Responsive image
博碩士論文 etd-0602113-053848 詳細資訊
Title page for etd-0602113-053848
論文名稱
Title
混凝劑去除原水濁度之效能評估
Evaluation of coagulants for turbidity removal from raw water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-11
繳交日期
Date of Submission
2013-07-02
關鍵字
Keywords
混凝劑、高濁度原水、混凝、底泥、顆粒粒徑
high turbidity raw water, coagulation, sediment, coagulant, Particle size
統計
Statistics
本論文已被瀏覽 5639 次,被下載 0
The thesis/dissertation has been browsed 5639 times, has been downloaded 0 times.
中文摘要
原水中濁度是由水中微細顆粒包含淤泥、黏粒、微生物及細微有機物等所造成,在高濁度下可影響淨水廠的操作負荷。若梅雨季或颱風發生,暴雨與大量泥沙進入河川 原水濁度甚至可急遽上升達數千至上萬濁度單位(NTU),在長時間降雨下,常導致淨水廠需減量或暫停供水,造成民眾生活不便及經濟上損失。本研究目的是以台灣南部最重要的水源高屏溪為對象,探討原水中底泥粒徑分布及其沉降效果,並進一步分析水中濁度與懸浮固體物之相關性及三種化學混凝劑對高濁度去除效率之影響。
底泥粒徑分布調查結果顯示,高屏溪底泥粒徑小於0.044 mm以下佔45%。在配製高濁度人工原水時,為了瞭解不同粒徑大小之底泥顆粒對原水中濁度值的影響,故進一步選出粒徑介於0.074 mm-0.045 mm、0.044 mm-0.038 mm與小於0.037 mm等三種底泥顆粒進行試驗,實驗將上述不同大小的底泥顆粒各取1 g調配出懸浮固體濃度為1000 mg/L之人工原水,不加混凝劑攪拌2小時後,至1 L燒杯取出混合均勻之人工原水,經量測後濁度值依粒徑大至小分別為201 NTU、1210 NTU及1330 NTU,顯示粒徑範圍為0.074 mm-0.045 mm之人工原水對濁度值影響較小,與其他兩組試驗之濁度值差異高達六倍之多。基於底泥粒徑分布分析與濁度配置實驗之結果,後續所有實驗將選用粒徑小於0.044 mm之顆粒底泥作為配置高濁度人工原水。
在濁度對懸浮固體物濃度之相關性實驗結果,兩者關係式經由回歸得出一次線性方程式y=0.7x-228.53,R2=0.99,方程式中y是濁度(NTU),x是SS(mg/L),顯示兩者具有高度相關性,標準偏差隨懸浮固體物濃度增加而有變高的趨勢,不同懸浮固體濃度物濃度對應出之變異係數皆可維持在10%以下,故往後實驗將以此方程式作為配置高濁度水樣之參考依據,並由方程式可推算出每增加1000 mg/L之懸浮固體濃度,約可增加474 NTU濁度。
在比較三種不同化學混凝劑與劑量對人工原水去除高濁度之影響,PAC最佳加藥量範圍為2 mg/L至6 mg/L之間,當20 min靜置時間即可將不同高濁度之原水處理至30 NTU以下。硫酸鋁最佳加藥量範圍為2 mg/L至6mg/L,當靜置時間在30 min時,可將不同高濁度之原水處理至20 NTU左右;硫酸鋁對原水鹼度的消耗量略高於PAC,故沉降後上澄液pH較低。氯化鐵最佳加藥量範圍為6 mg/L至10 mg/L,此結果皆比硫酸鋁與PAC的加藥量高。
Abstract
The turbidity of raw water is caused of fine particles which are including sediments, clay, microorganism, and organic matters. In high turbidity levels the operational loading of water treatment plants was found. Particularly during the season of heavy raining and storm, the turbidity level in raw water can be further increased up to more than thousands of NTU. With an extended period under this circumstance, the source water with high turbidity becomes difficultly to treat. This result forced water treatment plants reducing or temporarily stopping their water supplies, and caused inconvenience to people’s living and economic losses. The objective of this research is to study the characteristics of sediments and their settling performance in Kao-Ping river. Also, the correlation between the turbidity level and concentration of suspended solid in raw water as well as the effect on removal efficiency of high turbidity from raw water using three different coagulant are discussed.
Using analysis of the particle size distribution from the sediment of river showed the results of particle sizes smaller than 0.044 mm was account for 45% of the sediments in Kao-Ping River. In preparing the raw water with high turbidity contents, we were to understand the effect of various particle size on the level of turbidity in artificial raw water. The 45% of sediments were further divided into three distinct groups(0.074-0.044 mm, 0.044-0.034 mm, and smaller than 0.034 mm), and were used to prepare three kinds of artificial raw water containing 1000 mg/L of suspended solid stirring for two hours for measuring the turbidity level. The results showed that the turbidities were 201, 1210 and1330 NTU(noted the larger, middle-range, and fine particles) respectively. The preparing turbidity of the large particles (0.074-0.044 mm)was higher than another two group particles up to six times difference. From the results using the analysis of particle size distributions and the prepare of turbidity tests, the sediments that consist of particles smaller than 0.044 mm is selected by us in following tests in this work.
The result of correlation between the turbidity and suspended solid concentrations showed the standard deviations increased with increasing the concentration of suspended solid. More importantly, the standard deviations corresponding to different suspended solids concentrations were consistently below 10%. The function of correlation is obstained as a linear equation of y=0.7x-228.53 with a R² value of 0.99. Where y is turbidity level and x is concentration of suspended solid. This equation shows a high correlation between the turbidity and suspended solid concentration and was used to prepare artificial raw water with high turbidities. By using this equation that the turbidity is about 474 NTU when 1000 mg/L of suspended solids is added in water sample in all test.
As to compare the three different coagulants and dosages in removal of turbidity in artificial raw water, the optimal dosage of PAC is ranging from 2 to 6 mg/L, and the high turbidity in raw water were treated under 30 NTU for a settling time of 20 minutes. The optimal dosage of Al2(SO4)3 was ranging from 2 to 6 mg/L, and the residual turbidity of all artificial raw water as found lowered than 20 NTU when settling time was at 30 minutes. We found the alkalinity depletion at the optimal dosage of coagulants, using Al2(SO4)3 consumed slightly more alkalinity as well as lower pH than PAC did. The optimal dosage of FeCl3 was ranging from 6 to 10 mg/L, results showed all higher than dosage of Al2(SO4)3 and PAC.
目次 Table of Contents
謝誌 i
摘要 iii
Abstract v
目錄 vii
圖次 x
表次 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 5
2-1 高濁度原水 5
2-1-1 濁度原水來源與性質 6
2-1-2 水源濁度異常因應對策 8
2-1-3 高濁度原水之處理方式 10
2-1-4 高濁度原水對淨水單元之影響 11
2-2 高屏溪背景資料 13
2-3 混凝 16
2-3-1 混凝理論 17
2-3-2 混凝機制 21
2-3-3 混凝作用影響因素 24
2-3-4 混凝劑 28
2-3-5 鋁系混凝劑可能對人體造成的影響 33
2-4 水體中NOM分類與性質 35
2-4-1 自然有機物質對淨水工程之影響 36
第三章 研究方法 39
3-1 實驗流程規劃 39
3-2 實驗材料 40
3-2-1 人工原水之配置 40
3-2-2 實驗藥品 43
3-3 實驗方法 44
3-3-1 懸浮固體物與濁度水樣配置實驗 44
3-3-2 化學混凝單元試驗 46
3-4 水樣分析檢測方法 48
3-4-1 pH與水溫 49
3-4-2 導電度 49
3-4-3 總溶解固體物 50
3-4-4 氨氮 51
3-4-5 濁度 52
3-4-6 總硬度 53
3-4-7 鹼度 54
3-2-8 UV254 55
3-2-9 鋁離子 56
第四章 結果與討論 59
4-1 高屏溪原水水質基本現況 59
4-2 高屏溪之水場原水底泥粒徑分布 63
4-2-1 底泥粒徑沉降情形 65
4-3 濁度與懸浮固體物濃度之相關性 71
4-3-1 濁度與懸浮固體物之關係 72
4-3-2 濁度與懸浮固體物之線性關係 74
4-4 不同混凝劑與劑量對人工原水濁度去除之影響 75
4-4-1 PAC混凝效果 76
4-4-2 硫酸鋁混凝效果 82
4-4-3 氯化鐵混凝效果 87
第五章 結論與建議 93
5-1 結論 93
5-2 建議 94
參考文獻 95
參考文獻 References
Amirtharagjah, A. and O'Melia, C. R. (1990) “Coagulation and Flocculation” AWWA , Chap 6.
Amirtharajah, A. and Mills, K. M. (1982) “Rapid-Mix Design for Mechanismsof Alum Coagulation” Journal American Water Works Association, 74(4), 210-216.
AWWARF (1993a) “Characterization of Natural Organic Matter and ItsRelationship to Treatability” AWWA Research Foundation and AmericanWater Works Association, Denver, CO.
Akitt, J. W. and Farthing, A. (1981) “Aluminum-27 nuclear magnetic resonance aluminum metal” J. Chem. Soc. Dalton. Trans, pp. 1624.
Adin, L. Dean, F. Bonner, A. and Huberman, Z. (2002) “Characterization and Destabilization of Spent Filter Backwash Water Particles” Water Supply, 2(2), 115-122.
Bolto, B., Abbt-Braun, D., Dixon, R., Eldridge, F., Frimmel, S., Hesse, S. and Toifl, M. (1999) “Experimental Evaluation of Cationic Polyelectrolytes For Removing Natural Organic Matter from Water” Water Science and Technology, 40(9), 71-79.
Bolto, B., Dixon, D., Eldridge, R. and King, S. (2002) “Removal of THM Precursors by Coagulation or Ion Exchange” Water Research 36, 5066-5073.
Bottero, J. Y., Flessinger, J. M. and Poirier, J. E. (1980) “Studies of hydrolyzed aluminum chloride solutions. Ι. Nature of aluminum species and composition of aqueous solution” J. Phys. Chem, Vol. 84, No. 22, pp. 2933.
Bettero, J. Y., Axelos, M., Tchoubar, D., Cases, J. M., Fripiat, J. J. and Fiessinger, F. (1987) “Mechanism of formation of aluminum trihydroxide from keggin Al13 polymers” J. Colloid Interface Sci, 117, 47-57.
Committee R. (1979) “Organics Removal by Coagulation:A Review and Research Needs” Jour. AWWA, Vol. 71, No. 10, pp.588-603.
Christman, R. F., Norwood, D. L., Millington, D. S., Johnson, J. D., and Stevens, A. A. (1983) “Identity and yields of major halogenated products of aquatic fulvic acid chlorination” Environmental Science and Technology, 17(10), 625-628.
Carns, K. E. and Parker, J. D. (1985) “Using Polymers with Direct Filtration” J. AWWA, Vol. 77, No. 3, pp. 44-49.
Cotton, A. P., Ellis, K. V. and Khowaja, M. A. (1994) “Some options for water treatment in disaster situations” J. Water SRT - Aqua, 43(6), 303-310.
Dentel, S. K. (1991) “Coagulation Control in Water Treatment” Critical Reviews in Environmental Control, Vol. 27, No. 1, pp. 41-135.
Dentel, S. K. (1988) “Application of the precipitation-Charge Neutralization Model of Coagulation” Environ. Sci. Technol, Vol. 22, No. 7, pp. 825-832.
Driscoll C. T. (1980) “Effects of Aluminum speciation on Fish in dilute acidified waters” Natural, 284, pp.161.
Ebie, K. and Amano, S. (1993) “Fundamental Behavior of humic acid and kaolin in direct sand filtration of simulated natural surface water” Wat. Sci. Tech, 27(11), 61-70.
Freeman R. A. (1973) “Toxicity of aluminum hydroxide complexes in neutral and basic media to Rainbow Trout” Transactions of American Fish Sociaty, 102, pp.152, 1973.
Fearing, D. A., Goslan, E. H., Banks, J., Wilson, D., Hillis, P., Campbell, A. T. and Parsons, S. A. (2004) “Staged coagulation for treatment of refractory organics” J. Environ. Eng, ASCE, 130(9), 975-982.
Gopal, K., Tripathy, S. S., Bersillon, J. L. and Dubey, S. P. (2007) “Chlorination byproducts, their toxicodynamics and removal from drinking water” Journal of Hazardous Materials, 140(1-2), 1-6.
Graham, N. J. D., Wardlaw, R., Perry J. and Jiang, Q. (1998) “The significance of algae as trihalomethane precursors” Wat. Sci. Tech, 37(2), pp. 83-89.
Gregor, J. E., Nokes, C. J. and Fenton, E. (1997) “Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation” Wat. Res, 31(12), 2949-2958.
Gao, B. Y., Chu, T. B., Yue, Q. Y., Wang, B. J. and Wang, S. G. (2005) “Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content” Journal of Environmental Management, 76, 143-147.
Hiemenz, P. C. and Rajagopalan, R. (1997) “Principles of Colloid and Surface Chemistry” Marcel Decker, New York, USA.
Johnson, P. N. and Amirtharajah, A. (1983) “Ferric Chloride and Alum as Single and Dual Coagulants” Journal American Water Works Association, 75(5): 232-239.
Jacangelo, J. G., Aieta, E. M., Carns, K. E., Cummings, E. W. and Mallevialle J. (1989) “Assessing hollow-fiber ultrafiltration for particulate removal” J. AWWA, 89.
Jeffcoat, W. B. and Singley, J. E. (1975) “The Effect of Alum Concentration and Chemical-Addition Times on Coagulation” J. AWWA, Vol.67, No. 4, pp. 177.
Johnson, P. N. and Amirtharajah, A. (1983) “Ferric Chloride and Alum as Single and Dual Coagulants” Journal American Water Works Association, 75(5): 232-239.

Korshin, G. V., Ferguson J. F. and Lancaster A. N. (2000) “Influence of natural organic matter on the corrosion of leaded brass in potable water” Corrosion Science, 42(1), pp. 53-66.
Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J. E. (2002) “Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation” Water Research, pp:3834-3848.
Kwon, S. B., Ahn, H. W., Ahn, C. J. and Wang, C. K. (2004) “A Case Study of Dissolved Air Flotation for Seasonal High Turbidity Water in Korea” Water Science and Technology, Vol.50, No.12, pp.245-253.
Kawamura, S. (1996) “Optimization of Basic Water of Process-Design and Operation : Sedimentation and Filtration” J. Water SRT-Aqua, Vol. 45, No. 3, pp. 130-142.
Kam, S. K. and Gregory, J. (1999) “Charge determination of synthetic cationic polyelectrolytes by colloid titration” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 159(1): 165-179.
Lin J. C. T., Chen J. J., Lee D. J. and Guo W. M. (2012) “Treating high-turbidity storm water by coagulation-membrane process” Journal of the Taiwan Institute of Chemical Engineers, 43,291-294.
Liu, H. J., Hu, C. Z. and Qu, J. H. (2011) “Coagulation behaviour of polyaluminium chloride with different aluminium speciation” Wat. Sci. Tech. 53(7), 95-102.
Lin L. and Phillip C. (2003) “Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water” Environmental Science and Technology, pgs. 2920-2928.
Lee, D. J. and Hsu, Y. H. (1994) “Fast Freeze/thaw treatment on Excess Activated Sludges : Floc Structure and sludge Dewaterability” Environmental Science and technology, Vol. 28, pp. 1441-1449.
Li, T., Zhu, Z., Wang, D. S., Yao, C. H. and Tang, H. X. (2006) “Characterization of floc size, strength and structure under various coagulation mechanisms” Pow. Tech. 168, 104-110.
Lee, J. F., Liao, P. M., Tseng, D. H. and Wen, P. T. (1998) “Behavior of Organic Polymers in Drinking Water Purification” Chemosphere, Vol. 37, No. 6, pp. 1045.
Lartiges, B. S., Bottero, J. Y., Democrate, C. and Coupl, J. F. (1995) “Optimising flocculant demand by following floc size distribution” J. Water SRT - Aqua, 44(5), 219-223.
Marhaba T. F. and Washington M. B. (1998) “Drinking water disinfection and byproducts: history and current practice, Advances in Environmental Research” 2(1), pp. 103-115.
McLachlan, D. R. C. (1995) “Aluminium and the Risk for Alzheimer’s Disease, Enviromentrics” Vol. 6,pp. 223-275.
Monk, R. G. D. and Trussell, R. R. (1991) “Design of mixers for water treatment plants: rapid mixing and flocculators. Mixing in coagulation and flocculation” AWWA Research Foundation, Denver, Colorado.
Marhaba, T. F. and Pipada, N. S. (2000) “Coagulation: Effectiveness in removing dissolved organic matter fractions” Environ. Eng. Sci., 17(2), 107-115.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D. (1999) “Organic by-products of drinking water chlorination: a review” Global Nest: Int J, 1(3), 143-156.
Noblet, J., Schweitzer, L., Ibrahim, E., Stolzenbach, K. D., Zhou, L. and Suffet, I. H. (1999) “Evaluation of a taste and odor incident on the ohio river” Elsevier Ltd, Paris, France 185-193.
Narkis, N. and Rebhun, M. (1975) “The Mechanism of Flocculation Processes in the Presence of Humic Substances” J. AWWA, Vol. 67, No. 2, pp. 101.
Packham, R. F. (1965) “Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts” Jour. of Colloid Sci, Vol. 20, No. 1, pp. 81-92.
Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H. M. (2003) “Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 218(1-3): 47-57.
Park, S. M., Jun, H. B., Jung, M. S. and Koo, H. M. (2006) “Effects of velocity gradient and mixing time on particle growth in a rapid mixing tank” Wat. Sci. Tech. 53(7), 95-102.
Ruden, C. (2004) “Acrylamide and cancer risk - expert risk assessments and the public debate” Food and Chemical Toxicology, 42(3): 335-349.
Roussy, J., Van Vooren, M. and Guibal, E. (2005) “Influence of chitosan characteristics on coagulation and flocculation of organic suspensions” Journal of Applied Polymer Science, 98(5): 2070-2079.
Reynolds, T. D. and Richards, P. A. (1996) “Coagulation and flocculation. Unit Operation and Processes in Environmental Engineering” PWS Publish Company Press, 166-218.
Sadeddin, K., Naser, A. and Firas, A. (2011) “Removal of turbidity and suspended solids by electro-coagulation to improve feed water quality of reverse osmosis plant” Desalination, 268, 204-207.
Shih, W. K. and Chiang, C. L. (1998) “Treatment of High Turbidity Water.Proceeding 4th International Workshop on Drinking Water” Water Research, 37, pp. 953-958.
Singer, P. C. (1999) “Humic substances as percursors for potentially harmful disinfection by-products” Wat. Sci. Tech, 40(9), pp. 25-30.
Stumm, W. and Morgan, J. J. (1981) “The Solid-Solution Interface” in Aquatic Chemistry, John Wiley & Sons, Inc, New York, pp.612-614.
Shi, B. Y. and Tang, H. X. (2006) “Preparation and characterization of organic polymer modified composite polyaluminum chloride” Journal of Environmental Sciences-China, 18(2): 214-220.
Selomulya, C., Bushell, G., Amal, R. and Waite, T. D. (2002) “Aggregation mechanisms of latex of different particle sizes in a controlled shear environment” Langmuir, 18(6), 1974-1984.
Thurman, E. M. (1985) “Organic Geochemistry of Nature Water, Martinus Nijhoff/Dr. W. Junk Publishers” Dordrecht,the Netherlands, 15-17.
Twort A. C., Ratnayaka, D. and Brandt M. J. (2000) “Water Supply. Arnold – IWA Publishing” Wat.Res, 34(12):3247-3257.
Tambo, N. and Watanabe, Y. (1979) “Physical charateristics of flocs-I. the floc density function and aluminum floc” Wat. Res, 13(5), 409-419.
Tambo, N. and Kamei, T. (1998) “Coagulation and flocculation on water quality matrix” Wat. Sci. Tech, 37(10), 31-41.
Van Benschoten, J. E. and Edzwald, J. K. (1990) “Measuring Aluminum During Water Treatment :Methodology and Application” J.AWWA, Vol. 82. No.3, pp.71-78.
Van der Kooij D. (1995) “Significance and assessment of the biological stability of drinking water” The Handbook of Environmental Chemistry. J. Hrubec, 5, ed, Springer-Verlag, Berlin, Germany. 89-102.
Villanueva, C. M., Kogevinas, M. and Grimalt, J. O. (2003) “Haliacetic acids and trihalomethanes in fished grinking waters from heterogeneous sources” Water Research, 37, pp. 953-958.
Vanbenschoten, J. E. and Edzwald, J. K. (1990) “Chemical Aspects of Coagulation Using Aluminum Salts .2. Coagulation of Fulvic-Acid Using Alum and Polyaluminum Chloride” Water Research, 24(12): 1527-1535.
Vrale, L. and Jordan, R. M. (1971) “Rapid mixing in water treatment” J. Am. Water Works Assoc. 63, 52-58.
Weber, W. J. (1972) “Physicochemical Processes for Water Quality Control.Wiley-Interscience Publication” New York, 24(12): 1527-1535.
Wang, D. S., Gregory, J. and Tang, H. X. (2008) “Mechanistic difference of coagulation of kaolin between PACl and cationic polyelectrolytes: A comparative study on zone 2 coagulation” Drying Technology, 26(8): 1060-1067.
Watanabe, Y., Kubo, K. and Sato, S. (1999) “Application of amphoteric polyelectrolytes for sludge dewatering” Langmuir, 15(12): 4157-4164.
Yu, X. and Somasundaran, P. (1996) “Role of polymer conformation in interparticle-bridging dominated flocculation” Journal of Colloid and Interface Science, 177(2): 283-287.
許志福,高屏溪原水濁度之探討,台灣省自來水公司,(2005)。
張煥獎,南化廠高濁度時混凝劑及助凝劑之應用,台灣省自來水公司,(2007)。
姚仁泰,過濾系統組合對原水濁度去除效能之研究,國立成功大學地球科學研究所碩士論文,(2007)。
汪憶君,不同無機鹽混凝劑搭配高分子凝集劑混凝處理高濁度原水之研究,國立成功大學環境工程學系碩士論文,(2011)。
翁韻雅,以高分子凝集劑處理高濁度原水之研究,國立成功大學環境工程學系碩士論文,(2003)。
林致立,集集攔河堰沉砂池水理及處理效能之研究,國立中興大學水土保持學系碩士論文,(2004)。
王翔生,加強混凝去除金門太湖原水天然有機物之探討,國立台灣大學環境工程學研究所碩士論文,(2007)。
翁敬傑,水庫減排淤策略對河川水質影響之研究,逢甲大學水利工程與資源保育學系碩士班碩士論文,(2011)。
張慧嫺,台灣地區飲用水中含鹵乙酸之分析與流佈調查,國立台灣大學公共衛生學院環境衛生研究所碩士論文,(2004)。
廖梓翔,不織布去除濁度及生物降解有機物探討,國立中山大學環境工程研究所碩士論文,(2011)。
黃永富,高分子凝聚劑處理淨水場高濁度原水成效之研究,國立中央大學環境工程研究所碩士論文,(2010)。
劉嘉宏,混凝劑種類對低濁度原水混凝影響之研究,國立成功大學環境工程學系碩士論文,(2002)。
林玉君,以混凝處理高濁度原水之研究,國立台灣科技大學化學工程系碩士論文,(2000)。
陳俞蓁,混凝對表水濁度去除之研究,國立成功大學環境工程學系碩士論文,(2002)。
李坤峰,飲用水處理程序二階段添加PACl 與污泥毯穩定度提昇之研究,元智大學化學工程學系碩士論文,(2001)。
洪仁陽、周珊珊、邵信、鄒文源、張王冠、張敏超,多孔性擔體濾除高濁度原水前處理之研究,第22 屆自來水研究發表會論文集,(2005)。
鄒文源、張王冠、洪仁陽、彭明鏡、陳誼彰、蕭碧蓮、周珊珊,高濁度原水不織布膜過濾技術評估,第22 屆自來水研究發表會論文集,(2005)。
高肇藩,給水工程(衛生工程。自來水篇), 編著者發行,(1978)。
高肇藩,給水工程,巨集榮堂圖書有限公司,(1990)。
行政院環境保護署,飲用水水質標準,民國八十七年二月四日環署毒字第000四四二八號訂定發布。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.84.228.68
論文開放下載的時間是 校外不公開

Your IP address is 3.84.228.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code