Responsive image
博碩士論文 etd-0602113-164637 詳細資訊
Title page for etd-0602113-164637
論文名稱
Title
使用接地面缺陷技術於毫米波頻段QFN封裝之設計
Design of Millimeter Wave QFN Package using Defected Ground Structure Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-07-02
關鍵字
Keywords
阻抗匹配、背板挖地結構傳輸線、帶狀鎊線、四方平面無引腳封裝
QFN, T-Line with a DGS, Ribbon-bond, Impedance Matching
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
本論文主要分為五個章節。
第一章首先介紹封裝的發展方向以及本論文的動機。
第二章為高頻封裝之探討與傳輸介面種類的介紹,主要介紹一些應用於高頻
封裝的互連技術,包括覆晶(Flip-Chip)封裝、微型化同軸線以及TSV (Through
Silicon Via)等等,並且同時簡述了這些封裝技術的優缺點以及使用於高頻上可能
會遇到的問題及解決方式。
第三章為毫米波頻段之四方平面無引腳封裝特性的萃取及訊號完整性分析,
首先對於圓形鎊線及帶狀鎊線進行一些探討,包括寄生效應以及集膚效應等等。
接著則是比較了圓形鎊線及帶狀鎊線應用於四方平面無引腳封裝上的傳輸特性,
同時也比較了不同打線方式對於傳輸特性的影響。而由於我們必須對載板的走線
及其它一些不需要的效應做去嵌化,因此對於我們所使用的去嵌化技術之精準度
也有做一探討。
第四章為應用背板挖地結構傳輸線於四方平面無引腳封裝結構上並使其頻寬
延伸之方法,首先介紹背板挖地結構傳輸線的一些特性,接著是將它實際應用到
封裝上進行匹配,使封裝的使用頻寬進一步的延伸。最後則是將其實現出來並進
行量測,量測證明,QFN 封裝在傳輸係數方面以-1.5dB 來看的話,其頻率點大約
座落在61.6 GHz,而在反射係數方面,若以-10dB 來看的話,則頻率點大約座落
在65.6 GHz。並且,若我們以S21的-1.5 dB來定義QFN封裝的使用頻寬的話,則
該QFN封裝的使用頻寬至少有61 GHz。
第五章為結論與未來工作。
Abstract
This thesis includes five chapters.
Chapter I, background and motivation in this thesis are introduced.
Chapter II addresses IC package characteristics and the interface between chip and
package at millimeter-wave frequencies. We review several advanced packages and
their interconnections processes, including Flip-chip, MicroCoax and TSV (Through
Silicon Via) etc. Also briefly described are advantages, disadvantages and technology
challenges of these packages at high frequencies.
Chapter III focuses on QFN (Quad Flatpack No-leads) package and its signal
integrity at millimeter-wave frequencies. First of at all, we investigated parasitic
inductance of wire-bond and its skin effect. Then, we compare the transmission
characteristics of Round-wire and Ribbon-wire in QFN package. We also compare
different bonding configurations and its impacts on transmission characteristic. Since
de-embedding are needed to analyze the discontinuities, they are introduced accordingly.
Chapter IV uses a defected ground structure (DGS) transmission line (T-Line) in
QFN’s structure to extend its operation bandwidth. To begin with, transmission line
with a DGS is studied. Then, we are using the transmission line - DGS to achieve best
transmission matching characteristics. Finally, we fabricated and validated our method
through measurement results. The measurement result shows of QFN package has S21
below -1.5 dB at 61.6 GHz and S11 better than -10 dB at 65.6 GHz. The QFN packages
can be operated up to 61 GHz.
Chapter V conclusions and future work are given.
目次 Table of Contents
誌謝 .................................................................................................................................. I
摘要 ................................................................................................................................. II
Abstract ........................................................................................................................... III
圖表目錄 ........................................................................................................................ VI
第一章緒論 .............................................................................................................. 1
1.1 研究背景與動機 .......................................................................................... 1
1.2 QFN封裝之介紹 ......................................................................................... 2
1.3 論文章節規劃 .............................................................................................. 4
第二章高頻封裝之探討與傳輸介面種類的介紹 .................................................. 5
2.1 前言 .............................................................................................................. 5
2.2 Liquid Crystal Polymer (LCP) Package ....................................................... 5
2.3 Flip-Chip ....................................................................................................... 8
2.4 MicroCoax之互連技術 ............................................................................. 10
2.5 Through Silicon Via (TSV) ........................................................................ 13
第三章毫米波頻段之QFN封裝特性萃取及訊號完整性分析 .......................... 20
3.1 前言 ............................................................................................................ 20
3.2 圓形鎊線及帶狀鎊線之寄生元件的萃取 ................................................ 20
3.2.1 圓形鎊線之模擬環境及模擬結果 ................................................ 21
3.2.2 帶狀鎊線之模擬環境及模擬結果 ................................................ 23
3.2.3 集膚效應 ........................................................................................ 25
3.3 PCB基板參數之萃取 ................................................................................ 28
3.3.1 萃取方式 ........................................................................................ 29
3.3.2 基板參數之萃取 ............................................................................ 31
3.3.3 模擬及量測結果 ............................................................................ 32
3.4 TLL (Through-Line-Line)去嵌化技術之探討 .......................................... 34
3.4.1 雙埠網路之分析 ............................................................................ 35
3.4.2 準確度探討 .................................................................................... 37
3.4.3 載板走線之萃取 ............................................................................ 41
3.5 QFN應用於毫米波頻段之特性探討 ....................................................... 43
3.5.1 迴流路徑之改善 ............................................................................ 44
3.5.2 圓形鎊線及帶狀鎊線之特性比較 ................................................ 50
3.5.3 實作及量測結果 ............................................................................ 53
第四章應用DGS於QFN封裝結構並使其頻寬延伸之方法 ............................. 57
4.1 前言 ............................................................................................................ 57
4.2 背板挖地結構傳輸線之特性 .................................................................... 58
4.3 應用背板挖地結構於QFN封裝上之探討 .............................................. 65
4.3.1 背板挖地結構之設計 .................................................................... 65
4.3.2 EM模擬之結果 ............................................................................. 71
4.4 實作及量測結果 ........................................................................................ 75
第五章結論與未來工作 ........................................................................................ 77
參考文獻 ........................................................................................................................ 79
參考文獻 References
[1] L. L. Yeap, "Meeting the assembly challenges in new semiconductor packaging trend," in Electronic Manufacturing Technology Symposium (IEMT), 2010 34th IEEE/CPMT International, 2010, pp. 1-5.
[2] M. Marcus and B. Pattan, "Millimeter wave propagation; spectrum management implications," Microwave Magazine, IEEE, vol. 6, pp. 54-62, 2005.
[3] K. Dong Gun and K. Joungho, "40-Gb/s Package Design Using Wire-Bonded
Plastic Ball Grid Array," IEEE Transactions on Advanced Packaging, vol. 31,
pp. 258-266, 2008.
[4] Richard Otte and Chris Pugh, "Special Tutorial Series: Fabricating Overmolded QFN Packages," The IC Packaging & Test Authority, Test, Assembly &
Packaging TIMES, vol. 2, no. 2, 2011.
[5] D. Thompson, et al., "Characterization of liquid crystal polymer (LCP) material
and transmission lines on LCP substrates from 30 to 110 GHz," IEEE
Transactions on Microwave Theory and Techniques, vol. 52, pp. 1343-1352,
2004.
[6] K. Aihara and P. Anh-Vu, "Development of Thin-Film Liquid Crystal Polymer
Surface Mount Packages for Ka-band Applications," Microwave Symposium
Digest, 2006. IEEE MTT-S International, 2006, pp. 956-959.
[7] M. J. Chen and S. A. Tabatabaei, "Broadband, Thin-Film, Liquid Crystal
Polymer Air-Cavity Quad Flat No-Lead (QFN) Package," Compound
Semiconductor Integrated Circuit Symposium, 2009. CISC 2009. Annual IEEE,
2009, pp. 1-4.
[8] W. Heinrich, "The flip-chip approach for millimeter wave packaging,"
Microwave Magazine, IEEE, vol. 6, pp. 36-45, 2005.
[9] Flip chip, http://en.wikipedia.org/wiki/Flip_chip
[10] W. Heinrich, et al., "Millimeter-wave characteristics of flip-chip interconnects
for multichip modules," IEEE Transactions on Microwave Theory and
Techniques, vol. 46, pp. 2264-2268, 1998.
[11] T. Kangasvieri, et al., "Low-Loss and Wideband Package Transitions for
Microwave and Millimeter-Wave MCMs," IEEE Transactions on Advanced
Packaging, vol. 31, pp. 170-181, 2008.
[12] T. Krems, et al., "Millimeter-wave performance of chip interconnections using
wire bonding and flip chip," Microwave Symposium Digest, 1996., IEEE MTT-S
International, 1996, pp. 247-250 vol. 1.
[13] U. R. Pfeiffer and A. Chandrasekhar, "Characterization of flip-chip
interconnects up to millimeter-wave frequencies based on a nondestructive in
situ approach," IEEE Transactions on Advanced Packaging, vol. 28, pp. 160-
167, 2005.
[14] W. Wei-Cheng, et al., "Design, Fabrication, and Characterization of Novel
Vertical Coaxial Transitions for Flip-Chip Interconnects," IEEE Transactions on
Advanced Packaging, vol. 32, pp. 362-371, 2009.
[15] Sean Cahill, Eric Sanjuan, & Lee Levine, "Development of 100+ GHz High-
Frequency MicroCoax Wirebonds", 40 50 IMAPS San Diego, Oct. 8-12, 2006.
[16] K. Kuang et al, RF and Microwave Microelectronics Packaging, Springer (New York, 2010), pp. 25-42.
[17] E. A. Sanjuan and S. S. Cahill, "QFN-based Millimeter Wave Packaging to
80GHz," in Signal Integrity and High-Speed Interconnects, 2009. IMWS 2009.
IEEE MTT-S International Microwave Workshop Series on, 2009, pp. 9-12.
[18] K. Aihara and P. Anh-Vu, "Development of Thin-Film Liquid Crystal Polymer
Surface Mount Packages for Ka-band Applications," Microwave Symposium
Digest, 2006. IEEE MTT-S International, 2006, pp. 956-959.
[19] Rao R, Tummala, Madhavan Swaminathan, Introduction to system-on-package(SOP), 2008, pp. 3~34.
[20] 2D vs. 2.5D vs. 3D ICs, http://www.eetimes.com/design/programmablelogic/
4370596/2D-vs--2-5D-vs--3D-ICs-101
[21] International Technology Roadmap for Semiconductors, http://www.itrs.ne
t/reports.html
[22] K. Heegon, et al., "Measurement and Analysis of a High-Speed TSV Channel,"
IEEE Transactions on Components, Packaging and Manufacturing Technology,
vol. 2, pp. 1672-1685, 2012.
[23] A. Sutono, et al., "Experimental modeling, repeatability investigation and
optimization of microwave bond wire interconnects," IEEE Transactions on
Advanced Packaging, vol. 24, pp. 595-603, 2001.
[24] T. P. Budka, "Wide-bandwidth millimeter-wave bond-wire interconnects," IEEE
Transactions on Microwave Theory and Techniques, vol. 49, pp. 715-718, 2001.
[25] L. Gang, et al., "Low-loss, low-cost, IC-to-board bondwire interconnects for
millimeter-wave applications," Microwave Symposium Digest (MTT), 2011
IEEE MTT-S International, 2011, pp. 1-4.
[26] Wire Inductance, http://www.eeweb.com/toolbox/wire-inductance/
[27] I. Wei Qin, et al., "Automatic wedge bonding with ribbon wire for high
frequency applications," Electronics Manufacturing Technology Symposium,
2002. IEMT 2002. 27th Annual IEEE/SEMI International, 2002, pp. 97-104.
[28] B. C. Wadell, Transmission Line Design Handbook, Artech House, 1991.
[29] Skin effect, http://en.wikipedia.org/wiki/Skin_effect
[30] Microstrip, Stripline, and CPW Design, http://www.qsl.net/va3iul/
[31] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons Inc.,
1998.
[32] Wentworth, Stuart M., Fundamentals of Electromagnetics With Engineering
Applications, John Wiley & Sons Inc., 2006.
[33] M. N. Suma, et al., "A compact dual band planar branched monopole antenna
for DCS/2.4-GHz WLAN applications," IEEE Microwave and Wireless
Components Letters, vol. 16, pp. 275-277, 2006.
[34] H. Cheng-Ying, et al., "Shunted-Line Stepped-Impedance Resonator," IEEE
Microwave Magazine, vol. 13, pp. 34-48, 2012.
[35] C. Kuo-Sheng, et al., "Compact Dual-Band Branch-Line and Rat-Race Couplers
With Stepped-Impedance-Stub Lines," IEEE Transactions on Microwave
Theory and Techniques, vol. 58, pp. 1213-1221, 2010.
[36] D. K. Misra, Radio Frequency And Microwave Communication Circuits
Analysis and Design. 2nd edition, Wiley-Interscience, 2004.
[37] Chang, S.-H., Kuan, H., Wu, H.-W., Yang, R.-Y. and Weng, M.-H. (2006),
"Determination of microwave dielectric constant by two microstrip line method
combined with EM simulation," Microw. Opt. Technol. Lett., 48: 2199–2201.
[38] A. M. Mangan, et al., "De-embedding transmission line measurements for
accurate modeling of IC designs," IEEE Transactions on Electron Devices, vol.
53, pp. 235-241, 2006.
[39] J. E. Zuniga-Juarez, et al., "Two-tier L-L de-embedding method for Sparameters
measurements of devices mounted in test fixture," in Microwave
Measurement Conference, 2009 73rd ARFTG, 2009, pp. 1-5.
[40] C. H. J. Poh, et al., "De-embedding transmission lines using a full-wave EMsimulated
pad model," Microwave Conference Proceedings (APMC), 2010 Asia-
Pacific, 2010, pp. 1208-1211.
[41] Z. Bo, et al., "On the accuracy of de-embedding technologies for on-wafer
measurement up to 170GHz," IEEE International Symposium on Radio-
Frequency Integration Technology, 2009. RFIT 2009., 2009, pp. 284-287.
[42] H. Liang, et al., "A broad band Through-Line-Line de-embedding technique for
BGA package measurements," Electrical Performance of Electronic Packaging,
2001, 2001, pp. 125-128.
[43] C. Cheolung, et al., "Test-structure free modeling method for de-embedding the
effects of pads on device modeling," Electronic Components and Technology
Conference, 2003. Proceedings. 53rd, 2003, pp. 1694-1700.
[44] K. Jae Jin, et al., "A new DGS unequal power divider," in Microwave
Conference, 2007. European, 2007, pp. 556-559.
[45] Y. Changjiang and Z. Xiaowei, "A novel planar dual-band branch line coupler
using defect ground structure," Microwave Symposium Digest, 2008 IEEE MTTS
International, 2008, pp. 1227-1230.
[46] L. Jong-Sik, et al., "Design of Low-Pass Filters Using Defected Ground
Structure," IEEE Transactions on Microwave Theory and Techniques, vol. 53,
pp. 2539-2545, 2005.
[47] A. B. Abdel-Rahman, et al., "Control of bandstop response of Hi-Lo microstrip
low-pass filter using slot in ground plane," IEEE Transactions on Microwave
Theory and Techniques, vol. 52, pp. 1008-1013, 2004.
[48] N. M. Garmjani and N. Komjani, "Quasi-elliptic SIR bandpass filter with
Defected Ground Structure," Microwave Conference, 2009. APMC 2009. Asia
Pacific, 2009, pp. 2534-2537.
[49] L. Xun, et al., "Hybrid Microstrip/DGS Cell for Filter Design," IEEE
Microwave and Wireless Components Letters, vol. 21, pp. 528-530, 2011.
[50] L. Wei-Tzong, et al., "An Embedded Common-Mode Suppression Filter for
GHz Differential Signals Using Periodic Defected Ground Plane," IEEE
Microwave and Wireless Components Letters, vol. 18, pp. 248-250, 2008.
[51] D. A. Frickey, "Conversions between S, Z, Y, H, ABCD, and T parameters
which are valid for complex source and load impedances," IEEE Transactions
on Microwave Theory and Techniques, vol. 42, pp. 205-211, 1994.
[52] KYOCERA, http://global.kyocera.com/application/automotive/product/compo/-
millimeter.html
[53] Mimix Broadband Inc., https://www.macomtech.com/
[54] K. Dong Gun and K. Joungho, "40-Gb/s Package Design Using Wire-Bonded
Plastic Ball Grid Array," IEEE Transactions on Advanced Packaging , vol. 31,
pp. 258-266, 2008.
[55] J. R. Cubillo, et al., "RF Low-Pass Design Guiding Rules to Improve PCB to
Die Transition Applied to Different Types of Low-Cost Packages," IEEE
Transactions on Advanced Packaging, vol. 31, pp. 527-535, 2008.
[56] L. Yi-Chieh, et al., "Low cost QFN package design for millimeter-wave
applications," in Electronic Components and Technology Conference (ECTC),
2012 IEEE 62nd, 2012, pp. 915-919.
[57] L. Yi-Chieh, et al., " High Performance Plastic Molded QFN Package with
Ribbon Bonding and a Defective PCB Ground," in Electronic Components and
Technology Conference (ECTC), 2013 IEEE 63nd, 2013, accepted.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.24.134
論文開放下載的時間是 校外不公開

Your IP address is 3.141.24.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code