Responsive image
博碩士論文 etd-0602115-150346 詳細資訊
Title page for etd-0602115-150346
論文名稱
Title
設計螢光分子信籤感測藥物肝素中的過硫酸化硫酸軟骨素與雙腺苷類似物
Design fluorescent molecular beacon for sensing oversulfated chondroitin sulfate in pharmaceutical heparin and diadenosine analogs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-01
繳交日期
Date of Submission
2015-07-02
關鍵字
Keywords
腺苷、鈣離子、分子信籤、過硫酸化硫酸軟骨素、肝素、第二信使
Second messenger, c-di-AMP, Heparin, Ap5A, Molecular beacon, Calcium, diadenosine, OSCS
統計
Statistics
本論文已被瀏覽 5652 次,被下載 41
The thesis/dissertation has been browsed 5652 times, has been downloaded 41 times.
中文摘要
一、使用分子信籤感測器通過非酵素的方法來偵測肝素裡的過硫酸化硫酸軟骨素
肝素(Heparin)是一種具有多電荷的葡萄糖胺多聚醣(Glycosaminoglycan),在醫療上常用來當抗凝血劑使用,在2008 年,報導指出有數十人因施打肝素導致休克而死亡,上百人出現不同程度的過敏反應,美國食品暨藥物管理局(FDA)進而對肝素進行研究,發現裡面含有結構相似的汙染物-過硫酸化硫酸軟骨素(OSCS),此汙染物無法使用一般的偵測方法檢驗出所以本實驗設計一種高選擇性、靈敏度且快速簡單的分子信籤(Molecular Beacon)來偵測肝素裡的汙染物,使用5’與3’端帶有螢光團(FAM)與消光團(DABCYL)的分子信籤,其loop 端含有22個鹼基,stem端各含有8個腺嘌呤(Adenine,A)鹼基,加入coralyne 會在stem 端產生A2-coralyne-A2 的錯合物,使分子信籤產生髮夾彎的結構,致使螢光團與消光團碰撞產生消光現象,藉由加入Ca2+離子,OSCS會比Heparin帶有更多的負電荷位置,所以跟polyA8競爭coralyne的程度不同,進而將不同數量的corlayne置換出來,利用螢光恢復程度的差異即可分辨肝素裡的汙染物OSCS。本實驗在實際注射液可偵測到0.01%的OSCS,代表此偵測方法步驟簡單,具高靈敏度、選擇性且不須使用肝素酵素(Heparinase)即可快速地去偵測肝素裡的汙染物。

二、利用分子信籤感測器偵測第二信使c-di-AMP與訊號分子Ap5A
c-di-AMP是細菌裡重要的第二信使,可以調控多種生理功能如鉀離子的輸送、脂肪酸的形成、細胞壁的平衡、DNA損傷的偵測等功能;其結構為兩端各含一個腺嘌呤中間接兩個磷酸根形成環狀分子,此應用將第二信使c-di-AMP作為目標物,利用Poly A20分子信籤作為探針,5'端及3'端帶有螢光團(FAM)與消光團(BHQ1),加入coralyne會與Poly A20形成A2-coralyne-A2二聚體,使螢光團與消光團發生螢光碰撞消光反應,接著加入目標物c-di-AMP反應,因其兩端含有腺嘌呤,可與A20·coralyne作競爭將coralyne從分子信籤中置換出來,使螢光產生回復現象,成功地偵測到c-di-AMP且LOD為0.1μM。利用同樣機制也能偵測兩端含有腺苷的類似物Ap5A,其同樣為調控數種生理機制的訊息分子,結構兩端也含有腺嘌呤,中間由五個磷酸根連接,利用相同的感測機制成功於真實眼淚樣品中偵測到Ap5A,LOD為3μM。
Abstract
(a) Molecular Beacon-Based Fluorescent Assay for Specific Detection of Oversulfated Chondroitin Sulfate Contaminants in Heparin without Enzyme Treatment
Heparin belongs to a family of naturally occurring negatively charged glycosaminoglycans (GAGs) which are complex linear polysaccharides comprised of repeating disaccharide units. A sudden increase of severely adverse responses to heparin treatment of patients (including 94 deaths) was reported in U.S. during 2007-2008 period. The U.S. Food and Drug Administration’s (FDA) investigation of this problem found that the origin of these fatal side effects was oversulfated chondroitin sulfate (OSCS) that was present in some heparin products. Here we presents a highly selective, sensitive, enzyme free, simple and fast method to detect OSCS in heparin. The MB (A8–MB–A8) contains a 22-mer loop, a pair of 8-mer adenosine (A) bases at stem, a fluorophore unit at the 5’-end, and a quencher at the 3’-end. Hairpin-shaped MB with A2-coralyne-A2 complex at stem has formed after addition of coralyne. This study found that with present of Ca2+ ions can efficiently suppress the negative charges of heparin, they do not neutralize the negative charge of OSCS, the result of OSCS can remove coralyne from the MB stem more than heparin. This system can detect 0.01% w/w OSCS in heparin without enzyme treatment, also determine 0.01% w/w OSCS in the pharmaceutical heparin under 5 min.

(b) A Simple Molecular Beacon-based Fluorescent Sensor for Sensing Second Messenger c-di-AMP and Signalling Molecular Ap5A
c-di-AMP is an important bacterial second messenger found in Gram-positive and mycobacterial. Second messenger will enhancement, differentiation, integration and passed to the receptors to regulate physiological processes, in response to a changing environment. c-di-AMP is produced from two molecules of ATP by diadenylyl cyclase (DAC) enzyme, made up of two adenosine moieties joined in double 3’-5’ linkage by two phosphodiester. Recently, we develop a simple molecular beacon-based senor for detection of c-di-AMP. The MB contains 20-mer adenosine (A) bases, a fluorophore unit (FAM) at the 5’-end, and a quencher (BHQ1) at the 3’-end. The presence of coralyne form a hairpin-shaped MB with A2-coralyne-A2 complex. After addition of c-di-AMP, it will compete with PolyA20 and displace coralyne out, and turn on fluorescence. Under optimal conditions (10nM MB, 0.5μM coralyne), dtection limit (LOD) of c-di-AMP is 0.1μM. Same mechanism is used in signaling molecular-Ap5A. Studies had demonstrated a ubiquitous occurrence of Ap5A in the whole spectrum of organisms from bacteria to higher eukaryotes, it is made up of two adenosine moieties joined in 5’-5’ linkage by a chain of five phosphodiester linkages. The MB sensor can also detect Ap5A in tears sample, with detection limit of 3μM.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
目錄 vii
圖次 x
表次 xi
縮寫表 xii
第 1 章 、使用分子信籤感測器通過非酵素的方法來偵測肝素裡的過硫酸化硫酸軟骨素 1
一、前言 1
1-1 藥物Heparin的介紹 1
1-2 偵測藥物肝素汙染物-OSCS的方法 1
1-3 研究動機 4
二、實驗部分 5
2-1 實驗藥品 5
2-2 化學結構 7
2-3 儀器裝置 8
2-4 樣品配置方法 9
2-5 實驗過程 10
三、結果與討論 11
3-1 感測機制的建立 11
3-2 探討鈣離子對OSCS與Heparin螢光值的影響 13
3-3 探討反應時間對螢光值的影響 15
3-4 以圓二色光譜法來分辨Heparin與OSCS 15
3-5 探討coralyne與Heparin、OSCS之鍵結常數 18
3-5 探討分子信籤尾端長度對分辨Heparin與OSCS之影響 23
3-6 探討不同金屬離子對分子信籤探針分辨葡萄糖胺多聚醣之選擇性 25
3-7 探討Ca2+離子濃度對分子信籤探針分辨葡萄糖胺多聚醣之影響 25
3-8 探討不同陰離子對分子信籤探針分辨葡萄糖胺多聚醣之影響 28
3-9 標準Heparin溶液裡定量分析OSCS 28
3-10 海派注射液裡定量分析OSCS 32
四、結論 35
五、參考文獻 37
第 2 章 、利用分子信籤感測器偵測第二信使c-di-AMP與訊號分子Ap5A 42
一、前言 42
1-1 目標物c-di-AMP與Ap5A的介紹 42
1-2 偵測c-di-AMP與Ap5A的方法 43
1-3 研究動機 45
二、實驗部分 47
2-1 實驗藥品 47
2-2 化學結構 49
2-3 儀器裝置 50
2-4 樣品配置方法 51
2-5 實驗過程 52
三、結果與討論 54
3-1 感測機制的建立 54
3-2利用Poly A20分子信籤作為螢光探針偵測c-di-AMP之螢光光譜圖 57
3-3 探討緩衝溶液最佳化條件與反應時間 59
3-4 coralyne與c-di-AMP形成二聚體之螢光光譜圖與吸收光譜圖 62
3-5 利用極化螢光鑑定coralyne.c-di-AMP二聚體之生成 66
3-6 探討coralyne與c-di-AMP之鍵結常數 68
3-7 探討不同核苷酸對實驗之選擇性影響 70
3-8 c-di-AMP的定量分析 72
3-9 相同實驗方法偵測腺苷類似物Diadenosine polyphosphates之感測機制 74
3-10 探討ApnAs中間連接之磷酸根數量影響 77
3-11利用Poly A20分子信籤作為螢光探針偵測Ap5A之螢光光譜圖 77
3-12 探討緩衝溶液最佳化條件與反應時間 80
3-13 coralyne與Ap5A形成二聚體之螢光光譜圖與吸收光譜圖 83
3-14 利用極化螢光證實coralyne.Ap5A二聚體之生成 86
3-15 標準品Ap5A的定量分析 86
3-16 在模擬淚液下對Ap5A定量分析 89
3-17 人體真實淚液裡定量分析Ap5A 90
四、結論 93
五、參考文獻 94
參考文獻 References
第1章
1. Warkentin, T. E.; Levine, M. N.; Hirsh, J.; Horsewood, P.; Roberts, R. S.; Gent, M.; Kelton, J. G., Heparin-Induced Thrombocytopenia in Patients Treated with Low-Molecular-Weight Heparin or Unfractionated Heparin. New Engl. J. Med. 1995, 332 (20), 1330-1336.
2. Girolami, B.; Girolami, A., Heparin-Induced Thrombocytopenia: A Review. Semin. Thromb. Hemost. 2006, 32 (08), 803-809.
3. Guerrini, M.; Beccati, D.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I.; Lansing, J. C.; Guglieri, S.; Fraser, B.; Al-Hakim, A.; Gunay, N. S.; Zhang, Z.; Robinson, L.; Buhse, L.; Nasr, M.; Woodcock, J.; Langer, R.; Venkataraman, G.; Linhardt, R. J.; Casu, B.; Torri, G.; Sasisekharan, R., Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotech. 2008, 26 (6), 669-675.
4. Kishimoto, T. K.; Viswanathan, K.; Ganguly, T.; Elankumaran, S.; Smith, S.; Pelzer, K.; Lansing, J. C.; Sriranganathan, N.; Zhao, G.; Galcheva-Gargova, Z.; Al-Hakim, A.; Bailey, G. S.; Fraser, B.; Roy, S.; Rogers-Cotrone, T.; Buhse, L.; Whary, M.; Fox, J.; Nasr, M.; Dal Pan, G. J.; Shriver, Z.; Langer, R. S.; Venkataraman, G.; Austen, K. F.; Woodcock, J.; Sasisekharan, R., Contaminated Heparin Associated with Adverse Clinical Events and Activation of the Contact System. New Engl. J. Med. 2008, 358 (23), 2457-2467.
5. FDA page http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm112669.htm.
6. Pan, J.; Qian, Y.; Zhou, X.; Pazandak, A.; Frazier, S. B.; Weiser, P.; Lu, H.; Zhang, L., Oversulfated chondroitin sulfate is not the sole contaminant in heparin. Nat. Biotech. 2010, 28 (3), 203-207.
7. Zhang, Z.; Li, B.; Suwan, J.; Zhang, F.; Wang, Z.; Liu, H.; Mulloy, B.; Linhardt, R. J., Analysis of pharmaceutical heparins and potential contaminants using 1H-NMR and PAGE. J. Pharm. Sci. 2009, 98 (11), 4017-4026.
8. Trehy, M. L.; Reepmeyer, J. C.; Kolinski, R. E.; Westenberger, B. J.; Buhse, L. F., Analysis of heparin sodium by SAX/HPLC for contaminants and impurities. J. Pharm. Biomed. Anal. 2009, 49 (3), 670-673.
9. Volpi, N.; Maccari, F.; Linhardt, R. J., Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations. Anal. Biochem. 2009, 388 (1), 140-145.
10. Somsen, G. W.; Tak, Y. H.; Toraño, J. S.; Jongen, P. M. J. M.; de Jong, G. J., Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis. J. Chromatogra. A 2009, 1216 (18), 4107-4112.
11. Wielgos, T.; Havel, K.; Ivanova, N.; Weinberger, R., Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers. J. Pharm. Biomed. Anal. 2009, 49 (2), 319-326.
12. Li, G.; Cai, C.; Li, L.; Fu, L.; Chang, Y.; Zhang, F.; Toida, T.; Xue, C.; Linhardt, R. J., Method to Detect Contaminants in Heparin Using Radical Depolymerization and Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2014, 86 (1), 326-330.
13. Spencer, J. A.; Kauffman, J. F.; Reepmeyer, J. C.; Gryniewicz, C. M.; Ye, W.; Toler, D. Y.; Buhse, L. F.; Westenberger, B. J., Screening of heparin API by near infrared reflectance and Raman spectroscopy. J. Pharm. Sci. 2009, 98 (10), 3540-3547.
14. Sommers, C. D.; Mans, D. J.; Mecker, L. C.; Keire, D. A., Sensitive Detection of Oversulfated Chondroitin Sulfate in Heparin Sodium or Crude Heparin with a Colorimetric Microplate Based Assay. Anal. Chem. 2011, 83 (9), 3422-3430.
15. Alban, S.; Lühn, S.; Schiemann, S., Combination of a two-step fluorescence assay and a two-step anti-Factor Xa assay for detection of heparin falsifications and protein in heparins. Anal. Bioanal. Chem. 2011, 399 (2), 681-690.
16. Lühn, S.; Schiemann, S.; Alban, S., Simple fluorescence assay for quantification of OSCS in heparin. Anal. Bioanal. Chem. 2011, 399 (2), 673-680.
17. Tami, C.; Puig, M.; Reepmeyer, J. C.; Ye, H.; D'Avignon, D. A.; Buhse, L.; Verthelyi, D., Inhibition of Taq polymerase as a method for screening heparin for oversulfated contaminants. Biomaterials 2008, 29 (36), 4808-4814.
18. Kalita, M.; Balivada, S.; Swarup, V. P.; Mencio, C.; Raman, K.; Desai, U. R.; Troyer, D.; Kuberan, B., A Nanosensor for Ultrasensitive Detection of Oversulfated Chondroitin Sulfate Contaminant in Heparin. J. Am. Chem. Soc. 2014, 136 (2), 554-557.
19. Tyagi, S.; Kramer, F. R., Molecular Beacons: Probes that Fluoresce upon Hybridization. Nat. Biotech. 1996, 14 (3), 303-308.
20. Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346 (6287), 818-822.
21. Lin, Y.-H.; Tseng, W.-L., A room-temperature adenosine-based molecular beacon for highly sensitive detection of nucleic acids. Chem. Commun. 2012, 48 (50), 6262-6264.
22. Yang, R.; Jin, J.; Long, L.; Wang, Y.; Wang, H.; Tan, W., Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(ii) ions. Chem. Commun. 2009, (3), 322-324.
23. Kuo, C.-Y.; Tseng, W.-L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chem. Commun. 2013, 49 (41), 4607-4609.
24. Rabenstein, D. L.; Robert, J. M.; Peng, J., Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin. Carbohydr. Res. 1995, 278 (2), 239-256.
25. Chevalier, F.; Lucas, R.; Angulo, J.; Martin-Lomas, M.; Nieto, P. M., The heparin–Ca2+ interaction: the influence of the O-sulfation pattern on binding. Carbohydr. Res. 2004, 339 (5), 975-983.
26. Hung, S.-Y.; Tseng, W.-L., A polyadenosine–coralyne complex as a novel fluorescent probe for the sensitive and selective detection of heparin in plasma. Biosens. Bioelectron. 2014, 57 (0), 186-191.
27. Xing, F.; Song, G.; Ren, J.; Chaires, J. B.; Qu, X., Molecular recognition of nucleic acids: Coralyne binds strongly to poly(A). FEBS Lett. 2005, 579 (22), 5035-5039.
28. Moraru-Allen, A. A.; Cassidy, S.; Asensio Alvarez, J. L.; Fox, K. R.; Brown, T.; Lane, A. N., Coralyne has a preference for intercalation between TA.T triples in intramolecular DNA triple helices. Nucleic Acids Res. 1997, 25 (10), 1890-1896.
29. Polak, M.; Hud, N. V., Complete disproportionation of duplex poly(dT)·poly(dA) into triplex poly(dT)·poly(dA)·poly(dT) and poly(dA) by coralyne. Nucleic Acids Res. 2002, 30 (4), 983-992.
30. McGhee, J. D.; von Hippel, P. H., Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974, 86 (2), 469-489.
31. Brustkern, A. M.; Buhse, L. F.; Nasr, M.; Al-Hakim, A.; Keire, D. A., Characterization of Currently Marketed Heparin Products: Reversed-Phase Ion-Pairing Liquid Chromatography Mass Spectrometry of Heparin Digests. Anal. Chem. 2010, 82 (23), 9865-9870.
32. Aich, U.; Shriver, Z.; Tharakaraman, K.; Raman, R.; Sasisekharan, R., Competitive Inhibition of Heparinase by Persulfonated Glycosaminoglycans: A Tool to Detect Heparin Contamination. Anal. Chem. 2011, 83 (20), 7815-7822.
33. Bairstow, S.; McKee, J.; Nordhaus, M.; Johnson, R., Identification of a simple and sensitive microplate method for the detection of oversulfated chondroitin sulfate in heparin products. Anal. Biochem. 2009, 388 (2), 317-321.
34. Wang, L.; Buchanan, S.; Meyerhoff, M. E., Rapid Detection of High Charge Density Polyanion Contaminants in Biomedical Heparin Preparations Using Potentiometric Polyanion Sensors. Anal. chem. 2008, 80 (24), 9845-9847.
35. Kang, Y.; Gwon, K.; Shin, J. H.; Nam, H.; Meyerhoff, M. E.; Cha, G. S., Highly Sensitive Potentiometric Strip Test for Detecting High Charge Density Impurities in Heparin. Anal. Chem. 2011, 83 (10), 3957-3962.

第2章
1. Corrigan, R. M.; Grundling, A., Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Micro. 2013, 11 (8), 513-524.
2. Witte, G.; Hartung, S.; Büttner, K.; Hopfner, K.-P., Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. Mol. Cell 2008, 30 (2), 167-178.
3. Römling, U., Great Times for Small Molecules: c-di-AMP, a Second Messenger Candidate in Bacteria and Archaea. Sci. Signal. 2008, 1, 39.
4. Kamegaya, T.; Kuroda, K.; Hayakawa, Y., Identification Of A Streptococcus Pyogenes Sf370 Gene Involved In Production Of C-Di-Amp. Nagoya J. Med. Sci. 2011, 73, 49-57.
5. Mehne, F. M. P.; Gunka, K.; Eilers, H.; Herzberg, C.; Kaever, V.; Stülke, J., Cyclic Di-AMP Homeostasis in Bacillus subtilis: BOTH LACK AND HIGH LEVEL ACCUMULATION OF THE NUCLEOTIDE ARE DETRIMENTAL FOR CELL GROWTH. J. Biol. Chem. 2013, 288 (3), 2004-2017.
6. Barker, J. R.; Koestler, B. J.; Carpenter, V. K.; Burdette, D. L.; Waters, C. M.; Vance, R. E.; Valdivia, R. H., STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection. mBio 2013, 4 (3), e00018-13.
7. Corrigan, R. M.; Abbott, J. C.; Burhenne, H.; Kaever, V.; Gründling, A., c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. PLoS Pathog. 2011, 7 (9), e1002217.
8. Bai, Y.; Yang, J.; Zarrella, T. M.; Zhang, Y.; Metzger, D. W.; Bai, G., Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae. J. Bacteriol. 2014, 196 (3), 614-623.
9. Kaplan Zeevi, M.; Shafir, N. S.; Shaham, S.; Friedman, S.; Sigal, N.; Nir Paz, R.; Boneca, I. G.; Herskovits, A. A., Listeria monocytogenes Multidrug Resistance Transporters and Cyclic Di-AMP, Which Contribute to Type I Interferon Induction, Play a Role in Cell Wall Stress. J. Bacteriol. 2013, 195 (23), 5250-5261.
10. Witte, C. E.; Whiteley, A. T.; Burke, T. P.; Sauer, J.-D.; Portnoy, D. A.; Woodward, J. J., Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection. mBio 2013, 4 (3), e00282-13.
11. Parvatiyar, K.; Zhang, Z.; Teles, R. M.; Ouyang, S.; Jiang, Y.; Iyer, S. S.; Zaver, S. A.; Schenk, M.; Zeng, S.; Zhong, W.; Liu, Z.-J.; Modlin, R. L.; Liu, Y.-j.; Cheng, G., The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 2012, 13 (12), 1155-1161.
12. Archer, K. A.; Durack, J.; Portnoy, D. A., STING-Dependent Type I IFN Production Inhibits Cell-Mediated Immunity to Listeria monocytogenes. PLoS Pathog. 2014, 10 (1), e1003861.
13. Woodward, J. J.; Iavarone, A. T.; Portnoy, D. A., c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response. Science 2010, 328 (5986), 1703-1705.
14. Rao, F.; See, R. Y.; Zhang, D.; Toh, D. C.; Ji, Q.; Liang, Z.-X., YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity. J. Biol. Chem. 2010, 285 (1), 473-482.
15. Smith, W. M.; Pham, T. H.; Lei, L.; Dou, J.; Soomro, A. H.; Beatson, S. A.; Dykes, G. A.; Turner, M. S., Heat Resistance and Salt Hypersensitivity in Lactococcus lactis Due to Spontaneous Mutation of llmg_1816 (gdpP) Induced by High-Temperature Growth. Appl. Environ. Microbiol. 2012, 78 (21), 7753-7759.
16. Ye, M.; Zhang, J.-J.; Fang, X.; Lawlis, G. B.; Troxell, B.; Zhou, Y.; Gomelsky, M.; Lou, Y.; Yang, X. F., DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence. Infect. Immun. 2014, 82 (5), 1840-1849.
17. Rapaport, E.; Zamecnik, P. C., Presence of diadenosine 5',5' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Pro. Natl. Acad. Sci. U. S. A. 1976, 73 (11), 3984-3988.
18. Lüthje, J.; Ogilvie, A., The presence of diadenosine 5′,5‴-P1,P3-triphosphate (Ap3A) in human platelets. Biochem. Biophys. Res. Commun. 1983, 115 (1), 253-260.
19. Flodgaard, H.; Klenow, H., Abundant amounts of diadenosine 5',5'-P1,P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets. Biochem. J. 1982, 208, 737-742.
20. Jankowski, J.; Tepel, M.; van der Giet, M.; Tente, I. M.; Henning, L.; Junker, R.; Zidek, W.; Schlüter, H., Identification and Characterization ofP 1,P 7-Di(adenosine-5′)-heptaphosphate from Human Platelets. J. Biol. Chem. 1999, 274 (34), 23926-23931.
21. Schluter, D., Experimental Evidence That Competition Promotes Divergence in Adaptive Radiation. Science 1994, 266 (5186), 798-801.
22. Jovanovic, A.; Jovanovic, S.; Mays, D. C.; Lipsky, J. J.; Terzic, A., Diadenosine 5′,5″-P1,P5-pentaphosphate harbors the properties of a signaling molecule in the heart. FEBS Lett. 1998, 423 (3), 314-318.
23. Jovanovic, A.; Zhang, S.; Alekseev, A.; Terzic, A., Diadenosine polyphosphate-induced inhibition of cardiac KATP channels: Operative state-dependent regulation by a nucleoside diphosphate. Eur. J. Physiol. 1996, 431 (5), 800-802.
24. Klishin, A.; Lozovaya, N.; Pintor, J.; Miras-Portugal, M. T.; Krishtal, O., Possible functional role of diadenosine polyphosphates: Negative feedback for excitation in hippocampus. Neuroscience 1994, 58 (2), 235-236.
25. Guzmán-Aranguez, A.; Crooke, A.; Peral, A.; Hoyle, C. H. V.; Pintor, J., Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Pro. Retin. Eye Res. 2007, 26 (6), 674-687.
26. Oppenheimer‐Shaanan, Y.; Wexselblatt, E.; Katzhendler, J.; Yavin, E.; Ben‐Yehuda, S., c‐di‐AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO rep. 2011, 12, 594-601.
27. Bai, Y.; Yang, J.; Zhou, X.; Ding, X.; Eisele, L. E.; Bai, G., Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-di-AMP. PLoS ONE 2012, 7 (4), e35206.
28. Bowie, A. G., Innate sensing of bacterial cyclic dinucleotides: more than just STING. Nat. Immunol. 2012, 13 (12), 1137-1139.
29. Underwood, A. J.; Zhang, Y.; Metzger, D. W.; Bai, G., Detection of cyclic di-AMP using a competitive ELISA with a unique pneumococcal cyclic di-AMP binding protein. J. Microbiol. Methods 2014, 107 (0), 58-62.
30. Zhou, J.; Sayre, D. A.; Zheng, Y.; Szmacinski, H.; Sintim, H. O., Unexpected Complex Formation between Coralyne and Cyclic Diadenosine Monophosphate Providing a Simple Fluorescent Turn-on Assay to Detect This Bacterial Second Messenger. Anal. Chem. 2014, 86 (5), 2412-2420.
31. Schulz, A.; Jankowski, V.; Zidek, W.; Jankowski, J., Highly sensitive, selective and rapid LC–MS method for simultaneous quantification of diadenosine polyphosphates in human plasma. J. Chromatogra. B 2014, 961 (0), 91-96.
32. LUO, J.; JANKOWSKI, J.; KNOBLOCH, M.; VAN DER GIET, M.; GARDANIS, K.; RUSS, T.; VAHLENSIECK, U.; NEUMANN, J.; SCHMITZ, W.; TEPEL, M.; DENG, M. C.; ZIDEK, W.; SCHLÜTER, H., Identification and characterization of diadenosine 5′,5‴-P1,P2 -diphosphate and diadenosine 5′,5‴-P1,P3-triphosphate in human myocardial tissue. FASEB J. 1999, 13 (6), 695-705.
33. Kron, M.; Leykam, J.; Kopaczewski, J.; Matus, I., Identification of diadenosine triphosphate in Brugia malayi by reverse phase high performance liquid chromatography and MALDI mass spectrometry. J. Chromatogra. B 2007, 856 (1–2), 234-238.
34. Jankowski, J.; Potthoff, W.; van der Giet, M.; Tepel, M.; Zidek, W.; Schlüter, H., High-Performance Liquid Chromatographic Assay of the Diadenosine Polyphosphates in Human Platelets. Anal. Biochem. 1999, 269 (1), 72-78.
35. Ripoll, C.; Martin, F.; Rovira, J. M.; Pintor, J.; Miras-Portugal, M. T.; Soria, B., Diadenosine Polyphosphates: A Novel Class of Glucose-Induced Intracellular Messengers in the Pancreatic β-Cell. Diabetes 1996, 45 (10), 1431-1434.
36. Martín, F.; Pintor, J.; Rovira, J. M.; Ripoll, C.; Miras-Portugal, M. T.; Soria, B., Intracellular diadenosine polyphosphates: a novel second messenger in stimulus-secretion coupling. FASEB J. 1998, 12 (14), 1499-1506.
37. Iwata, K.; Haruki, S.; Kimura, T., High-performance liquid chromatographic determination of diadenosine 5′,5‴-p1,p4-tetraphosphate with precolumn fluorescence derivatization and its application to metabolism study in whole blood. J. Chromatogra. B 1995, 667 (2), 339-343.
38. Schepers, E.; Glorieux, G.; Jankowski, V.; Dhondt, A.; Jankowski, J.; Vanholder, R., Dinucleoside polyphosphates: newly detected uraemic compounds with an impact on leucocyte oxidative burst. Nephrol. Dial. Transplant. 2010, 25 (8), 2636-2644.
39. Wright, M.; Miller, A. D., Quantification of diadenosine polyphosphates in blood plasma using a tandem boronate affinity–ion exchange chromatography system. Anal. Biochem. 2013, 432 (2), 103-105.
40. Jankowski, J.; Jankowski, V.; Laufer, U.; van der Giet, M.; Henning, L.; Tepel, M.; Zidek, W.; Schlüter, H., Identification and Quantification of Diadenosine Polyphosphate Concentrations in Human Plasma. Arterioscl. Throm. Vasc. Biol. 2003, 23 (7), 1231-1238.
41. Luo, J.; Jankowski, V.; Güngär, N.; Neumann, J.; Schmitz, W.; Zidek, W.; Schlüter, H.; Jankowski, J., Endogenous Diadenosine Tetraphosphate, Diadenosine Pentaphosphate, and Diadenosine Hexaphosphate in Human Myocardial Tissue. Hypertension 2004, 43 (5), 1055-1059.
42. Jankowski, V.; Karadogan, S.; Vanholder, R.; Nofer, J. R.; Herget-Rosenthal, S.; van der Giet, M.; Tolle, M.; Tran, T. N. A.; Zidek, W.; Jankowski, J., Paracrine stimulation of vascular smooth muscle proliferation by diadenosine polyphosphates released from proximal tubule epithelial cells. Kidney Int. 2007, 71 (10), 994-1000.
43. Ramos, A.; Pintor, J.; Mirasportugal, M. T.; Rotllan, P., Use of Fluorogenic Substrates for Detection and Investigation of Ectoenzymatic Hydrolysis of Diadenosine Polyphosphates: A Fluorometric Study on Chromaffin Cells. Anal. Biochem. 1995, 228 (1), 74-82.
44. Jankowski, V.; Vanholder, R.; Henning, L.; Karadogan, S.; Zidek, W.; Schlüter, H.; Jankowski, J., Isolation and quantification of dinucleoside polyphosphates by using monolithic reversed phase chromatography columns. J. Chromatogra. B 2005, 819 (1), 131-139.
45. Alexeev, V. L.; Das, S.; Finegold, D. N.; Asher, S. A., Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid. Clin. Chem. 2004, 50 (12), 2353-2360.
46. Ye, T.; Jiang, X.; Xu, W.; Zhou, M.; Hu, Y.; Wu, W., Tailoring the glucose-responsive volume phase transition behaviour of Ag@poly(phenylboronic acid) hybrid microgels: from monotonous swelling to monotonous shrinking upon adding glucose at physiological pH. Polym. Chem. 2014, 5 (7), 2352-2362.
47. Lin, Y.-H.; Tseng, W.-L., Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe. Chem. Commun. 2011, 47 (39), 11134-11136.
48. Hung, S.-Y.; Tseng, W.-L., A polyadenosine–coralyne complex as a novel fluorescent probe for the sensitive and selective detection of heparin in plasma. Biosens. Bioelectron. 2014, 57 (0), 186-191.
49. Xing, F.; Song, G.; Ren, J.; Chaires, J. B.; Qu, X., Molecular recognition of nucleic acids: Coralyne binds strongly to poly(A). FEBS Lett. 2005, 579 (22), 5035-5039.
50. Biver, T.; Boggioni, A.; García, B.; Leal, J. M.; Ruiz, R.; Secco, F.; Venturini, M., New aspects of the interaction of the antibiotic coralyne with RNA: coralyne induces triple helix formation in poly(rA)•poly(rU). Nucleic Acids Res. 2010, 38 (5), 1697-1710.
51. Çetinkol, Ö. P.; Hud, N. V., Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res. 2009, 37 (2), 611-621.
52. Giri, P.; Suresh Kumar, G., Binding of protoberberine alkaloidcoralyne with double stranded poly(A): a biophysical study. Mol. BioSyst. 2008, 4 (4), 341-348.
53. Joung, I. S.; Persil Çetinkol, Ö.; Hud, N. V.; Cheatham, T. E., Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A·A base pairing and a putative structure of the coralyne-induced homo-adenine duplex. Nucleic Acids Res. 2009, 37 (22), 7715-7727.
54. Polak, M.; Hud, N. V., Complete disproportionation of duplex poly(dT)·poly(dA) into triplex poly(dT)·poly(dA)·poly(dT) and poly(dA) by coralyne. Nucleic Acids Res. 2002, 30 (4), 983-992.
55. Wilson, W. D.; Gough, A. N.; Doyle, J. J.; Davidson, M. W., Coralyne. Intercalation with DNA as a possible mechanism of antileukemic action. J. Med. Chem. 1976, 19 (10), 1261-1263.
56. Lea, W. A.; Simeonov, A., Fluorescence polarization assays in small molecule screening. Expert Opin. Drug Discov. 2010, 6 (1), 17-32.
57. Owicki, J. C., Fluorescence Polarization and Anisotropy in High Throughput Screening: Perspectives and Primer. J. Biomol. Screen. 2000, 5 (5), 297-306.
58. Smith, D.; Eremin, S., Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal. Bioanal. Chem. 2008, 391 (5), 1499-1507.
59. McGhee, J. D.; von Hippel, P. H., Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974, 86 (2), 469-489.
60. Boyd, C. D.; O'Toole, G. A., Second Messenger Regulation of Biofilm Formation: Breakthroughs in Understanding c-di-GMP Effector Systems. Annu. Rev. Cell Dev. Biol. 2012, 28 (1), 439-462.
61. Jenal, U.; Malone, J., Mechanisms of Cyclic-di-GMP Signaling in Bacteria. Annu. Rev. Genet. 2006, 40 (1), 385-407.
62. Kalia, D.; Merey, G.; Nakayama, S.; Zheng, Y.; Zhou, J.; Luo, Y.; Guo, M.; Roembke, B. T.; Sintim, H. O., Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Re. 2013, 42 (1), 305-341.
63. Hengge, R., Principles of c-di-GMP signalling in bacteria. Nat. Rev. Micro. 2009, 7 (4), 263-273.
64. Peral, A.; Carracedo, G.; Acosta, M. C.; Gallar, J.; Pintor, J. s., Increased Levels of Diadenosine Polyphosphates in Dry Eye. Invest. Ophthalmol. Vis. Sci. 2006, 47 (9), 4053-4058.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code