Responsive image
博碩士論文 etd-0602114-103057 詳細資訊
Title page for etd-0602114-103057
論文名稱
Title
以嵌段共聚物當模板製備中孔洞材料並利用共模板法製備低折射率多層次中孔洞二氧化矽
Mesoporous Materials Fabricated from Block Copolymer and Using Co-template Method to Fabricate Hierarchical Mesoporous Silicas with Exceptionally Ultra-low Refractive Indices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-24
繳交日期
Date of Submission
2014-07-02
關鍵字
Keywords
共模板法、低折射率材料、多層次結構、揮發導致自組裝、中孔洞酚醛
co-template method, low refractive index materials, mesoporous phenolic, hierarchical mesoporous silicas, EISA
統計
Statistics
本論文已被瀏覽 5716 次,被下載 666
The thesis/dissertation has been browsed 5716 times, has been downloaded 666 times.
中文摘要
我們成功的利用開環聚合的方式合成三嵌段共聚物Poly(ethyleneoxide)-block-Poly(ε-caprolactone)-block-Poly(L-lactide),並以此為模板經過交聯固化來製備中孔洞酚醛樹脂。我們先利用IR來觀察模板上的官能基和酚醛樹脂的作用情形,接著利用DSC觀測樣品的熔點和玻璃轉移溫度的變化,之後利用SAXS, TEM進行結構的鑑定及BET分析孔洞的分布,但是因為親疏水段排列方式的差異,並無法觀察到多層次的結構,但我們也觀測到了球狀、六角管柱、雙連續相的結構。
另外,從過去的文獻報導中,在嵌段共聚物的混摻系統中,體積分率扮演了一個非常重要的角色,我們使用了Pluronic F-127 (EO20PO70EO20) 和 PEO-b-PCL Poly(ethylene oxide)-block-Poly(ε-caprolactone) 兩種高分子當作共模板,藉由改變兩者的體積分率,來調控疏水段和親水段的比例,達到以簡單的混摻方式製備多層次結構的目的。在此研究中我們發現了兩種多層次結構,第一種命名為大小球共存(random small sphere alternated with large sphere)的結構,第二種結構為簡單立方球插層四角管柱結構(Regular Spherical Strip Arrangement Alternated with Tetragonal Cylinder)。我們利用SAXS、TEM來觀察多層次中孔洞二氧化矽的相轉移,使用SEM來觀察中孔洞二氧化矽材料表面的形貌,此外從氮氣吸脫附測量,可觀察到多層次中孔洞二氧化矽材料有高的BET比表面積(781 m2/g)和孔洞體積(0.99 cm3/g),之後利用旋轉塗佈機製備成多層次中孔洞二氧化矽薄膜,經由薄膜特性分析儀n & k analyzer的測量,測得此材料的折射率為1.08,此多層次中孔洞二氧化矽能夠應用在太陽能板的抗反射層,減少反射導致的效率降低,亦或是增加其抗反射能力以減少眩光的產生。

關鍵詞: 多層次結構、中孔洞酚醛、低折射率材料、共模板法、揮發誘導自組裝
Abstract
The first topic of my master thesis is focus on ABC type amphiphilic triblock copolymers, Poly(ethyleneoxide)-block-Poly(ε-caprolactone)-block-Poly(L-lactide) (PEO-b-PCL-b-PLLA), were synthesized through ring-opening polymerization. We have successfully fabricated mesoporous phenolic via evaporation-induced self-assembly (EISA) strategy. We utilized IR, DSC to understand the interactions between phenolic and template. From SAXS and TEM, we found the structure of mesoporous phenolic templated by EO114CL45LLA82 would transform from gyroid to cylinder and finally to disorder.
The second topic of my master thesis is focus on using co-template method to fabricate hierarchical mesoporous silicas and apply to ultra-low refractive index area. In this study, we use Pluronic F127 (EO20PO70EO20) and Poly(ethylene oxide)-block-Poly(ε-caprolactone) as template and blend with TEOS to fabricate hierarchical mesoporous silicas. We obtained a series of silica samples with well-defined morphologies and two types of hierarchical mesostructures. We utilized SAXS, TEM measurements to investigate the structure change of hierarchical mesoporous silicas and SEM to observe the surface morphologies of mesoporous silica samples. Furthermore, N2 isotherm sorption experiment displayed that the BET surface area is as high as approximately 781 m2/g of our hierarchical mesoporous sample and the pore volume is large to approximately 0.99 cm3/g. Besides, we prepared the hierarchical mesoporous thin films by spin-coating and obtained the low refractive index to 1.08 through n&k analyzer.

Key word: mesoporous phenolic, hierarchical mesoporous silicas, low refractive index materials, co-template method, EISA
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1簡介 1
1-2研究動機 3
第二章 理論與文獻回顧 6
2-1 嵌段共聚物(Block copolymer) 6
2-2揮發誘導自組裝(Evaporation induced self-assembly, EISA) 7
2-3 氫鍵作用力(Hydrogen bond interaction) 9
2-4 水熱處理(hydrothermal treatment) 9
2-5 多層次中孔洞材料(Hierarchical Mesoporous Material) 11
2-6 低折射率材料(Low Refractive Index Material) 15
2-7反應導致微觀相分離(Reaction-Induced Microphase Separation, RIMPS) 15
2-8 Novolac型酚醛樹酯及交聯劑六甲烯基四胺 16
第三章 實驗方法及步驟 17
3-1 實驗內容 17
3-1-1合成中孔洞酚醛樹脂之流程: 17
3-1-2合成多層次中孔洞二氧化矽之材料 : 18
3-2 使用藥品 19
3-3 樣品製備 20
3-3-1 合成嵌段共聚物PEO-b-PCL 20
3-3-2合成嵌段共聚物PEO-b-PCL-b-PLLA 21
3-3-3合成Novolac型酚醛樹酯 22
3-3-4利用PEO-b-PCL-b-PLLA製備中孔洞酚醛樹酯 22
3-3-5 利用PEO-b-PCL和F127合成多層次中孔洞二氧化矽並鑑定 24
3-4 儀器使用 26
3-4-1 氫核磁共振分析儀(Nuclear Magnetic Resonance, NMR) 26
3-4-2膠體滲透層析儀(Gel Permeation Chromatography, GPC) 27
3-4-3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 27
3-4-4場發射型掃描式電子顯微鏡(6700) JEOL-6700 28
3-4-5小角度X光散射儀(Small Angle X-ray Scattering, SAXS) 28
3-4-6比表面積分析儀(BET) 29
3-4-7薄膜特性分析儀(n & k Analyzer 1280) 30
3-4-8熱重分析儀(Thermal Gravimetric Analyzer, TGA) 30
3-4-9微差掃瞄熱卡儀(Differential Scanning Calorimeter, DSC) 30
3-4-10傅立葉紅外線光譜儀(FT-IR) 31
第四章 結果與討論 32
4-1嵌段共聚物之鑑定 32
4-1-1嵌段共聚物PEO-b-PCL之鑑定 32
4-1-2嵌段共聚物PEO-b-PCL-b-P LLA之鑑定 32
4-2 PEO-b-PCL-b-PLLA混摻酚醛樹脂之分析 35
4-2-1 酚醛樹脂混摻PEO-b-PCL-b-PLLA之微差掃瞄熱卡儀分析 35
4-2-2 酚醛樹脂混摻PEO-PCL-PLLA之傅立葉紅外線光譜儀分析 39
4-3 PEO-b-PCL-b-PLLA為模板製備中孔洞酚醛樹脂之分析 42
4-3-1中孔洞酚醛樹脂之小角度X光散射和穿透式電子顯微鏡分析 42
4-3-2酚醛樹脂之小角度X光散射和穿透式電子顯微鏡分析 48
4-3-3酚醛樹脂之變溫小角度X光散射 (SAXS) 分析 50
4-4以F127和PEO-b-PCL為模板製備中孔洞二氧化矽分析 51
4-4-1中孔洞二氧化矽小角度X光散射和穿透式電子顯微鏡分析 51
4-4-2中孔洞二氧化矽之比表面積分析儀(BET)分析 53
4-5以F127和PEO-b-PCL為模板製備多層次中孔洞二氧化矽之分析 58
4-5-1多層次中孔洞二氧化矽小角散射和穿透式電子顯微鏡分析 58
4-5-2多層次中孔洞二氧化矽之比表面積分析儀(BET)分析 63
4-5-3多層次中孔洞二氧化矽之掃描式電子顯微鏡(SEM)分析 66
4-5-4 多層次中孔洞二氧化矽之折射率鑑定 67
第五章 結論 69
第六章 參考文獻 70
附錄 76
參考文獻 References
1. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Chem. Mater., 1994, 6, 1816.
2. Bein, T., Chem. Mater., 1996, 8, 1636.
3. Davis, M. E.; Lobo, R. F., Chem. Mater., 1992, 4, 756.
4. Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H., Nature, 1991, 352, 320.
5. Saito, A.; Foley, H. C., AlChE J., 1991, 37, 429.
6. Zhao, X. S.; Lu, G. Q. M.; Millar, G. J., Ind. Eng. Chem. Res., 1996, 35, 2075.
7. Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. E. M.; De Vos, D. E., Angew. Chem. Int. Ed., 2007, 46, 4293.
8. Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.; Kirschhock, C. E. A.; De Vos, D. E., J. Am. Chem. Soc., 2008, 130, 14170.
9. Denayer, J. F.; Baron, G. V.; Martens, J. A.; Jacobs, P. A., J. Phys. Chem. B., 1998, 102, 3077.
10. Krishna, R.; Baur, R., Sep. Purif. Technol., 2003, 33, 213.
11. Ma, Z.; Whitley, R. D.; Wang, N. H. L., AlChE J., 1996, 42, 1244.
12. Yaghi, O. M.; Davis, C. E.; Li, G. M.; Li, H. L., J. Am. Chem. Soc., 1997, 119, 2861.
13. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Chem. Mater., 1994, 6, 1816.
14. Ciesla, U.; Schuth, F., Micropor. Mesopor. Mater., 1999, 27, 131.
15. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science, 1998, 279, 548.
16. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Angew. Chem. Int. Ed., 1999, 38, 56.
17. 廖美儀 國立成功大學化學研究所碩士論文 2006年
18. Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Curr. Opin. Colloid Interface Sci., 2003, 8, 109.
19. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.; Liu, C.; Wu, X. J.; Zhao, D. Y., J. Am. Chem. Soc., 2007, 129, 1690.
20. Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y., J. Controlled Release., 2002, 82, 189.
21. Corma, A., Chem. Rev., 1997, 97, 2373.
22. De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A., Chem. Rev., 2002, 102, 3615.
23. Sayari, A., Chem. Mater., 1996, 8, 1840.
24. Taguchi, A.; Schuth, F., Micropor. Mesopor. Mater., 2005, 77, 1.
25. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Nature, 1994, 368, 321.
26. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. F., J. Phys. Chem. B, 2005, 109, 1763.
27. Hartmann, M., Chem. Mater., 2005, 17, 4577.
28. Kruk, M.; Jaroniec, M.; Sayari, A., J. Phys. Chem. B, 1997, 101, 583.
29. Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y., Chem. Commun., 2000, 13, 1145.
30. Mercier, L.; Pinnavaia, T. J., Adv. Mater., 1997, 9, 500.
31. Slowing, II; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y., Advanced Drug Delivery Reviews, 2008, 60, 1278.
32. Slowing, II; Trewyn, B. G.; Giri, S.; Lin, V. S. Y., Adv. Funct. Mater., 2007, 17, 1225.
33. Vallet-Regi, M.; Balas, F.; Arcos, D., Angew. Chem. Int. Ed., 2007, 46, 7548.
34. Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S., Angew. Chem. Int. Ed., 2005, 44, 5083.
35. Trewyn, B. G.; Giri, S.; Slowing, II; Lin, V. S. Y., Chem. Commun., 2007, 31, 3236.
36. Munoz, B.; Ramila, A.; Perez-Pariente, J.; Diaz, I.; Vallet-Regi, M., Chem. Mater., 2003, 15, 500.
37. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., Chem. Mater., 2001, 13, 308.
38. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., J. Am. Chem. Soc., 2003, 125, 4451.
39. Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F., Small, 2007, 3, 1341.
40. Konjhodzic, D.; Bretinger, H.; Marlow, F., Thin Solid Films, 2006, 495, 333.
41. Konjhodzic, D.; Schroter, S.; Marlow, F., Physica Status Solidi a-Applications and Materials Science, 2007, 204, 3676.
42. Rouse, J. H.; Ferguson, G. S., J. Am. Chem. Soc., 2003, 125, 15529.
43. Falcaro, P.; Grosso, D.; Amenitsch, H.; Innocenzi, P., J. Phys. Chem. B, 2004, 108, 10942.
44. Falcaro, P.; Malfatti, L.; Kidchob, T.; Giannini, G.; Falqui, A.; Casula, M. F.; Amenitsch, H.; Marmiroli, B.; Grenci, G.; Innocenzi, P., Chem. Mater., 2009, 21, 2055.
45. Konjhodzic, D.; Bretinger, H.; Wilczok, U.; Dreier, A.; Ladenburger, A.; Schmidt, M.; Eich, M.; Marlow, F., Applied Physics a-Materials Science & Processing, 2005, 81, 425.
46. Baskaran, S.; Liu, J.; Domansky, K.; Kohler, N.; Li, X. H.; Coyle, C.; Fryxell, G. E.; Thevuthasan, S.; Williford, R. E., Adv. Mater., 2000, 12, 291.
47. Yang, C. M.; Cho, A. T.; Pan, F. M.; Tsai, T. G.; Chao, K. J., Adv. Mater., 2001, 13, 1099.

48. Hatton, B. D.; Landskron, K.; Whitnall, W.; Perovic, D. D.; Ozin, G. A., Adv. Funct. Mater., 2005, 15, 823.
49. Yang, S.; Mirau, P. A.; Pai, C. S.; Nalamasu, O.; Reichmanis, E.; Pai, J. C.; Obeng, Y. S.; Seputro, J.; Lin, E. K.; Lee, H. J.; Sun, J. N.; Gidley, D. W., Chem. Mater., 2002, 14, 369.
50. de Theije, F. K.; Balkenende, A. R.; Verheijen, M. A.; Baklanov, M. R.; Mogilnikov, K. P.; Furukawa, Y., J. Phys. Chem. B, 2003, 107, 4280.
51. Jiao, F.; Bruce, P. G., Adv. Mater., 2007, 19, 657.
52. Wang, K. X.; Wei, M. D.; Morris, M. A.; Zhou, H. S.; Holmes, J. D., Adv. Mater., 2007, 19, 3016.
53. Zhou, M.; Ding, J.; Guo, L. P.; Shang, Q. K., Anal. Chem., 2007, 79, 5328.
54. Fan, S. Q.; Fang, B.; Kim, J. H.; Kim, J. J.; Yu, J. S.; Ko, J., Appl. Phys. Lett., 2010, 96, 3501.
55. Nelson, P. A.; Elliott, J. M.; Attard, G. S.; Owen, J. R., Chem. Mater., 2002, 14, 524.
56. Boo, H.; Park, S.; Ku, B. Y.; Kim, Y.; Park, J. H.; Kim, H. C.; Chung, T. D., J. Am. Chem. Soc., 2004, 126, 4524.
57. Wirnsberger, G.; Scott, B. J.; Stucky, G. D., Chem. Commun., 2001, 01, 119.
58. Scott, B. J.; Wirnsberger, G.; Stucky, G. D., Chem. Mater., 2001, 13, 3140.
59. Yamada, T.; Zhou, H. S.; Uchida, H.; Tomita, M.; Ueno, Y.; Honma, I.; Asai, K.; Katsube, T., Micropor. Mesopor. Mater., 2002, 54, 269.
60. Devi, G. S.; Hyodo, T.; Shimizu, Y.; Egashira, M., Sens. Actuators, B, 2002, 87, 122.
61. Hyodo, T.; Nishida, N.; Shimizu, Y.; Egashira, M., Sens. Actuators, B, 2002, 83, 209.

62. Innocenzi, P.; Malfatti, L.; Soler-Illia, G. J. A. A., Chem. Mater., 2011, 23, 2501.
63. Rodriquez-Hernandex, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S.; Prog. Polym. Sci., 2005, 30, 691.
64. Wei, J.; Yue, Q.; Sun, Z.; Deng, Y.; Zhao, D. Y., Angewandte Chemie Int. Ed., 2012, 51, 6149.
65. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Nano Lett., 2010, 10, 4994.
66. Masten, M. W.; Bate, F. S., Macromolecules, 1996, 29, 1091.
67. Semenov, A. N., Sov. Phys. JETP, 1958, 61, 733.
68. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y., Adv. Mater., 1999, 11, 579.
69. Raman, N.; Anderson, M.; Brinker, C., Chem. Mater., 1996, 8, 1682.
70. Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Current Opinion in Colloid and Interface Science, 2003, 8, 109.
71. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.; Liu, C.; Wu, X. J.; Zhao, D. Y., J. Am. Chem. Soc., 2007, 129, 1690.
72. Innocenzi, P.; Malfati, L.; Soler-Illia, G. J. A. A., Chem. Mater., 2011, 23, 2501.
73. Sel, O.; Sallard, S.; Brezesinski, T.; Rathousky, J.; Dunphy, D. R.; Collord, A.; Smarsly, B. M., Adv. Funct. Mater., 2007, 17, 3241.
74. Zheng, W.; Wang, Z. G., Macromolecules, 1995, 28, 7215.
75. Oh, C. G.; Baek, Y.; Ihm, S. K., Adv. Mater., 2005, 17, 270.
76. Fuertes, M. C.; Soler-Illia, G. J. A. A., Chem. Mater., 2006, 18, 2109.
77. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Pispas, S.; Avgeropoulos, A., Prog. Polym. Sci., 2005, 30, 725.
78. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E., J. Am. Chem. Soc., 1940, 62, 1723.
79. Mezzenga, R.; Boogh, L.; Manson, J. E. J., Polym. Sci. Part B: Polym. Phys., 2000, 38, 1893.
80. Hu, D.; Zheng, S., Polymer, 2010, 51, 6346.
81. Knop, A.; Pilato, L. A. Springer-Verlag, Berlin, 1985.
82. Salim, N. V.; Hanley, T.; Guo, Q., Macromolecules, 2010, 43, 7695.
83. Kuo, S. W.; Lin, C. L.; Chang, F. C., Macromolecules, 2002, 35, 278.
84. Li, J. G.; Lin, R. B.; Kuo, S. W., Macromol. Rapid Commun., 2012, 33, 678.
85. Innocenzi L., Malfatti, L., Soler-Illia, G., Chem. Mater., 2011, 23, 2501.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code