Responsive image
博碩士論文 etd-0602118-142117 詳細資訊
Title page for etd-0602118-142117
論文名稱
Title
氧化還原反應法沉積非晶形鈷錳金屬氧化物薄膜於析 氧反應上之應用
Redox Deposition of Amorphous Cobalt Manganese Oxide Thin Film for Oxygen Evolution Reaction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-25
繳交日期
Date of Submission
2018-07-02
關鍵字
Keywords
析氧反應、鍍膜、氧化還原、非晶相、鈷錳金屬氧化物
coating, oxygen evolution reaction, amorphous, cobalt manganese oxide, redox
統計
Statistics
本論文已被瀏覽 5670 次,被下載 1
The thesis/dissertation has been browsed 5670 times, has been downloaded 1 times.
中文摘要
現代人大肆開發後所造成嚴重污染問題,隨著環保意識的高漲使得新的潔淨能源發展成為十分重要的議題。其中析氧反應 (Oxygen Evolution Reaction, OER),作為潔淨能源技術與能源儲存中的一項代表,更是如燃料電池等裝置運作的重要環節。
在本研究中,我們發展一種不同於傳統鍍膜方式。透過簡單的溶液氧化還原法,經由簡易的低溫加熱,結合溶液高滲透性的優勢,能在任何材質的基材、複雜的結構中,沉積上一層均勻且高強度的鈷錳氧化氫氧化物薄膜 (Cobalt manganese oxide hydroxide, CMOH)。此方式可大量且大面積地實現任何以往傳統方式所無法鍍的基材表面上 (絕緣體、低真空耐受性、不耐高溫),皆能均勻且連續的完整包覆。
透過 GID 及 HR-TEM 的鑑定,我們發現 CMOH 薄膜的結構屬於非晶形,且厚度僅有 5-10 nm,因此有優異的光學性質 (97.4% at 550 nm)。經過一系列的電化學測試,我們發現非晶形的 CMOH 薄膜比有晶相的鈷錳氧化物薄膜 (Cobalt manganese oxide, CMO) 具有更好的電化學活性及穩定性 (CMOH: 過電位= 50 mV 、電流衰退 < 2% 經過 60,000 秒; CMO 過電位= 240 mV 、電流衰退 18% 經過 60,000 秒),甚至勝過已經商業化的高活性貴金屬 OER 催化劑: RuO2 (過電位= 190 mV 、電流衰退 67% 經過 60,000 秒)。CMOH 薄膜優異的電化學特性對於長久的產氧儲能應用,有著很大的優勢。
在薄膜厚度控制上,只要透過添加陰離子,在一樣單純的生長條件下,就能均勻沉積出任何厚度的 CMOH 薄膜。此方法也能擴展至其他金屬系統 (鐵、錳),甚至可用於多元金屬的鍍膜系統 (鈷、鐵、錳)。
Abstract
Because of the rise of environmental awareness, the quality of the living environment is demanded more. Oxygen Evolution Reaction (OER), one of the representatives of clean energy technologies and energy storage, is an important part of energy storage devices.
In our work, we developed a method different from traditional deposition technology to overcome many inherent limitations. By a simple aqueous solution base redox method at lower temperature. We can almost deposit a layer uniform and high strength cobalt manganese oxide hydroxide thin film (CMOH) with the advantage of high reagent permeability. This method can efficiently deposit thin film over large area on any substrates which can’t be coated by traditional method, e.g. insulators, low vacuum tolerance, low temperature tolerance. Through GID and HR-TEM characterization, we can observe that of CMOH thin films are amorphous with thickness of 5-10 nm and good optical property with 97.4% transmittance. After a series of electrochemical tests, we reveal that CMOH shows the better OER activity and stability than the crystalline cobalt manganese oxide (CMO) thin film (CMOH: overpotential= 50 mV, current density decay < 2%; CMO overpotential= 240 mV, current density decay 18%), even be better than the commercial benchmark of, RuO2 (overpotential= 190 mV, current density decay 67%). This shows excellent electrochemical properties of CMOH thin film with great advantage for long-term oxygen energy storage applications.
In the film thickness controls, we can simply add anion under the same growing condition. We are able to uniformly deposit CMOH film with particular thickness. This method can also be extended to deposit thin films with other metal (iron and manganese), and even be used in multi-metal systems (cobalt, iron and manganese).
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章、緒論 1
1.1 研究動機 2
1.2 研究背景 3
1.2.1 氧化還原法合成雙金屬氧化物 3
1.2.2 奈米鈷金屬氧化物的應用 3
1.2.3 薄膜電化學催化劑 4
1.2.4 析氧反應 7
第二章、實驗樣品合成與鑑定方法 9
2.1 實驗藥品 9
2.2 鈷錳氫氧化物薄膜沉積於基板 10
2.2.1 FTO 導電玻璃清潔 10
2.2.2 鈷錳氫氧化物薄膜沉積 10
2.2.3 鈷錳氧化物薄膜製備 11
2.3 電化學測量 12
2.4 法拉第效率 13
2.5 薄膜沉積行為控制探討 13
2.6 薄膜沉積模擬計算 14
第三章、研究結果 17
3.1 CMOH 薄膜鑑定 17
3.1.1 CMOH 薄膜表面型態鑑定 17
3.1.2 CMOH 薄膜晶體結構鑑定 21
3.1.3 CMOH 薄膜鈷、錳氧化價態鑑定 24
3.2 CMO 薄膜鑑定 28
3.2.1 CMO 薄膜晶體結構鑑定 28
3.2.2 CMO 薄膜鈷、錳氧化價態鑑定 31
3.3 CMOH 薄膜沉積條件探討 33
3.3.1 沉積溫度對於 CMOH 薄膜的影響 33
3.3.2 沉積時間對於 CMOH 薄膜的影響 36
3.3.3 不同前驅物鈷/錳比例對於 CMOH 薄膜催化活性探討 38
3.4 石英晶體微量天平 (QCM) 對薄膜沉積的探討 41
3.5 陰離子對於 CMOH 薄膜沉積的探討 44
3.6 CMOH 薄膜電化學 OER 催化學性 47
3.6.2 CMOH 薄膜 OER 催化活性比較 47
3.6.3 CMOH 薄膜 OER 催化穩定性比較 49
3.6.4 CMOH 薄膜 OER 催化水分解反應法拉第效率探討 53
3.7 CMOH 薄膜沉積於不同基板外觀及電化學測試 55
3.8 CMOH 薄膜附著力測試 57
3.9 CMOH 薄膜沉積於任意基板測試 58
3.10 CMOH 薄膜階梯覆蓋效率 60
3.11 CMOH 和 CMO 薄膜導電度探討 62
第四章、討論 63
4.1 CMOH 薄膜沉積前驅物角色探討 63
4.2 陰離子效應 65
4.2.1 不同陰離子對於鈷前驅物氧化還原電位探討 66
4.2.2 CMOH 陰離子殘留鑑定 68
4.2.3 分子動力模擬探討生長行為 71
4.3 CMOH 薄膜沉積化學反應式 75
4.4 測試本研究合成系統對於其他金屬前驅物的沉積可能性 76
第五章、結論 79
參考文獻 80
附錄 89
一、CMOH 薄膜沉積動力學探討 89
1.1 實驗方法 89
1.2 CMOH 薄膜沉積動力學 90
二、實驗鑑定方法 98
2.1 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 98
2.2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 98
2.3 低掠角 X-ray 繞射 (Grazing incident X-ray diffraction, GIXRD) 98
2.4 X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 99
2.5 X 射線吸收光譜 (X-ray absorption spectroscopy, XAS) 99
2.6 Material Studio 99

圖目錄
圖 1-1. (a) 薄膜催化劑與 (b) 奈米粒子催化劑電子傳遞效率比較示意圖 5
圖 1-2. (a) 薄膜催化劑與 (b) 奈米粒子催化劑質傳 (Mass transport) 效率比較示意圖 6
圖2-1. CMOH 薄膜及 CMO 薄膜製備流程圖 11
圖 2-2. 三電極系統示意圖 12
圖 2-3. 壓縮完成的硫酸鈷系統 cell 16
圖 2-4. 壓縮完成的醋酸鈷系統 cell 16
圖 3-1. CMOH 薄膜沉積於 (a) FTO 導電玻璃上 (b) SiO2/Si 矽晶片上,(c) CMOH 薄膜沉積於SiO2/Si 基板上的 AFM 圖,RMS= 3.16 nm 18
圖 3-2. CMOH 薄膜 (a) SEM EDX-mapping (b) 鈷、(c) 錳元素分布 19
圖 3-3. CMOH 薄膜 EDX 光譜,鈷/錳元素比例 20
圖 3-4. CMOH 薄膜 GID 鑑定,小圖為薄膜沉積於 SiO2/Si 矽基板上照片,長時間沉積的薄膜顏色較黑 22
圖 3-5. CMOH 薄膜 TEM 剖面圖 (a) HR-TEM 可以看出薄膜為非晶結構,左上角小圖為傅立葉轉換結果顯示為非晶結構,右下角小圖為 FTO HR-TEM (b) CMOH 薄膜部分 EDX 光譜 (c) FTO 部分 EDX 光譜 23
圖 3-6. CMOH 薄膜的 XPS 光譜 (a) Co 2p (b) Mn 2p (c) O 1s 25
圖 3-7. CMOH 薄膜的 XAS 光譜 (a) Co k-edge (b) Mn k-edge 26
圖 3-8. CMOH 薄膜的 XPS 縱深分析 27
圖 3-9. CMO 薄膜 GID 鑑定,顯示出屬於尖晶石結構的 Co3O4 29
圖 3-10. CMO 薄膜 (a) HR-TEM 可以看出薄膜為尖晶石結構的 Co3O4,左上角小圖為傅立葉轉換結果 (c) EDX 光譜 30
圖 3-11. CMO 薄膜 XPS 光譜 (a) Co 2p (b) Mn 2p (c) O 1s 32
圖 3-12. 不同沉積溫度CMOH 薄膜, (a) 沉積於 FTO 導電玻璃上的外觀照片 (b) 紫外光-可見光吸收光譜 (c) 校正曲線 (550 nm 處) 34
圖 3-13. 不同沉積溫度CMOH 薄膜 OER 活性比較 35
圖 3-14. 不同沉積時間對於 CMOH 薄膜厚度控制,(a) 不同沉積時間的紫外光-可見光吸收光譜 (b) 校正曲線 (550 nm 處),(c) 白光干涉儀對於薄膜厚度的校正曲線 37
圖 3-15. 不同前驅物鈷/錳比例沉積出的 CMOH 薄膜 (a) OER 催化活性 (b) 塔佛圖 39
圖 3-16. 各種實驗條件 QCM 原圖 42
圖 3-17. QCM 實驗結果 (a) CMOH 薄膜生長機制探討 (b) 不同陰離子對於 CMOH 薄膜沉積行為影響 (c) 陰離子對於 CMOH 薄膜生長的控制 43
圖 3-18. 醋酸鈷和硫酸鈷前驅物不同沉積時間 OER 催化活性比較 45
圖 3-19. 硫酸鈷前驅物薄膜沉積 120 分鐘,橫切面 SEM 和EDX 鑑定,可以看到鈷和錳元素在 CMOH 薄膜各層間均勻分布 46
圖 3-20. 薄膜催化活性比較 (a) OER 催化比較 (b) 塔佛圖 48
圖 3-21. OER 水分解穩定度比較 (a) 10,000 次 OER 催化循環比較 (b) 長時間 i-t curve 穩定度測試 (c) CMOH 薄膜經過 10,000次 OER 催化循環後,HR-TEM 圖,右上角小圖為經過傅立葉轉換結果 51
圖 3-22. CMOH 薄膜 OER 催化產氧反應法拉第效率測試 54
圖 3-23. CMOH 薄膜沉積於不同基板 OER 催化活性比較,沉積於 (a) Ni foam (b) 銅箔 (c) 碳布 (d) GCE 上 56
圖 3-24. CMOH 薄膜沉積於 FTO 導電玻璃上,經過超過 100 次膠帶撕黏照片,薄膜仍保持完整 57
圖 3-25. CMOH 薄膜沉積於 (i) PET 塑膠板 (ii) 木頭湯匙 (iii) Ni foam (iv) NSYSU 校徽 (v) 銅片 (vi) 氣球 (vii) 螺絲 59
圖3-26. CMOH 薄膜階梯覆蓋效率測試 61
圖 4-1. 醋酸鈷及過錳酸鉀個別沉積於 (a) 木頭湯匙 (b) PET 塑膠片 64
圖 4-2. 不同陰離子基團對於二價鈷離子 CV 圖,顯示配位能力愈強基團,二價鈷離子愈容易氧化 67
圖 4-3. 醋酸鈷前驅物沉積之 CMOH 薄膜 XPS 全光譜鑑定及各元素含量 69
圖 4-4. 硫酸鈷前驅物沉積之 CMOH 薄膜 XPS 全光譜鑑定及各元素含量 70
圖 4-5. 施予數次反應條件後硫酸根系統 (a) cell, (b) CMOH 薄膜沉積 72
圖 4-6. 施予數次反應條件後醋酸根系統(a) cell, (b) CMOH 薄膜沉積 73
圖 4-7. 硫酸根與醋酸根系統 (a) 生成薄膜中鈷與錳數量比較 (b) Co-O-Mn 鍵結生成數量比較; (c)醋酸根與硫酸根系統中 Co2+ 離子和醋酸根與硫酸根上的氧原子 RDF 分析 74
圖 4-8. FeMnOx 薄膜 (a) SEM 薄膜外觀 (b) EDX 鑑定顯示出鐵和錳元素成功的沉積在薄膜上 77
圖 4-9. CoFeMnOx 薄膜 (a) SEM 薄膜外觀 (b) EDX 鑑定顯示出鈷、鐵、錳元素成功的沉積在薄膜上 78

附錄圖
圖 1-1. CMOH 薄膜生長溶液濃度隨時間變化監控,前驅物比例 Co:Mn= 3:1 (a) UV-vis. 光譜,黑線為起使濃度,紅線則為最終濃度 (b) 校正曲線 (526 nm 處) 92
圖 1-2. CMOH 薄膜生長溶液濃度隨時間變化監控,前驅物比例 Co:Mn= 6:1 (a) UV-vis. 光譜,黑線為起使濃度,紅線則為最終濃度 (b) 校正曲線 (526 nm 處) 93
圖 1-3. CMOH 薄膜生長溶液濃度隨時間變化監控,前驅物比例 Co:Mn= 3:0.5 (a) UV-vis. 光譜,黑線為起使濃度,紅線則為最終濃度 (b) 校正曲線 (526 nm 處) 94
圖 1-4. CMOH 薄膜生長溶液濃度隨時間變化監控,前驅物比例 Co:Mn= 6:0.5 (a) UV-vis. 光譜,黑線為起使濃度,紅線則為最終濃度 (b) 校正曲線 (526 nm 處) 95
圖 1-5. CMOH 薄膜生長溶液濃度隨時間變化監控,前驅物比例 Co:Mn= 100:1 (a) UV-vis. 光譜,黑線為起使濃度,紅線則為最終濃度 (b) 1/[Mn7+] — t 圖,呈線性關係 96

表目錄
表 3-1. 不同前驅物鈷/錳比例沉積出的 CMOH 薄膜電化學催化活性數據 40
表 3-2. 不同前驅物鈷/錳比例沉積出的 CMOH 薄膜 ICP-MS 數據 40
表 3-3. 醋酸鈷和硫酸鈷前驅物不同沉積時間 ICP-MS 45
表 3-4. OER 催化活性數據比較 48
表 3-5. 薄膜經過 10,000 次 OER 催化循環和其電解液 ICP-MS 結果 52
表 3-6. CMOH 薄膜沉積於不同基板的 OER 催化活性比較 56
表 3-7. 不同厚度 CMOH 和 CMO 薄膜片電阻 62

附錄表
表 1. CMOH 反應速率分析 97
參考文獻 References
1. Kanan, M. W.; Nocera, D. G. In-Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science 2008, 321, 1072-1075.
2. Lan, W.-J.; Kuo, C.-C.; Chen, C.-H. Hierarchical Nanostructures with Unique Y-shaped Interconnection Networks in Manganese Substituted Cobalt Oxides: The Enhancement Effect on Electrochemical Sensing Performance. Chem. Comm. 2013, 49, 3025-3027.
3. Kuo, C.-C.; Lan, W.-J.; Chen, C.-H. Redox Preparation of Mixed-valence Cobalt Manganese Oxide Nanostructured Materials: Highly Efficient Noble Metal-free Electrocatalysts for Sensing Hydrogen Peroxide. Nanoscale 2014, 6, 334-341.
4. Lan, W.-J.; Chen, C.-H. Hybridization of Graphene in 3D Complex Nanovoids: Synergistic Nanocomposites for Electrocatalytic Reduction of Hydrogen Peroxide. ‎Electrochim. Acta 2015, 180, 1014-1022.
5. Pickrahn, K. L.; Park, S. W.; Gorlin, Y.; Lee, H.-B.-R.; Jaramillo, T. F.; Bent, S. F. Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Adv. Energy Mater. 2012, 2, 1269-1277.
6. Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E. Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chem. Mater. 2017, 29, 950-957.
7. Glynn, C.; O'Dwyer, C. Solution Processable Metal Oxide Thin Film Deposition and Material Growth for Electronic and Photonic Devices. Adv. Mater. Interfaces 2017, 4, 1600610-n/a.
8. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.
9. Cochran, E. A.; Park, D.-H.; Kast, M. G.; Enman, L. J.; Perkins, C. K.; Mansergh, R. H.; Keszler, D. A.; Johnson, D. W.; Boettcher, S. W. Role of Combustion Chemistry in Low-Temperature Deposition of Metal Oxide Thin Films from Solution. Chem. Mater. 2017, 29, 9480-9488.
10. Roger, I.; Symes, M. D. First Row Transition Metal Catalysts for Solar-driven Water Oxidation Produced by Electrodeposition. J. Mater. Chem. A 2016, 4, 6724-6741.
11. Gong, L.; Chng, X. Y. E.; Du, Y.; Xi, S.; Yeo, B. S. Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt Oxide. ACS Catal. 2018, 8, 807-814.
12. Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chem. Mater. 2017, 29, 120-140.
13. Zhang, W.; Wu, Y.; Qi, J.; Chen, M.; Cao, R. A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Adv. Energy Mater. 2017, 7, 1602547.
14. Liu, W.; Du, K.; Liu, L.; Zhang, J.; Zhu, Z.; Shao, Y.; Li, M. One-step Electroreductively Deposited Iron-cobalt Composite Films as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Nano Energy 2017, 38, 576-584.
15. Morales-Guio, C. G.; Liardet, L.; Hu, X. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. J. Am. Chem. Soc. 2016, 138, 8946-8957.
16. Kao, W.-Y.; Chen, W.-Q.; Chiu, Y.-H.; Ho, Y.-H.; Chen, C.-H. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent. Sci. Rep. 2016, 6, 37174.
17. Jia, Q. X.; McCleskey, T. M.; Burrell, A. K.; Lin, Y.; Collis, G. E.; Wang, H.; Li, A. D. Q.; Foltyn, S. R. Polymer-assisted Deposition of Metal-oxide Films. Nat. Mater. 2004, 3, 529-532.
18. Xiong, S.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 2012, 22, 861-871.
19. Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139, 8320-8328.
20. Zhi, J.; Reiser, O.; Huang, F. Hierarchical MnO2 Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 8452-8459.
21. Hu, C.; Zhang, L.; Zhao, Z.-J.; Luo, J.; Shi, J.; Huang, Z.; Gong, J. Edge Sites with Unsaturated Coordination on Core–Shell Mn3O4@MnxCo3−xO4 Nanostructures for Electrocatalytic Water Oxidation. Adv. Mater. 2017, 29, 1701820.
22. Wu, Z.; Wang, X.; Huang, J.; Gao, F. A Co-doped Ni-Fe Mixed Oxide Mesoporous Nanosheet Array with Low Overpotential and High Stability towards Overall Water Splitting. J. Mater. Chem. A 2018, 6, 167-178.
23. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
24. Han, X.; Yu, C.; Zhou, S.; Zhao, C.; Huang, H.; Yang, J.; Liu, Z.; Zhao, J.; Qiu, J. Ultrasensitive Iron-Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Adv. Energy Mater. 2017, 7, 1602148.
25. Hung, S. F.; Hsu, Y. Y.; Chang, C. J.; Hsu, C. S.; Suen, N. T.; Chan, T. S.; Chen, H. M. Unraveling Geometrical Site Confinement in Highly Efficient Iron‐Doped Electrocatalysts toward Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1701686.
26. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
27. Brodsky, C. N.; Hadt, R. G.; Hayes, D.; Reinhart, B. J.; Li, N.; Chen, L. X.; Nocera, D. G. In Situ Characterization of Cofacial Co(IV) Centers in Co4O4 Cubane: Modeling The High-valent Active Site in Oxygen-evolving Catalysts. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3855-3860.
28. Han, Y.; Wang, Y.-G.; Chen, W.; Xu, R.; Zheng, L.; Zhang, J.; Luo, J.; Shen, R.-A.; Zhu, Y.; Cheong, W.-C.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2017, 139, 17269-17272.
29. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 Nanocrystals on Graphene as A Synergistic Catalyst for Oxygen Reduction Reaction. Nat. Mater. 2011, 10, 780.
30. Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano 2015, 9, 6288-6296.
31. Li, C.; Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. 3D Hierarchical CoO@MnO2 Core-shell Nanohybrid for High-energy Solid State Asymmetric Supercapacitors. J. Mater. Chem. A 2017, 5, 397-408.
32. Zhuang, L.; Ge, L.; Yang, Y.; Li, M.; Jia, Y.; Yao, X.; Zhu, Z. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1606793.
33. Wang, J.; Ge, X.; Liu, Z.; Thia, L.; Yan, Y.; Xiao, W.; Wang, X. Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites. J. Am. Chem. Soc. 2017, 139, 1878-1884.
34. Kim, J. S.; Park, I.; Jeong, E.-S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K. Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Adv. Mater. 2017, 29, 1606893.
35. Saat, G.; Balci, F. M.; Alsaç, E. P.; Karadas, F.; Dag, Ö. Molten Salt Assisted Self‐Assembly: Synthesis of Mesoporous LiCoO2 and LiMn2O4 Thin Films and Investigation of Electrocatalytic Water Oxidation Performance of Lithium Cobaltate. Small 2018, 14, 1701913.
36. Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4, 3187-3194.
37. Wu, R.; Wang, D. P.; Rui, X.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q.; Wei, J.; Chen, Z. In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries. Adv. Mater. 2015, 27, 3038-3044.
38. Li, Z.; Li, C.; Ge, X.; Ma, J.; Zhang, Z.; Li, Q.; Wang, C.; Yin, L. Reduced Graphene Oxide Wrapped MOFs-derived Cobalt-doped Porous Carbon Polyhedrons as Sulfur Immobilizers as Cathodes for High Performance Lithium Sulfur Batteries. Nano Energy 2016, 23, 15-26.
39. Lee, S. W.; Carlton, C.; Risch, M.; Surendranath, Y.; Chen, S.; Furutsuki, S.; Yamada, A.; Nocera, D. G.; Shao-Horn, Y. The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions. J. Am. Chem. Soc. 2012, 134, 16959-16962.
40. Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chem. Mater. 2017, 29, 120-140.
41. Simmons, J. G. Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 2581-2590.
42. Morales-Guio, C. G.; Mayer, M. T.; Yella, A.; Tilley, S. D.; Grätzel, M.; Hu, X. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. J. Am. Chem. Soc. 2015, 137, 9927-9936.
43. Kim, J. Y.; Youn, D. H.; Kang, K.; Lee, J. S., Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Angew. Chem., Int. Ed. 2016, 55, 10854-10858.
44. Lin, F.; Boettcher, S. W. Adaptive Semiconductor/electrocatalyst Junctions in Water-Splitting Photoanodes. Nat. Mater. 2014, 13, 81-86.
45. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science 2011, 334, 645-648.
46. Qi, J.; Zhang, W.; Cao, R. Solar‐to‐Hydrogen Energy Conversion Based on Water Splitting. Adv. Energy Mater. 2018, 8, 1701620.
47. Hunter, B. M.; Gray, H. B.; Müller, A. M., Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. 2016, 116 (22), 14120-14136.
48. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chem. Mater. 2015, 27, 7549-7558.
49. Wang, Z.; Xiao, S.; An, Y.; Long, X.; Zheng, X.; Lu, X.; Tong, Y.; Yang, S. Co(II)1–xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Appl. Mater. Interfaces 2016, 8, 13348-13359.
50. Yu, M.; Wang, Z.; Hou, C.; Wang, Z.; Liang, C.; Zhao, C.; Tong, Y.; Lu, X.; Yang, S. Nitrogen-Doped Co3O4 Mesoporous Nanowire Arrays as an Additive-Free Air-Cathode for Flexible Solid-State Zinc–Air Batteries. Adv. Mater. 2017, 29, 1602868.
51. Jin, K.; Seo, H.; Hayashi, T.; Balamurugan, M.; Jeong, D.; Go, Y. K.; Hong, J. S.; Cho, K. H.; Kakizaki, H.; Bonnet-Mercier, N.; Kim, M. G.; Kim, S. H.; Nakamura, R.; Nam, K. T. Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. J. Am. Chem. Soc. 2017, 139, 2277-2285.
52. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.
53. Batchellor, A. S.; Boettcher, S. W. Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catal. 2015, 5, 6680-6689.
54. Su, C.-Y.; Lan, W.-J.; Chu, C.-Y.; Liu, X.-J.; Kao, W.-Y.; Chen, C.-H. Photochemical Green Synthesis of Nanostructured Cobalt Oxides as Hydrogen Peroxide Redox for Bifunctional Sensing Application. Electrochim. Acta 2016, 190, 588-595.
55. Wu, D.; Wei, Y.; Ren, X.; Ji, X.; Liu, Y.; Guo, X.; Liu, Z.; Asiri, A. M.; Wei, Q.; Sun, X. Co(OH)2 Nanoparticle‐Encapsulating Conductive Nanowires Array: Room‐Temperature Electrochemical Preparation for High‐Performance Water Oxidation Electrocatalysis. Adv. Mater. 2018, 30, 1705366.
56. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206-222.
57. Chuang, P.-H.; Gu, Q.; Tseng, Y.-H.; Chen, C.-L. Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. J. Colloid Interface Sci. 2014, 417, 310-316.
58. Sun, H. COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338-7364.
59. Das, B.; Reddy, M. V.; Chowdari, B. V. R. X-ray Absorption Spectroscopy and Energy Storage of Ni-doped Cobalt Nitride, (Ni0.33Co0.67)N, prepared by a simple synthesis route. Nanoscale 2013, 5, 1961-1966.
60. Zhang, W.; Zhang, Z.; Kwon, S.; Zhang, F.; Stephen, B.; Kim, K. K.; Jung, R.; Kwon, S.; Chung, K.-B.; Yang, W. Photocatalytic Improvement of Mn-adsorbed g-C3N4. Appl. Catal. B Environ. 2017, 206, 271-281.
61. Chen, C.-H.; Njagi, E. C.; Chen, S.-Y.; Horvath, D. T.; Xu, L.; Morey, A.; Mackin, C.; Joesten, R.; Suib, S. L. Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance. Inorg. Chem. 2015, 54, 10163-10171.
62. Chen, Z.; Cai, L.; Yang, X.; Kronawitter, C.; Guo, L.; Shen, S.; Koel, B. E. Reversible Structural Evolution of NiCoOxHy during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catal. 2018, 8, 1238-1247.
63. Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic Identification of Active Sites for The Oxygen Evolution Reaction on Iron-cobalt Oxides. Nat. Commun. 2017, 8, 2022.
64. Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination Tuning of Cobalt Phosphates towards Efficient Water Oxidation Catalyst. Nat. Commun. 2015, 6, 8253.
65. Kung, C.-W.; Lin, C.-Y.; Vittal, R.; Ho, K.-C. Synthesis of Cobalt Oxide Thin Films in The Presence of Various Anions and Their Application for The Detection of Acetaminophen. Sens. Actuator B 2013, 182, 429-438.
66. Hu, Z.-A.; Xie, Y.-L.; Wang, Y.-X.; Xie, L.-J.; Fu, G.-R.; Jin, X.-Q.; Zhang, Z.-Y.; Yang, Y.-Y.; Wu, H.-Y. Synthesis of α-Cobalt Hydroxides with Different Intercalated Anions and Effects of Intercalated Anions on Their Morphology, Basal Plane Spacing, and Capacitive Property. J. Phys. Chem. C 2009, 113, 12502-12508.
67. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. J. Am. Chem. Soc. 2013, 135, 11580-11586.
68. Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. 2016, 116, 14120-14136.
69. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017, 1, 0003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code