Responsive image
博碩士論文 etd-0602115-084301 詳細資訊
Title page for etd-0602115-084301
論文名稱
Title
藉由添加高折射率物質及單體改善具光聚合能力之二氧化矽的繞射效率
Improving the Diffraction Efficiency of Photopolymerizable Silica by High Refraction Index Species and Monomer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-30
繳交日期
Date of Submission
2015-07-02
關鍵字
Keywords
繞射點散射、高折射率物質、丙烯醯胺、厚度、無機基材、丙烯酸鹽基
Inorganic substrate, Acrylate, Acrylamide, Scattering, Hight refractive index species, Thickness
統計
Statistics
本論文已被瀏覽 5720 次,被下載 709
The thesis/dissertation has been browsed 5720 times, has been downloaded 709 times.
中文摘要
本研究是利用溶膠凝膠法來製備無機基材之全像儲存材料,再以綠光雷射進行紀錄干涉形成光柵,由紅光雷射讀取測得繞射強度進而得到繞射效率。無機基材相較於有機基材如PVA,無機基材有較好的材料穩定性、化學穩定性、熱穩定性、等機械性質,因此本研究以四乙氧基矽烷(TEOS)及矽烷偶合劑(γ-GPTMS)作為前驅物形成SiO2網狀構造為本研究的無機基材,除了混合有機單體丙烯酸鹽基(EG-PEA),其折射率有1.518、BMA(Benzyl methacrylate),其折射率有1.512、AA(Acrylamide) ,其折射率有1.460,混合單體比較單體對於繞射效率的影響,也在材料中添加高折射率物質Ti(OBu)4提升繞射效率。光起始劑則選用(Irgacure 784),並添加不同比例之基材:TEOS及γ-GPTMS與單體:EG-PEA、BMA與AA進行溶膠凝膠反應。以材料厚度、單體的比例、Ti(OBu)4等實驗參數進行其對繞射效率的影響,由光學顯微鏡觀察是否有明顯的光柵產生與製作出的試片厚度對於繞射效率的關係,並對於繞射效率之衰退及散射進一步探討,也藉由降低紀錄強度與提升偶合劑比例改善繞射效率衰退及繞射點散射情形。
本實驗以溶膠凝膠法合成出混合單體之試片並製備出厚度在300~1950μm感光儲存材料,得到最大繞射效率有厚度330μm的繞射效率52.34 ±7.12 %也將Ti(OBu)4添加製材料中進而提升繞射效率至52.11±5.64。
Abstract
In this study, the holographic storage materials are prepared with inorganic matrix by sol-gel method. Sample is recorded by green light (532 nm) and read by red light(633nm) to response to diffraction efficiency. The inorganic precursor such as tetraethyl orthosilicate (TEOS) and 3-Glycidoxypropyltrimethoxy silane (γ-GPTMS), which have better material stability、chemical stability and thermal stability. Therefore, silica network is used to substrate in this study. Besides, the monomer will infiltrate in matrix with EGPEA (Ethylene glycol phenyl ether acrylate)、Benzyl methacrylate (BMA) and Acrylamide (AA) which refractive index is 1.518、1.512 and 1.460.The photopolymer film incorporates Titanium(IV) butoxide (Ti(OBu)4) as high refractive index species (HRIS). A amount of Ti(OBu)4 is Si:Ti=4:1. Bis(η5-2,4-cylcopentadien-1-yl)-bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium (Irgacure 784) as photoinitiator,the amount og Igacure 784 is 1wt % of monomer. It discuss the relation between diffraction efficiency and thickness、monomer and HRIS. The grating is observed by OM . The period and depth of grating is investigated by AFM. In order to know why the diffraction point scattering and the decay of diffraction efficiency, the light and thermal effect is investigated by varying the intensity of light exposure and TGA.
Thickness of a film is from 330 to 1950 μm. The diffraction efficiency is 52.34 ±7.12 % with 330μm. The diffraction efficiency is 52.11±5.64 by adding Ti(OBu)4.

Keywords: Inorganic substrate, Acrylate, Acrylamide, High refractive index species,Thickness,Scattering
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 全像儲存材料基礎理論 3
2.1全像儲存材料 3
2.1-1鹵化銀感光材料 3
2.1-2重鉻酸鹽明膠 3
2.1-3光折變材料 4
2.1-4光致變色材料 4
2.1-5感光高分子 4
2.2有機-無機基材 5
2.2-1有機金屬基材 6
2.2-2有機-無機混合基材 7
2.3溶膠-凝膠法 11
2.3-1溶膠凝膠法簡介 11
2.3-2溶膠凝膠法的影響因子 12
2.4單體 16
2.5光起始劑 17
2.6光聚合原理 17
2.6-1光聚合反應 17
2.6-2光柵形成原理 17
2.7材料凝膠後經過烘乾的影響 20
2.7-1材料體積收縮因子
(1)滲透壓 20
(2)毛細現象 21
(3)濕度位能(壓力) 21
(4)排斥力 22
(5)化學鍵結作用 22
2.7-2.防止材料龜裂 22
(1)化學添加劑 22
(2)時效處理 23
(3)矽烷偶合劑 23
2.8全像干涉理論 24
第三章 研究方法 25
3.1實驗藥品 25
3.2試片代碼(總攬) 27
3.3實驗流程 29
3.4全像光學系統 32
3.5試片檢測流程 34
3.6實驗設備 34
3.6-1光學顯微鏡 34
3.6-2原子力顯微鏡 35
3.6-3薄膜特性分析儀 35
3.6-4傅立葉轉換紅外線光譜儀 35
3.6-5拉曼散射光譜儀 35
3.6-6熱重分析儀 36

第四章 結果與討論 37
4.1混合單體對繞射效率之影響 37
4.2單體含量對於光學性質之影響 37
4.3光起始劑含量對於光學性質之影響 37
4.4厚度的效應 39
4.5高折射率物質對於繞射效率之效應 47
4.6繞射效率之衰退及繞射點散射之分析探討 50
4.7記錄光強度對光學性質之分析 55
4.8偶合劑對於光學性質之影響 59
4.9光學顯微鏡之分析 61
4.10原子力顯微鏡之分析 65
4.11掃描式電子顯微鏡之分析 72
4.12熱重分析儀之分析 73
4.13 X光繞射儀之分析 75
4.14薄膜性分析儀之分析 77
4.15繞射點散射之形成 80
第五章 結論 80
第六章 建議未來工作 82
參考文獻 83
參考文獻 References
[1] A.T. Friberg, R. Dändliker, Advances in information optics and photonics, SPIE Press, 2008.
[2] P. Hariharan "Basic of holography"Cambridge Unerversity Press, Cambridge, 2002
[3] M.W. Daniels, J. Sefcik, L.F. Francis, A.V. McCormick, Journal of colloid and interface science, 219 (1999) 351-356.
[4] C.Y. Kuo, T.C. Hsu, W.H. Su, J. Non-Cryst. Solids, 358 (2012) 735-740.
[5] W.R. Graver, J.W. Gladden, J.W. Eastes, Appl. Optics, 19 (1980) 1529-1536.
[6] D.K. Angell, Appl. Optics, 26 (1987) 4692-4702.
[7] T.A. Shankoff, Appl. Optics, 7 (1968) 2101-&.
[8] R. Changkakoti, S.V. Pappu, Appl. Optics, 25 (1986) 798-801.
[9] F.S. Chen, Lamacchi.Jt, D.B. Fraser, Appl. Phys. Lett., 13 (1968) 223-225.
[10] P. Gunter, Journal De Physique, 44 (1983) 141-147.
[11] J.O. White, M. Croningolomb, B. Fischer, A. Yariv, Appl. Phys. Lett., 40 (1982) 450-452.
[12] M. Irie, Chem. Rev., 100 (2000) 1683-1683.
[13] M. Serwadczak, S. Kucharski, JSST, 37 (2006) 57-62.
[14] H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems: Molecules and Systems, Access Online via Elsevier, 2003.
[15] A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. B-Lasers Opt., 81 (2005) 167-169.
[16] M.L. Calvo, P. Cheben, J. Opt. A-Pure Appl. Opt., 11 (2009) 11.
[17] A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, R. Madrigal, SPIE Europe Optics+ Optoelectronics, International Society for Optics and Photonics, 2009, pp. 735802-735801-735815.
[18] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, A. Fimia, Applied Physics B, 74 (2002) 603-605.
[19] S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R.F. Madrigal, M. Ulibarrena, D. Levy, Appl. Optics, 37 (1998) 7604-7610.
[20] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia, Opt. Express, 12 (2004) 1780-1787.
[21] A. Murciano, L. Carretero, S. Blaya, R.F. Madrigal, A. Fimia, Appl. Phys. B-Lasers Opt., 83 (2006) 619-622.
[22] K. Curtis, D. Psaltis, Appl. Optics, 33 (1994) 5396-5399.
[23] N. Suzuki, Y. Tomita, Appl. Optics, 46 (2007) 6809-6814.
[24] N. Suzuki, Y. Tomita, Appl. Optics, 43 (2004) 2125-2129.
[25] Y. Tomita, N. Suzuki, K. Chikama, Optics letters, 30 (2005) 839-841.
[26] N. Hayashida, A. Kosuda, J. Yoshinari, Jpn. J. Appl. Phys., 47 (2008) 5895-5899.
[27] Y.M. Chang, S.C. Yoon, M. Han, Opt. Mater., 30 (2007) 662-668.
[28] M. Feuillade, C. Croutxe-Barghorn, L. Mager, C. Carre, A. Fort, Chem. Phys. Lett., 398 (2004) 151-156.
[29] S. Lee, Y.-C. Jeong, Y. Heo, S.I. Kim, Y.-S. Choi, J.-K. Park, J. Mater. Chem., 19 (2009) 1105-1114.
[30] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Access Online via Elsevier, 1990.
[30] O.Kulikovska,L.M.Goldenberg,Chem.Mater.20 (2008)3528-3534.
[31] R.K. Iler, Wiley, The Chemistry of Silica, 1979.
[32] H. Cogan, C. Setterstrom, Chemical & Engineering News: Business, 24 (1946) 2499-2501.
[33] H. Cogan, C. Setterstrom, Industrial & Engineering Chemistry, 39 (1947) 1364-1368.
[34] A.B. Samui, Recent patents on materials science, 1 (2008) 74-94.
[35] S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. Madrigal, R. Sastre, F. Amat-Guerri, Journal of Modern Optics, 45 (1998) 2573-2584.
[36] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, Applied Physics B, 77 (2003) 639-662.
[37] P. Cheben, M.L. Calvo, Appl. Phys. Lett., 78 (2001) 1490-1492.(2008) 10-26.
[38] J.N. Israelachvili, Chemica Scripta, 25 (1985) 7-14.
[39] M. Nouri-Khezrabad, M. Braulio, V. Pandolfelli, F. Golestani-Fard, H. Rezaie, Ceramics International, (2012).
[40] K. Omura, Y. Tomita, Journal of Applied Physics, 107 (2010) 023107.
[41] A. Soleimani Dorcheh, M. Abbasi, Silica aerogel; synthesis, properties and characterization, Journal of materials processing technology, 199 (2008) 10–26
[42] A.M.Ebelmen,Chim.Phys.,57(1846)
[43] P.Cheben, T.Belenguer,Appl.Opt, Lett.21(1996)1857
[44] G.Ramos, A.Alvarez, T.Belenguer, Appl.Opt,43(2004)4018
[45]R.K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley New York. (1979)
[46] Juin-Yih Lai, In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using g-glycidoxypropyltrimethoxysilane as a crosslinking agent, Polymer 45(2004)6831–6837
[47] L. Qin, J. Chromatogr, Molecularly imprinted polymer prepared with bonded -cyclodextrin and acrylamide on functionalized silica gel for selective
recognition of tryptophan in aqueous media, A 1187 (2008) 94–102
[48] N. Suzuki, Y. Tomita, T. Kojima, Appl. Phys. Lett., 81 (2002) 4121-4123.
[49] Y. Tomita, N. Suzuki, K. Chikama, Optics letters., 30 (2005) 839-841.
[50] C. Sanchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, R. Nussbaumer, Adv. Funct. Mater., 15 (2005) 1623-1629.
[51] A. Łukowiak, Optical properties of SiO2–TiO2 thin film waveguides obtained bythe sol–gel method and their applications for sensing purposes., ptical Materials., 27 (2005) 1501–1505
[52]Y.Situ., Polymerization-induced has eseparation in the prepara tion of macroporous TiO2/SiO2 thin films, ramics International ., 40 (2014) 919–927
[53] J. Opt. A, Effective volume holographic structures ased on organic–inorganic photopolymer anocomposites, re Appl. Opt. 11 (2009) 024013
[54] O V Sakhno1, Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms., Nanotechnology., 18 (2007) 105704
[55] S. Mallakpour, A. Barati , Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles Progress in Organic Coatings ., 71(2011) 391–398
[56] F. Wang, Sol–gel derived titania hybrid thin films with high refractive index, Journal of Alloys and Compounds., 486 (2009) 521–526
[57]L.Ye, Sol–gel reparation of SiO2/ TiO2 /SiO2–TiO2 broadband antireflective coating for solar cell cover glass., Solar Energy Materials & Solar Cells 111 (2013) 160–16
[58] W.R. Caseri, Polymer-TiO2 Nanocomposites, Polymer-TiO2 Nanocomposites: A Route TowardsVisually Transparent Broadband UV Filters and High Refractive Index Materials., Macromol. Mater. Eng. 2003, 288, 44–49
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code