Responsive image
博碩士論文 etd-0602115-183209 詳細資訊
Title page for etd-0602115-183209
論文名稱
Title
以穩定碳氮同位素探討西印度洋大目鮪的食性
Investigation of feeding guild of bigeye tuna, Thunnus obesus, in the western Indian Ocean by stable isotope analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-16
繳交日期
Date of Submission
2015-07-02
關鍵字
Keywords
食性轉變、胃內容物、機會主義掠食者、胃壁組織、組織轉換率
Opportunistic feeder, Size segregation, Seasonal dietary shift, Tissue turnover rate, Stomach contents
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
本研究藉胃壁與肌肉組織的差異及食餌生物的穩定同位素分析,以期了解西印度洋大目鮪之季節與體型的食性變化。研究期間,分別分析了大目鮪肌肉32個、胃壁117個及食餌生物129個樣品。此外為了解穩定同位素的地理差異,另分析台灣地區生物樣品50個,以便與西印度洋大目鮪的食餌生物之穩定同位素值進行比較。
結果顯示,大目鮪的胃壁及肌肉組織中的碳氮同位素值具有組織差異,胃壁的δ13C値較肌肉來的高,而其δ15N值則較低。胃壁較肌肉組織的食物轉換率較快,使得胃壁中的穩定同位素易反映短時間的食餌變化,而肌肉組織則適用於研究長期的時空移動及整體族群的攝食習性。
此外,西印度洋大目鮪胃壁的δ15N值具有體型及月別差異。小型大目鮪(FL<185公分)較偏好捕食史氏蟳及帆蜥魚幼魚等游泳能力較差,營養階層較低的食餌,因此其δ15N値明顯低於大型大目鮪(FL>185公分)。7~9月間所捕獲的大目鮪,較其他季節捕食較多的甲殼類食餌,因此其δ15N値較其他季節低。此季節與月別的穩定同位素差異僅呈現於大目鮪的胃壁組織,而肌肉組織則無法觀察到此變化。
受到體長、食物網組成及環境因子的影響,西印度洋食餌生物的δ15N値較以往文獻要高,其中又以柔珠目魚(14.21 ± 0.64‰)為最高,細角刺蝦為最低(10.06 ± 1.47‰)。又因大目鮪大量攝食甲殼類食餌,有別於以往文獻記載大目鮪以帆蜥魚科和長吻帆蜥魚等魚類為主食之結果,以至於大目鮪與其食餌生物的營養階層的分界不明顯。
Abstract
In order to investigate the dietary shift of the bigeye tuna in western Indian Ocean, the stable isotope of 117 stomach tissues, 32 muscle tissues and 129 food items of bigeye tuna were analyzed. Moreover, 50 fish and shrimp samples collected from southwestern Taiwan were also analyzed.
The results show that both the carbon and nitrogen stable isotope were found different between the bigeye tuna’s stomach and muscle tissues. The δ13C values in stomach were higher than those of muscles, but δ15N values were opposite. The difference was as a result of the different tissues turnover rate of the stomach and muscle tissues. We found that the stable isotope values of stomach and muscle tissues, representing short-(day) and long-term (yearly), respectively, nutrient turnover rate.
Small size of bigeye tuna (FL<185 cm), prefer prey on Charybdis smithii and Alepisauridae larvae, had lower δ15N value than the big ones (FL>185 cm). Because of the bigeye tuna prey on more crustacean between July and September, so that they had lower δ15N values than the tuna in other seasons. We found that the size segregation and seasonal shift in the diet of bigeye tuna cause the variation of δ15N values.
The highest and lowest δ15N values of the prey of bigeye tuna was Scopelarchus analis (14.21 ± 0.64‰) and Oplophorus gracilirostris (10.06 ± 1.47‰). Influence by prey’s body length, construct of the local food web and the environmental factor, the bigeye tuna’s prey had higher δ15N values than literature records. We speculate that the bigeye tuna from western Indian Ocean prey on lower trophic level prey in a long period, and accumulated lower δ15N, and as a result that their trophic level are overlap between bigeye tuna and their preys in western Indian Ocean.
目次 Table of Contents
目錄
謝辭……………………………………………………………………...ⅰ
摘要……………………………………………………………………...ⅲ
英文摘要………………………………………………………………...ⅴ
表目錄…………………………………………………………………...ⅹ
圖目錄………………………………………………………………......ⅹⅰ
一、 前言………………………………………………………………..1
1.1大目鮪的簡介…………………………………………………1
1.2西印度洋區……………………………………………………2
1.3穩定同位素在大目鮪攝食生態的應用....…………………....3
1.4不同組織間穩定同位素的差異………………………………5
1.5組織中的油脂對穩定同位素的影響…………………………5
1.6大目鮪食性研究之文獻回顧…………………………………6
1.7實驗目的………………………………………………………7
二、材料與方法…………………………………………………………8
2.1樣品採集………………………………………………………..8
2.2食餌生物取樣…………………………………………………..9
2.2.1樣品處理方式…………………………………………….9
2.2.2胃袋食餌生物…………………………………………….9
2.2.3新鮮樣品………………………………………………...10
2.3穩定同位素測定…………………………………………..10
2.3.1油脂萃取………………………………………………...10
2.3.2穩定同位素分析…………………………………….......11
2.4數據分析……………………………………………………....12
三、結果……………………………………………………………......14
3.1去油脂前後之穩定同位素差異……………………....…...….14
3.2大目鮪肌肉與胃壁組織穩定同位素之差異……………...….15
3.3大目鮪尾叉長與穩定同位素值…………………………...….15
3.4大目鮪捕獲月份與穩定同位素值………………………...….17
3.5大目鮪捕獲地區與穩定同位素值………………………...….18
3.6大目鮪食物網之穩定同位素值…………………………........18
3.7新鮮深海生物之穩定同位素值…………………………...….19
四、討論…………………………………………………………...…...21
4.1去油脂前後對穩定同位素的影響…………………………....21
4.2大目鮪肌肉和胃壁組織穩定同位素值之差異…………...….22
4.3大目鮪的食性轉換………………………………....................23
4.4大目鮪穩定同位素值與其空間變化……………………...….25
4.5大目鮪胃袋內食餌生物之δ15N值..........................................26
4.5.1魚類………………………………………………...…....26
4.5.2蝦類………………………………...................................27
4.5.3頭足類…………………………………...........................27
4.6大目鮪胃袋內食餌生物之δ13C值.…………………….…….27
4.7從大目鮪及其食餌的穩定同位素值探討西印度洋大目鮪食階 之變化……………………………………………………........28
五、參考文獻..........................................................................................31
參考文獻 References
五、參考文獻 (格式參考Journal of Experimental Marine Biology and Ecology)
中文部分
朱國平、許柳雄、周應祺、姜文新。印度洋中西部和大西洋西部水域大眼金槍魚食性比較,生態學報 27:135-141。2007
許淑娘。以碳氮穩定同位素組成探究經濟性魚類之食物鏈動態並預估潛在漁產量,國立中山大學海洋生物研究所。1998
林璟翔。西印度洋大目鮪食性之研究,國立中山大學海洋生物科技暨資源研究所。2012
邵廣昭。台灣魚類資料庫 網路電子版 version 2005/5 http://fishdb.sinica.edu.tw,(2006/10/19)
沈世傑。臺灣魚類誌,國大台灣大學動物學系。1993
彭宗仁、劉滄琴、林幸助。穩定同位素在農業及生態環境研究上之應用,台灣農業研究。2006
財團法人中華民國對外漁業合作發展協會,台灣地區遠洋鮪延繩釣漁業漁獲統計年報。2013
英文部分
Asante, K.A., Agusa, T., Kubota, R., Mochizuki, H., Ramu, K., Nishida, S., Ohta, S., Yeh, H., Subramanian, A., Tanabe, S., 2010. Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of Sulu Sea and the Celebes Sea. Marine Pollution Bulletin 60, 1560-1570.
Bodin, N., Le Loc’h, F., Hily, C., 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experime Marine Biology and Ecology 341, 168-175.
Brill, R.W., Biglow, K.A., Musyl, M.K., Fritsches, K.A., Warrant, E.J., 2005. Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fish biology fishery biology. ICCAT 57 (2), 142-161.
Bugoni, L., McGill, R.A.R., Furness, R.W., 2010. The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. Journal of Experimental Marine Biology and Ecology 391, 190-200.
Cardona, L., de Quevedo, I.Ā., Borrell, A., Aguilar, A., 2012. Massive consumption of gelatinous plankton by Mediterranean apex predators. Plos One 7 (3), e31329.
Caut, S., Angulo, E., Courchamp, F., 2009. Variation in discrimination factors (△15N and △13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46, 443-453.
Caut, S., Jowers, M.J., Michel, L., Lepoint, G., Fisk, A.T., 2013. Deit-and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Marine Ecology Progress Series 492, 185-195.
Cherel, Y., Le Corre, M., Jaquement, S., Ménard, F., Richard, P., Werimerskirch, H., 2008. Resource partitioning within a tropical seabird community: new information from stable isotopes. Marine Ecology Progress Series 366, 281-291.
Cherel, Y., Fontaine, C., Richard, P., Lebat, J., 2010. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnology and Oceanography 55 (1), 324-332.
Creamer, B., Shorter, R.G., Bamforth, J., 1961. The turnover and shedding of epithelial cells. Gut 2, 110-116.
Das, K., Lepoint, G., Loizeau, V., Debacker, V., Dauby, P., Bouquegneau, J.M., 2000. Tuna and dolphin associations in the north-east Atlantic: evidence of different ecological niches from stable isotope and heavy metal measurements. Marine Pollution Bulletin 40 (2), 102-109.
DeNiro, M.J., Epstein, S., 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197, 261-263.
DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495-506.
DeNiro, M.J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341-351.
Estrada, J.A., Lutcavage, M., Thorrold, S.R., 2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology 147, 37-45.
Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for isolation and purification of total lipids from animal tissues. The Journal Biological Chemistry 226, 497-509.
Fontugune, M.R., Duplessy, J.C., 1981. Organic carbon isotopic fractionation by marine plankton in the temperature range −1 to 31℃. Oceanologica Acta 4 (1), 85-90.
Gaya-Haake, B., Lahajnar, L., Emeis, K.-Ch., Unger, D., Rixen, T., Suthhof, A., Ramaswarmy, V., Schulz, H., Parpkari, A.L., Guptha, M.V.S., Ittekkot, V., 2005. Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean. Marine Chemistry 96, 243-255.
Graham, B.S., Grubbs, D., Holland, K., Popp, B. N., 2007. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Marine Biology 150, 647-658.
Graham, B.S., Koch, P.L., Newsome, S.D., McMahon, K.W., Aurioles, D., 2010. Using isotopes to trace the movements and foraging behavior of top predators in oceanic ecosystem, Isoscapes, Springer.
Gruber, N., Sarmiento, J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11 (2), 235-266.
Hisamichi, Y., Haraguchi, K., Endo, T., 2010. Levels of mercury and organochlorine compounds and stable isotope ratios in three tuna species taken from different regions of Japan. Environmental Science & Technology 44, 5971-5978.
Hobson, K.A., Clark, R.G., 1992. Assessing avian diets using stable isotopes П: factors influencing diet-tissue fractionation. The Condor 94, 189-197.
Hopkins, T.L., Flock, M.E., Gartner, J.V., Torres, J.J., 1994. Structure and trophic ecology of a low latitude midwater decapod and mysid assemblage. Marine Ecology Progress Series 109, 143-156.
Hussey, N.E., Brush, J., McCarthy, I.D., Fisk, A.T., 2010. δ15N and δ13C diet-tissue discrimination factors for large sharks under semi-controlled conditions. Comparative Biochemistry and Physiology, Part A 155, 445-453.
Hussey, N.E., Dudley, S.F.J., McCarthy, I.D., Cliff, G., Fisk, A.T., 2011. Stable isotope profiles of large marine predators: viable indicators of trophic position, diet, and movement in sharks? Canadian Journal of Fisheries and Aquatic Sciences 68, 2029-2045.
Hussey, N.E., MacNeil, M.A., McMeans, B.C., Olin, J.A., Dudley, S.F.J., Cliff, G., Wintner, S.P., Fennessy, S.T., Fisk, A.T., 2014. Rescaling the trophic structure of marine food webs. Ecology Leters 17, 239-250.
ICCAT., 2008. Report of the standing committee on research and statistic. In Report for Biennial Period, 2006-2007. Part П, 70-78.
IOTC., 2014. Report of sixteen session of the IOTC working party on tropical tunas.
Josse, E., Bach, P., Dagorn, L., 1998. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371/372, 61-69.
Kiljunen, M., Grey, J., Sinisalo, T., Harrod, C., Immonen, H., Jones, R.I., 2006. A revised model for lipid-normalizing δ13C values from aquatic organism, with implications for isotope mixing models. Journal of Applied Ecology 43, 1213-1222.
Kojadinovic, J., Ménard, F., Bustamante, P., Cossosn, R.P., Le Corre, M., 2008. Trophic ecology of marine birds and pelagic fishes from Reunion Island as determined by stable isotope analysis. Marine Ecology Progress Series 361, 239-251.
Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C., Macko, S.A., 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental result. Geochimica et Cosmochimica Acta 59 (6), 1131-1138.
Lee, P.F., Chen, I.C., Tzeng, W.N., 2005. Spatial and temporal distribution patterns of bigeye tuna (Thunnus obesus) in the Indian Ocean. Zoological Studies 44 (2), 260-270.
Lin, H.Y., Chang, N.N., Shiao, J.C., Kao, S.J., 2014. Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan. Marine Ecology Progress Series 501,53-66.
Logan, J.M., Lutcavage, M.E., 2008. A comparison of carbon and nitrogen stable isotope ratios of fish tissues following lipid extractions with non-polar and traditional chloroform/methanol solvent systems. Rapid Communications in Mass Spectrometry 22, 1081-1086.
Logan, J.M., Rodrīguez-Marīn, E., Goñi, N., Barreiro, S., Arrizabalaga, H., Golet, W., Lutcavage, M., 2011. Diet of young Atlantic Bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Marine Biology 158, 73-85.
Logan, J.M., Lutcavage, M.E., 2013. Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central north Atlantic Ocean using stable isotope analysis. Deep Sea Research П 95, 63-73.
Lorrain, A., Graham, B.S., Popp, B.N., Allain, V., Olson, R.J., Hunt, B.P.V., Potier, M., Fry, B., Galván-Magaña, F., Menkes, C.E.R., Kaehler, S., Ménard, F., 2014. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep-Sea Research Π 113, 188-198.
MacAvoy, S.E., Macko, S.A., Arneson, L.S., 2005. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Canadian Journal of Zoology 83, 631-641.
Madigan, D.J., Litvin, S.Y., Popp, B.N., Carisle, A.B., Farwell, C.J., Block, B.A., 2012. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific Bluefin tuna (Thunnus orientalis). Plos One 7 (11), e49220.
McMeans, B.C., Svavarsson, J., Dennard, S., Fisk, A.T., 2010. Diet and resource use among Greenland sharks (Somniosus microcephalus) and teleosts sampled in Iceland waters using δ13C, δ15N, and mercury. Canadian Jiournal of Fisheries and Aquatic Sciences 67, 1428-1438.
Ménard, F., Labrune, C., Shin, Y.J., Asine, A.S., Bard, F.X., 2006. Opportunistic predation in tuna: a size-based approach. Marine Ecology Progress Series 323, 223-231.
Ménard, F., Lorrain, A., Potier, M., Marsac., 2007. Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Marine Biology 153, 141-152.
Ménard, F., Potier, M., Jaquement, S., Romanov, E., Sabatié, R., Cherel, Y., 2013. Pelagic cephalopods in the western Indian Ocean: New information from diets of top predators. Deep Sea Research П 95, 83-92.
Mintenbeck, K., Brey, T., Jacob, U., Knust, R., Struck, U., 2008. How to account for the lipid effect on carbon stable-isotope ratio (δ13C): sample treatment effects and model bias. Journal of Fish Biology 72, 815-830.
Mohri, M., Nishida, T., 1999. Distribution of bigeye tuna and its relationship to the environmental conditions in the Indian Ocean based on the Japanese longline fisheries information. IOTC Proceedings 2, 221-230.
Monticelli, D., Ramos, J.A., Quartly, G.D., 2007. Effects of annual changes in primary productivity and ocean indices on the breeding performance of tropical rpseate terns in the western Indian Ocean. Marine Ecology Progress Series 351, 273-286.
Musyl, M.K., Brill, R.W., Boggs, C.H., Curran, D.S., Kazama, T.K., Seki, M.P., 2003. Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fisheries Oceanography 12 (3), 152-169.
Nootmorn, P., 2005. Reproductive biology bigeye tuna in the eastern Indian Ocean. IOTC Proceedings 7, 1-5.
Olson, R.J., Wattters, G.M., 2003. A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission, Bulletin 22 (3), 135-187.
Olson, R.J., Popp, B.N., Graham, B.S., López-Ibarra, G.A., Galván-Magaña, F., Lennert-Cody, C.E., Bocanegra-Castillo, N., Wallsgrove, N.J., Gier, E., Alatorre-Ramirez, V., Balance, L.T., Fry, B., 2010. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Progress in Oceanography 26, 124-138.
Parnell, A.C., Inger, R., Bearhop, S., Jackson, A.L., 2010. Source partitioning using stable isotopes: coping
Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293-320.
Pinnegar, J.K., Polunin, N.V.C., 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interaction. Functional Ecology 13, 225-231.
Pointer, M.A., Carvalho, L.S., Cowing, J.A., Bowmaker, J.K., Hunt, D.M., 2007. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. The Journal of Experimental Biology 210, 2829-2835.
Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecological Society of America 83 (3), 703-718.
Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Ouattrochi, J., Mntana, C.G., 2007. Getting to the fat of matter: models, method and assumptions for dealing with lipids in stable isotope analyses. Qecologia (Bierl.), 152 (1), 179-189.
Potier, M., Marsac, F., Lucas, V., Sabatié, R., Hallier, J-P., Ménard, F., 2004. Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. Western Indian Ocean Journal of Marine Science 3 (1), 51-62.
Potier, M., Ménard, F., Cherel, Y., Lorrain, A., Sabatié, R., Marsac, F., 2007. Role of pelagic crustaceans in the diet of the longnose lancefish Alepisaurus ferox in the Seychelles waters. African Journal of Marine Science 29 (1), 113-122.
Rau, G.H., Mearns, A.J., Young, D.R., Olson, R.J., Schafer, H.A., Kaplan, I.R., 1983. Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 64 (5), 1314-1318.
Rau, G.H., Takahashi, T., Des Marais, D.J., 1989. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 314 (12), 516-518.
Revill, A.T., Young, J.W., Lansdell, M., 2009. Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Marine Biology 156, 1241-1253.
Romanov, E.V., Ménard, F., Zamorov, V.V., Potier, M., 2008. Varibability in conspecific predation among longnose lancetfish Alepisaurus ferox in the western Indian Ocean. Fisheries Science 74, 62-68.
Ross, S.W., Quattrini, A.M., Roa-Varón, A.Y., McClain, J.P., 2010. Species composition and distribution of mesopelagic fishes over the slope of the north-central Gulf of Mexico. Deep-Sea Research П 57, 1926-1956.
Rounick, J.S., Winterbourn, M.J., 1986. Stable carbon isotopes and carbon flow in ecosystems. BioScience 36 (3), 171-177.
Sará, G., Sará, R., 2007. Feeding habits and trophic levels of Bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. Journal of Applied Ichthyology 23, 122-127.
Schott, F., 1983. Monsoon response of the Somali Current and associated upwelling. Progress in Oceanography 12, 357-381.
Senn, D.B., Chesney, E.J., Blum, J.D., Bank, M.S., Maage, A., Shine, J.P., 2010. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environmental Science & Technology 44, 1630-1637.
Smith, S.L., Codispoti, L.A., 1980. Southwest monsoon of 1979: chemical and biological response of Somali coastal waters. Science 209 (4456), 597-600.
Sotriopoulos, M.A., Tonn, W.M., Wassenaar, L.I., 2004. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecology of Freshwater fish 13, 155-160.
Sun, C.L., Yeh, S.Z., Chang, Y.J., Chang, H.Y., Chu, S.L., 2013. Reproductive biology of female bigeye tuna Thunnus obesus in the western Pacific Ocean. Journal of Fish Biology 83, 250-271.
Swallow, J.C., 1984. Some aspects of the physical oceanography of the Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers 31, 639-650.
Sweeting, C.J., Polunin, M.V.C., Jenning, S., 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom 20, 595-601.
Takai, N., Onaka, S., Ikeda, Y., Yatsu, A., Kidokoro, H., Sakamotm, W., 2000. Geographical variations in carbon and nitrogen stable isotope ratios in squid. Journal of the Marine Biologica Association 80, 675-684.
Tieszen, L.L., Boutton, T.W., Tesdahl, K.G., Slade, N.A., 1983. Fractionation and turnover of sable carbon isotopes in animal tissues: implication for δ13C analysis of diet. Oecologia 57, 32-37.
van Couwelaar, M., Angel, M.V., Madin, L., 1997. The distribution and biology of the swimming crab Charybdis smithii McLeay, 1983 (Crustacea; Brachyura; Portunidae) in the NW Indian Ocean. Deep-Sea Research Π 44 (6-7), 1251-1280.
Varela, J.L., Larrañaga, A., Medina, A., 2011. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic Bluefin tuna (Thunnus thynnus). Journal of Experimental Marine Biology and Ecology 406, 21-28.
Varela, J.L., Rodriguez-Marin, E., Medina, A., 2013. Estimating diets of pre-spawning Atlantic Bluefin tuna from stomach content and stable isotope analyses. Journal of Sea Research 76, 287-192.
Vizzini, S., Tramati, C., Mazzola, A., 2010. Comparison of stable isotope composition and inorganic and organic contaminant levels in wild and farmed Bluefin tuna, Thunnus thynnus, in the Mediterranean Sea. Chemosphere 78, 1236-1243.
Watanabe, S., Isshiki, T., Kudo, T., Yamada, A., Katayama, S., Fukuda, M., 2006. Using stable isotope ratios as a tracer of feeding adaptation in released Japanese flounder Paralichthys olivaceus. Journal of Fish Biology 68: 1192-1205.
Warren, B., Stommel, H., Swallow, J.C., 1966. Water masses and patterns of flow in the Somali Basin during the soutgwest monsoon of 1964. Deep-Sea Researsh 13, 825-860.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.67.149
論文開放下載的時間是 校外不公開

Your IP address is 18.224.67.149
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code