. 2, 1988.
[23] M. Ettengerg, Sommers, H. S. Kressel, H. Lockwood, H. F. “ Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett.,vol.18, (12), pp.
571-573, 1971.
[24] J. M. Hammer, “Closed form theory of multicavity reflectors and the output power of external cavity diode lasers”, IEEE J. Quantum
Electron., vol. QE-20, (11), pp. 1252-1259, 1984.
[25] K. Kallimani., K.J. O’mahony “ Calculation of optical power emitted from a fiber grating laser,” IEE Pro-optoelectron ,vol. 145, no. 6, pp.
319-324, 1998.
[26] A. Olsson, and C.L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron.,
vol. QE-17, pp. 1320-1323, 1981.
[27] L. Goldberg, H.F. Taylor, A. Dandridge, J.F. Weller, and R.O. Miles,“Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron., vol. QE-18, pp. 555-564, 1982.
[28] V. Annovazzi-Lodi, S. Merlo and S. Moroni, “Power efficiency of a semiconductor laser with an external cavity,” J. Optical Quantum Electron., vol. 32, pp. 1343-1350, 2000.
第三章
[1] I. Ladany, “Laser to single-mode fiber coupling in laboratory,” Appl. Opt.vol. 32, pp. 3233-3238, June 1993.
[2] A. R. Mickelson, N. R. Basavanhally, and Y. C. Lee, “Optoelectronic packaging,” John Wiley & Sons, 1997, ch.4.
[3] S.Y. Huang, C.E.Gaebe, K.A. Miller, G.T. Wiand, and T. Stakelon,“High coupling optical design for laser diodes with large aspect ratio,”IEEE Trans. Adv. Packag., vol. 23, pp. 165-169, May 2000.
[4] C. Lin, “Optoelectronic technology and lightwave communications systems,” New York: Van Nostrant Reinhold, ch. 7, 1989.
[5] Lasertron Data Sheets, Lasertron Inc., Bedford, MA (2002).
[6] SDL Data Sheets, SDL Inc., San Jose, CA (2002).
[7] K. S. Mobarhan, S. Jang, and R. Heyler, “Laser diode packaging technology: 980 nm EDFA pump lasers for telecommunication
applications,” Application Note, no. 3, pp. 1-7, Newport Corp., CA,2002.
[8] B. Hillerich and J. Guttmann, “Deterioration of taper lens performance due to taper asymmetry,” IEEE J. Lightwave Technol., vol. 7, pp. 99-104,
Jan. 1989.
[9] K. Mathyssek, J. Woittmann, and R. Keil, “Fabrication and investigation of drawn fiber tapers with spherical microlenses,” J. Opt. Commun., vol.6, pp.142-146, May 1985.
[10] W. H. Cheng, C. S. Wang, and C. J. Hwang, “Highly efficient power coupling between GaAs lasers and tapered-hemispherical-end multimode fibers,” Appl. Opt., vol. 19, pp. 409-412, 1982.
[11] H. Izadpanah and L. A. Reith, “Microlens fabrication technique for an efficient laser/single-mode fiber coupling,” SPIE, vol. 836, pp. 306-315,1987.
[12] H. M. Yang, D. C. Jou, M. H. Chen, S. H. Wu, and W. H. Cheng, “An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging,” J. Electron. Mater., vol. 30, pp. 271-274,March 2001.
[13] C. A. Edwards, H. M. Presby, and C. Dragone, “Ideal microlenses for laser to fiber coupling,” IEEE J. Lightwave Technol., vol. 11, pp.
252-257, Feb. 1993.
[14] C. A. Brackett, “On the efficiency of coupling light from stripe-geometry GaAs lasers into multimode optical fibers,” J. Appl.Phys. vol. 45, no. 6, pp. 2636-2637, 1974.
[15] D. W. Peterman, J. M. Fleischer, D. C. Swain, “Beam Profiling Aids Fiber Optics Manufacturing,” Photonics Spectra 36, 2, pp.72-77,February 2002.
[16] MicronViewer 7290A, Laser Beam Profiling, Electrophysics Corp.Fairfield, New Jersey.
[17] R. A. Modavis and T. W. Webb, “Anamorphic microlens for laser diode to single-mode fiber coupling,” IEEE Photon., Technol. Lett., vol. 7, pp.798-800, July 1995.
[18] J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA,McGraw-Hill, Ch. 4-5, 1968.
[19] V. S. Shah, L. Curtis. R. S. Vodhanel, D. Bour, and W. C. Yang,“Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface,” IEEE J.Lightwave Technol., vol. 8, pp. 1318-1313, Sept. 1990.
[20] A. Yariv, “Optical Electronics in Modern Communications,” fifth edition, Oxford Univ. Press, pp. 52-53, 1996.
[21] H. Kogelink, “Coupling and conversion coefficients for optical modes in quasioptics,” Microwave Research Institute Symposia Series, New
York Polytechnic Press, vol. 14, pp. 333-347, 1964.
[22] H. M. Presby and C. A. Edwards, “Near 100% efficient fiber microlenses,” Electro. Lett. vol. 28, no. 6, pp. 582-584, Mar. 1992.
第四章
[1] D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, and K. H.
Cameron, “Narrow line semiconductor laser using fibre grating,”
Electron. Lett., vol. 27, pp. 1115-1116, 1991.
[2] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.vol. QE-16, pp. 347-355, 1980.
[3] R. J. Campbell, J. R. Armitage, G. Sherlock, D. L. Williams, R. Payne,M. Robertson, and R. Wyatt, “Wavelength stable uncooled fibre grating
semiconductor laser for use in all optical WDM access network,”Electron. Lett., vol. 32, pp. 119-120, 1996.
[4] H. Bissessur, C. Caraglia, B. Thedrez, J. -M. Rainsant, and I. Riant,“Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks,” IEEE Photon. Technol. Lett., vol. 11, pp. 1304-1306, 1999.
[5] F. N. Timofeev, P. Bayvel, V. Mikhailov, O. A. Lavrova, R. Wyatt, R.Kashyap, M. Robertson and J. E. Midwinter “2.5 Gbit/s directly-modulated fiber grating laser for WDM networks,” Electron. Lett., vol.
33, pp.1406-1407, 1997.
[6] P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H.M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A.M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett., vol. 64, pp.
2634-2636, 1994.
[7] J. Archambault and S. G. Grubb “Fiber gratings in lasers and amplifiers,”IEEE J. Lightwave Technol., vol.15, pp. 1378-1390, 1997.
[8] V. Annovazzi-Lodi, S. Merlo and S. Moroni, “Power efficiency of a semiconductor laser with an external cavity,” Optical and Quantum Electronics, vol. 32, pp 1343-1350, 2000.
[9] K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, and S. Suga, “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” IEEE J. Lightwave Technol., vol. 13,
pp. 1736-1744, 1995.
[10] H. M. Yang, D. C. Jou, M. H. Chen, S. H. Wu, and W. H. Cheng, “An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging,” J. Electron. Mater., vol. 30, pp. 271-274,2001.
[11] FiberCore Jena AG, specification of photosensitive optical fiber, 2003
[12] H. Izadpanah and L. A. Reith, “Microlens fabrication technique for an efficient laser/single-mode fiber coupling,” SPIE, vol. 836, pp. 306-309,1987.
[13] C. A. Edwards, H. M. Presby,and C. Dragone, “Ideal microlenses for laser to fiber coupling,” IEEE J. Lightwave Technol., vol. 11, pp.252-255, 1993.
[14] W. H. Cheng, C. S. Wang, and C. J. Hwang, “Highly efficient powercoupling between GaAs lasers and tapered-hemispherical-end multimode fibers,” Appl. Opt., vol. 19, pp. 409-411, 1982.
[15] Sacher Lasertechnik Data Sheets, Marburg/Lahn, Germany, 2002.
[16] K. Petermann, Laser diode modulation and noise, Kluwer Academic Publishers, MA, Ch. 9, 1988.
[17] Jakob Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron.,vol. 29, pp. 1262~1270, 1993.
[18] T. Erdogan, J. E. Sipe, “ Tilted fiber gratings,” J. Opt. Soc. Amer. A, vol.13, pp. 296-313, 1996.
[19] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J.Quantum Electron., vol. QE-9, pp. 919~933, 1973.
[20] V. Mizrahi and J. E. Sipe, “ Optical properties of photosentive fiber phase gratings,” IEEE J. Lightwave Technol., vol. 11, pp. 1513-1517,1993.
[21] Cheney W. and D. Kincaid, Numerical mathematics and computing,Cole Publishing Company, Montery, CA, ch. 8, 1994.
[22] T. Lee, Charles A. Burrus, John A. Copeland, and Andrew G. Dental“Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J.
Quantum Electron., vol. QE-18, pp.1101~1112, 1982.
[23] K. J. Ebeling, L. A. Coldren, B. I. Miller, ands J.A. Rentschler“Single-mode operation of coupled-cavity GaInAsP/InP semi-conductor lasers,” Appl. Phys. Lett. vol. 42, pp. 6~8, 1983.
第五章
[1] F. N. Timofeev, G. S. Simin, P. Bayvel, R. Kashyap et al, “Experimental and theoretical study of high temperature-stability and low-chirp 1.55µm semiconductor laser with an external fifer grating,” Fiber and
Integrated Optics, 19, pp. 327-353, 2000.
[2] K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, and S. Suga, “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” IEEE J. Lightwave Technol., vol. 13,pp. 1736-1744, 1995.
[3] H. M. Yang, D. C. Jou, M. H. Chen, S. H. Wu, and W. H. Cheng, “An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging,” J. Electron. Mater., vol. 30, pp. 271-274,2001.
[4] V. Mizrahi and J. E. Sipe, “ Optical properties of photosentive fiber phase gratings,” IEEE J. Lightwave Technol., vol. 11, pp. 1513-1517,1993.
[5] T. Erdogan, J. E. Sipe, “ Tilted fiber gratings,” J. Opt. Soc. Amer. A,vol. 13, pp. 296-313, 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.82.167
論文開放下載的時間是 校外不公開

Your IP address is 13.59.82.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code