Responsive image
博碩士論文 etd-0603111-170829 詳細資訊
Title page for etd-0603111-170829
論文名稱
Title
質子交換膜燃料電池墊片材料耐久性研究
A Study on the Durability of Gasket Materials in the PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-04
繳交日期
Date of Submission
2011-06-03
關鍵字
Keywords
耐久性、墊片材料、動態機械分析、化學降解、微壓痕試驗、質子交換膜燃料電池
Chemical degradation, Durability, Elastomeric gaskets, DMA, PEMFC, Micro-indentation
統計
Statistics
本論文已被瀏覽 5720 次,被下載 902
The thesis/dissertation has been browsed 5720 times, has been downloaded 902 times.
中文摘要
質子交換膜燃料電池組需要墊片密封,以便氫氣及空氣/氧氣能維持於其相對空間內,故墊片的穩定性質對燃料電池的使用壽命及電化學效能是很有影響的。本文將五種墊片材料分別置入模擬之電池使用環境溶液與加速測試溶液中於電池操作溫度下浸泡六十三週,以觀察其化學破壞效果。這五種材料分別是樹脂膠(Copolymeric Resin, CR)、矽膠(Liquid Silicone Rubber, LSR)、氟矽膠(Fluorosilicone Rubber, FSR)、 乙丙橡膠(Ethylene Propylene Diene Monomer Rubber, EPDM)及氟橡膠(Fluoroelastomer Copolymer , FKM)。本研究採用化學降解程度之觀察,動態機械分析及微壓痕測試等三種方式來評估材料之耐久性。
實驗結果顯示,化學浸泡的溶液將會對試片表面以及機械性質造成影響,並且會隨者浸泡時間有所不同。
若以材料化學降解與機械性質為主要考量,EPDM應為用於質子交換膜燃料電池墊片材料之最佳選擇。
Abstract
Proton Exchange Membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the hydrogen and air/oxygen within their respective regions. The stability of the gaskets is critical to the operating life as well as the electrochemical performance of the fuel cell. Chemical degradation of five elastomeric gasket materials in a simulated and an aggressive accelerated fuel cell solution at PEM operating temperature for up to 63 weeks was investigated in this work. The five materials are Copolymeric Resin (CR), Liquid Silicone Rubber (LSR), Fluorosilicone Rubber (FSR), Ethylene Propylene Diene Monomer Rubber (EPDM), and Fluoroelastomer Copolymer (FKM). In order to assess the durability of the materials, observation of chemical degradation level, dynamic mechanical analysis, and micro-indentation test were adopted in this study.
This experimental result showed that the influence of the chemical reaction could affect the material surface condition. Also, the chemical reaction could affect material’s mechanical properties had been changed over the soaking time.
By considering the level of chemical degradation and mechanical properties, the experimental results showed that EPDM is recommended as the best choice of sealing material for using in a PEMFC.
目次 Table of Contents
摘要 ……………………………………………………………………………………………………………………………………… i
Abstract ………………………………………………………………………………………………………………………………… ii
Contents …………………………………………………………………………………………………………………………………iii
List of Figures ……………………………………………………………………………………………………………………… vii
List of Tables ……………………………………………………………………………………………………………………..… xiv
Nomenclature ………………………………………………………………………………………………………………………..… xvi

Chapter 1 Introduction …………………………………………………………………………………………………………………1
1.1 Background …………………………………………………………………………………………………………………………1
1.2 Review of Literatures ………………………………………………………………………………………………………… 2
1.2.1 Chemical Degradation Level …………………………………………………………………………………………………2
1.2.2 Dynamic Mechanical Analysis ……………………………………………………………………………………………… 4
1.2.3 Micro-indentation …………………………………………………………………………………………………………… 5
1.3 Research Motivation and Purpose …………………………………………………………………………………………… 6
1.4 Structures of the Dissertation ………………………………………………………………………………………………7

Chapter 2 Experimental Method and Analysis ………………………………………………………………………………………9
2.1 Materials and Simulated PEM Fuel Cell Environments ……………………………………………………………………9
2.2 Chemical Characterization Method ……………………………………………………………………………………… 11
2.3 Dynamic Mechanical Analysis ………………………………………………………………………………………………12
2.4 Micro-indentation Experimental Method …………………………………………………………………………………14
2.4.1 The Loading Curves ………………………………………………………………………………………………………… 14
2.4.2 Hertz Contact Model …………………………………………………………………………………………………………15
2.4.3 The Loading-unloading Behavior and Loss Energy Method…………………………………………………………… 16
2.4.4 Hardness Experimental Method …………………………………………………………………………………………… 16

Chapter 3 Chemical Degradation Level …………………………………………………………………………………………… 21
3.1 Surface Observation …………………………………………………………………………………………………………21
3.2 Weight Loss ……………………………………………………………………………………………………………………21
3.3 Optical Microscopy ………………………………………………………………………………………………………… 22
3.4 Atomic Absorption Spectrometry ………………………………………………………………………………………… 24
3.5 Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Analysis ……………………………… 26
3.5.1 Copolymeric Resin (CR) …………………………………………………………………………………………………… 26
3.5.2 Fluorosilicone Rubber (FSR) ………………………………………………………………………………………………27
3.5.3 Liquid Silicone Rubber (LSR) …………………………………………………………………………………………… 28
3.5.4 Ethylene Propylene Diene Monomer Rubber (EPDM) …………………………………………………………………… 29
3.5.5 Fluoroelastomer Copolymer (FKM) …………………………………………………………………………………………30
3.6 Results and Discussions ……………………………………………………………………………………………………31

Chapter 4 Dynamic Mechanical Characteristics ………………………………………………………………………………… 51
4.1 Material Properties from DMA………………………………………………………………………………………………51
4.1.1 Copolymeric Resin (CR) …………………………………………………………………………………………………… 51
4.1.2 Fluorosilicone Rubber (FSR) ………………………………………………………………………………………………52
4.1.3 Liquid silicone Rubber (LSR) …………………………………………………………………………………………… 52
4.1.4 Ethylene Propylene Diene Monomer Rubber (EPDM) …………………………………………………………………… 53
4.1.5 Fluoroelastomer Copolymer (FKM) …………………………………………………………………………………………53
4.2 Effects of Aging on the Storage Modulus and Tan δ of the Materials …………………………………………54
4.3 DMA Properties of the Five Materials Relevant to Sealing in PEM Fuel Cells ……………………………… 55
4.4 Results and Discussions ……………………………………………………………………………………………………56

Chapter 5 Micro-indentation Experimental Analysis ……………………………………………………………………………74
5.1 The Loading Curves ………………………………………………………………………………………………………… 74
5.1.1 Copolymeric Resin (CR) …………………………………………………………………………………………………… 74
5.1.2 Fluorosilicone Rubber (FSR) ………………………………………………………………………………………………75
5.1.3 Liquid Silicone Rubber (LSR) …………………………………………………………………………………………… 77
5.1.4 Ethylene Propylene Diene Monomer Rubber (EPDM) …………………………………………………………………… 78
5.1.5 Fluoroelastomer Copolymer (FKM) …………………………………………………………………………………………79
5.2 Hertz Method Fit …………………………………………………………………………………………………………… 81
5.3 Elastic Modulus ………………………………………………………………………………………………………………81
5.4 Loss Energy (Hysteresis) and Hardness Behavior …………………………………………………………………… 83
5.4.1 Copolymeric Resin (CR) …………………………………………………………………………………………………… 83
5.4.2 Fluorosilicone Rubber (FSR) ………………………………………………………………………………………………84
5.4.3 Liquid Silicone Rubber (LSR) …………………………………………………………………………………………… 85
5.4.4 Ethylene Propylene Diene Monomer Rubber (EPDM) …………………………………………………………………… 86
5.4.5 Fluoroelastomer Copolymer (FKM) …………………………………………………………………………………………87
5.5 Compared with the Five Materials ……………………………………………………………………………………… 88
5.6 Results and Discussions ……………………………………………………………………………………………………91

Chapter 6 Conclusions and Future Prospects ……………………………………………………………………………………118
6.1 Conclusions ………………………………………………………………………………………………………………… 118
6.2 Future Prospects ……………………………………………………………………………………………………………120

References ………………………………………………………………………………………………………………………………123
VITA ………………………………………………………………………………………………………………………………………132
參考文獻 References
[1] L. Frisch, “PEMFC stack sealing using silicone elastomers,” SAE World Congress, 2003.

[2] S. Kole, K. Srivastava, D.K. Tripathy, and A.K. Bhowmick, “Accelerated hydrothermal weathering of silicone rubber,” Journal of Apply Polymer Science, 1994, 54(9), pp1329-1337

[3] A.K. Bhowmick, J. Konar, S. Kole, and S. Narayanan, “Surface properties of EPDM, silicone rubber, and their blend during aging,” Journal Apply Polymer Science, 1995, 57(5), pp631-637.

[4] B.H. Youn and C.S. Huh, “Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition,” IEEE Transactions Dielectric Electrical Insulation, 2005, 12(5), pp1015-1024

[5] J. Konar, G. Samanta, B.N. Avasthi, and A.K. Sen, “Oxidative degradation of EPDM rubber using phase transferred permanganate as oxidant,” Polymer Degradation and Stability, 1994, 43(2), pp209-216.

[6] T. Zaharescu and M. Giurginca, Proceedings of the 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectric, Leicester England, 1995, pp472-476.

[7] T. Zaharescu, M. Giurginca, and S. Jipa, “Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants,” Polymer Degradation and Stability, 1999, 63(2), pp245-251.

[8] R.A. Assink, M. Celina, K.T. Gillen, R.L. Clough, and T.M. Alam, “Morphology changes during radiation-thermal degradation of polyethylene and an EPDM copolymer by 13C NMR spectroscopy,” Polymer Degradation and Stability, 2001, 73(2), pp355-362

[9] T. Zaharescu, E. Feraru, and C. Podina, “Thermal stability of gamma irradiated ethylene-propylene-diene monomer/divinyl benzene systems,” Polymer Degradation and Stability, 2005, 87(1), pp11-16.

[10] A. Ghanbari-Siahkali, S. Mitra, P. Kingshott, K. Almdal, C. Bloch, and H.K. Rehmeier, “Investigation of the hydrothermal stability of crosslinked liquid silicone rubber (LSR),” Polymer Degradation and Stability, 2005, 90(3), pp471-480.

[11] A.N. Chaudhry and N.C. Billingham, “Characterization and oxidative degradation of a room-temperature vulcanized poly (dimethylsiloxane) rubber,” Polymer Degradation and Stability, 2001, 73(3), pp505-510.

[12] M.A. Kader and A.K. Bhowmick, “Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates,” Polymer Degradation and Stability, 2003, 79(2), pp283-295.

[13] M. Patel, A.R. Skinner, and R.S. Maxwell, “Sensitivity of condensation cured polysiloxane rubbers to sealed and open-to air thermal ageing regimes,” Polymer Testing, 2005, 24(5), pp663-668.

[14] L. Zhang, Z. Xu, Q. Wei, and S. He, “Effect of 200 keV proton irradiation on the properties of methyl silicone rubber, radiation physics and chemistry,” 2006, 75(2), pp350-355.

[15] R.L. Hauser, R. Hauser Quick Jr., N. Allen, A.E. Williams, “Sulfurous vapors emitted from EPDM rubber can damage electronic instruments,” Rubber World, 2001, 224(5), pp24-26.

[16] A.U. Paeglis, “A simple model for predicting heat aging of EPDM rubber,” Rubber Chemistry and Technology, 2004, 77(2), pp242–256.

[17] M. Ehsani, H. Borsi, E. Gockenbach, G.R. Bakhshandeh, and J. Morshedian, “Modified silicone rubber for use as high voltage outdoor insulators,” Advance Polymer Technology, 2005, 24(1), pp51-56.

[18] H. Liu, G. Cash, D. Birtwhistle, and G. George, “Characterization of a severely degraded silicone elastomer HV Insulator – An aid to development of lifetime assessment techniques,” IEEE Transactions Dielectric Electrical Insulation, 2005, 2(3), pp478-486.

[19] D. Graiver, K.W. Farminer, and R. Narayan, “A review of the fate and effects of silicones in the environment,” Journal of Polymer and the Environment, 2003, 11(4), pp129-136.

[20] S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, H.K. Rehmeier, H. Abildgaard, and K. Almdal, “Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment, Part I: Effect on Accelerated Sulphur Crosslinks,” Polymer Degradation and Stability, 2006, 91(1), pp69-80.

[21] S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, H.K. Rehmeier, H. Abildgaard, and K. Almdal, “Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment, part ii: effect of peroxide crosslinking in the presence of a coagent,” Polymer Degradation and Stability, 2006, 91, pp81-93.

[22] T. Sugama, “Surface analysis of fluoroelastomer bearigs exposed to geothermal environments,” Materials Letters, 2001, 50(2–3), pp66-72.

[23] S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, K. Almda, H.K. Rehmeier, and A.G. Christensen, “Chemical degradation of fluoroelastomer in an alkaline environment,” Polymer Degradation and Stability, 2004, 83, pp195-206.


[24] M. Achenbach, “Service life of seals: numerical simulation in sealing technology enhances prognoses,” Computational Materials Science, 2000, 19, pp213-222.

[25] M. Achenbach, “Development of a robust fuel circuit sealing system: Defining the problem,” Sealing Technology, 2007, 7, pp10-13.

[26] M. Achenbach, “Development of a robust fuel circuit sealing system: Achieving a solution,” Sealing Technology, 2007, 8, pp7-10.

[27] M. S. Kim, J. H. Kim, J. K. Kim, S. J. Kim, “Life time prediction of rubber gasket for fuel cell through its acid-aging characteristics,” Macromolecular Research, 2007, 15(4), pp315-23.

[28] K.T. Gillen, RL. Clough, “Accelerated aging methods for predicting long-term mechanical performance of polymers,” Elsevier Applied Science, 1991, Chapter 4.

[29] J. Wise, K.T. Gillen, R.L. Clough, “An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally-aged elastomers,” Polymer Degradation and Stability, 1995, 49, pp403-418.

[30] K.T. Gillen, M. Celina, R.L. Clough, J. Wise, “Extrapolation of accelerated aging data: Arrhenius or erroneous?,” Trends in polymer science, 1997, 5, pp250-257.

[31] K.T. Gillen, M.R. Keenan, J. Wise, “New method for predicting lifetime of seals from compression stress relaxation experiments,” Die Angewandte Makromolekulare Chemie, 1998, 261/262, pp83-92.

[32] K.T. Gillen, M. Celina, M.R. Keenan, “Methods for predicting more confident lifetimes of seals in air environments,” Rubber Chemistry and Technology, 2000, 73(2), pp265-283.

[33] K.T. Gillen, M. Celina, “The wear-out approach for predicting the remaining lifetime of materials,” Polymer Degradation and Stability, 2001, 71(1), pp15-30.

[34] K.T. Gillen, M. Celina, R. Bernstein, “Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress relaxation and oxygen consumption techniques,” Polymer Degradation and Stability, 2003, 82(1), pp25-35.

[35] K.T. Gillen, R. Bernstein, D.K. Derzon, “Evidence of non-Arrhenius behaviour from laboratory aging and 24-year field aging of polychloroprene rubber materials,” Polymer Degradation and Stability, 2005, 87(1), pp57-67.

[36] K.T. Gillen, R. Bernstein, M.H. Wilson, “Predicting and confirming the lifetime of o-rings,” Polymer Degradation and Stability, 2005, 87(2), pp257-270.


[37] K.T. Gillen, R Bernstein, M. Celina, “Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials,” Polymer Degradation and Stability, 2005, 87(2), pp335-346.

[38] M. Celina, K.T. Gillen, R.A. Assink, “Accelerated aging and lifetime prediction: review of non-Arrhenius behavior due to two competing processes,” Polymer Degradation and Stability, 2005, 90(3), pp395-404.

[39] K.T. Gillen, R. Bernstein, R.L. Clough, M. Celina, “Lifetime predictions for semicrystalline materials. Ι. mechanical properties and oxygen consumption measurements on EPR materials,” Polymer Degradation and Stability, 2006, 91(9), pp2146-2156.

[40] K.T. Gillen, M. Celina, R. Bernstein, M. Shedd, “Lifetime predictions of EPR materials using the Wear-out approach,” Polymer Degradation and Stability, 2006, 91(12), pp3197-3207.

[41] M. Schulze, T. Knori, A. Schneider, and E. Gulzow, “Degradation of sealings for pefc test cells during fuel cell operation,” Journal of Power Sources, 2004, 127(1-2), pp222-229.

[42] J. Tan, Y.J. Chao, W.K. Lee, C.S. Smith, J.W. Van Zee, C.T. Williams, “Degradation of gasket materials in a simulated fuel cell environment,” The Fourth International ASME Conference on Fuel Cell Science, Engineering and Technology, Irvine, California USA, June 19-21, 2006.

[43] J. Tan, Y.J. Chao, J.W. Van Zee, W.K. Lee, “Degradation of elastomeric gasket materials in PEM fuel cells,” Materials Science and Engineering: A, 2007, 445-446, pp669-675.

[44] J. Tan, Y.J. Chao, X. Li, J.W. Van Zee, “Degradation of Silicone rubber under compression in a simulated PEM fuel cell environment,” Journal of Power Sources , 2007, 172(2), pp782-789.

[45] J. Tan, Y.J. Chao, M. Yang, C.T. Williams and J.W. Van Zee, “Degradation characteristics gasket materials in a simulated PEM fuel cell environment,” Journal of Materials Engineering and Performance, 2008, 17, pp785-792.

[46] J. Tan, Y.J. Chao, J.W. Van Zee, W.K. Lee, “Assessment of mechanical properties of fluoroelastomer and EPDM in a simulated PEM fuel cell environment by microindentation test,” Materials Science and Engineering: A, 2008, 496(1-2), pp464-470.

[47] J. Tan, Y.J. Chao, H. Wang, J. Gong, J.W. Van Zee, “Chemical and mechanical stability of EPDM in a PEM fuel cell environment,” Polymer Degradation and Stability, 2009, 94(11), pp2072-2078.

[48] J. Tan, Y.J. Chao, X. Li, J.W. Van Zee, W.K. Lee, “Microindentation test for assessing the mechanical properties of silicone rubber exposed to a simulated polymer electrolyte membrane fuel cell environment,” Journal of Fuel Cell Science and Technology, 2009, 6(4), pp041017(1-9).

[49] J. Tan, Y.J. Chao, M. Yang, J.W. Van Zee, W.K. Lee, “Chemical and mechanical stability of a Silicone gasket material exposed to PEM fuel cell environment,” International Journal of Hydrogen Energy, 2011, 36(2), pp1846-1952.

[50] W.K. Lee, C.H. Ho, J.W. Van Zee, M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, 1999, 84(1), pp45-51.

[51] M. Kumar and S. J. Paddison, “Chemical degradation of the side chains of PFSA membranes: an ab initio study,” 218th ECS Meeting, 2010.

[52] Y. Y. Jo, E. A. Cho, J. H. Kim, J. H. Kim, T. H. Lim, In-Hwan Oh, Jong Hyun Jang and Hyung Juhn Kim, “Effects of operating temperature on performance degradation of PEMFCs under repetitive startup/shutdown cycling,” 218th ECS Meeting, 2010.

[53] T. Ishimoto, R. Nagumo, T. Ogura, T. Ishihara, B. Kim, A. Miyamoto, and M. Koyama, “Chemical degradation mechanism of model compound, CF3(CF2)3O(CF2)2OCF2SO3H, of PFSA polymer by attack of hydroxyl radical in PEMFCs,” Journal of Electrochemical Society, 2010, 157, ppB1305-B1309.

[54] D.A. Schiraldi, D. Savant and C. Zhou, “Chemical degradation of membrane polymer model compounds under simulated fuel cell conditions,” ECS Transactions, 2010, 33, pp883-888.

[55] X. Z. Yuan, S. Zhang, H. Wang, J. Wu, J. C. Sun, R. Hiesgen, K. A. Friedrich, M. Schulze and A. Haug, “Degradation of a polymer exchange membrane fuel cell stack with Nafion® membranes of different thicknesses: Part I. In situ diagnosis,” Journal of Power Sources, 2010, 195(22), pp7594-7599.

[56] M. Jung and K. A. Williams, “Effect of dynamic operation on chemical degradation of a polymer electrolyte membrane fuel cell,” Journal of Power Sources, 2011, 196(5), pp2717-2724.

[57] J.H. Yang, B.C. Chun, Y.C. Chung, J. H. Cho, “Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment,” Polymer, 2003, 44, pp3251-3258.

[58] G. Tripathi, D. Srivastava, “Effect of carboxyl-terminated poly (butadiene-co -acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin,” Materials Science and Engineering A, 2007, 443, pp262-269.

[59] A. Pinheiro , J. F. Mano, “Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis,” Polymer Testing, 2009, 28, pp89-95.

[60] Q. Li, D. Li, L. J. Wang, N. Özkan, Z.H. Mao, “Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer,” Carbohydrate Polymers, 2010, 79, pp520-525.

[61] E. Fontananovaa, F. Trotta, J. C. Jansen and E. Driolia, “Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs,” Journal of Membrane Science, 2010, 348(1-2), pp326-336.

[62] H. Deligöz, S. Yılmaztürk, M. Yılmazoğlu and H. Damyan, “The effect of self-assembled multilayer formation via LbL technique on thermomechanical and transport properties of Nafion®112 based composite membranes for PEM fuel cells,” Journal of Membrane Science, 2010, 351(1-2), pp131-140.

[63] M. Martinez, Y. Molmeret, L. Cointeaux, C. Iojoiu, J. C. Leprêtre, N. El Kissi, P. Judeinstein and J.Y. Sanchez, “Proton-conducting ionic Liquid-based proton exchange membrane fuel cell membranes: The key role of Ionomer–ionic liquid interaction,” Journal of Power Sources, 2010, 195(18), pp5829-5839.

[64] K. D. Papadimitriou, A. K. Andreopoulou, J. K. Kallitsis, “Phosphonated fully aromatic polyethers for PEMFCs applications,” Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(13), pp2817-2827.

[65] E. Sgrecciaa, M.L. Di Vona and P. Knauth, “Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells,” International Journal of Hydrogen Energy 2010; doi:10.1016/j.ijhydene.2010.11.073.

[66] X. Li, Y. H. An, Y. D. Wu, Y. C. Song, Y. J. Chao, and C. H. Chien, “Microindentation test for assessing the mechanical properties of cartilaginous tissues,” Journal of Biomedical Materials Research, Part B: Apply Biomaterial, 2007, 80(B), pp25-31.

[67] F. Petit, V. Vandeneede, and F. Cambier, “Relevance of instrumented microindentation for the assessment of hardness and young’s modulus of brittle materials,” Materials Science and Engineering A, 2007, 456(1–2), pp252–260.

[68] A. Boersma, V.A. Soloukhin, J.C.M. Brokken-Zijp, and G.D. With, “Load and depth sensing indentation as a tool to monitor a gradient in the mechanical properties across a polymer coating: A study of physical and chemical aging effects,” Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, pp1628-1639.

[69] J.G. Kohl, and R.N. Bolstes, “A study on the elastic modulus of silicone duplex or Bi-Layer coatings using micro-indentation,” Progress in Organic coatings, 2001, 41, pp135-141.

[70] Z.Li, J.C.M. Brokken-Zijp, and G.D. With, “Determination of the elastic module of silicone rubber coatings and films using Depth-Sensing indentation,” Polymer 2004; 45: 5403-5406.

[71] O.N. Scott, M.R. Begley, U. Komaragiri, and T.J. Mackin, “Indentation of freestanding circular elastomer films using spherical indenters,” Acta Material, 2004, 52(16), pp4877-4885.

[72] M.R. Begley, and T.J. Mackin, “Spherical indentation of freestanding circular thin films in the membrane regime,” Journal of Mechanical Physics Solids, 2004, 52(9), pp2005-2023.

[73] A.E. Giannakopoulos, and A. Triantafyllou, “Spherical indentation of incompressible Rubber-Like materials,” Journal of Mechanical Physics Solids, 2007, 55, pp1196-1211.

[74] Y.Y. Lim, and M.M. Chaudhri, “indentation of elastic solids with a rigid vickers pyramidal indenter,” Mechanical Material, 2006, 38, pp1213-1228.

[75] N.M. Vriend, and A.P. Kren, “Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method,” Polymer Testing, 2004 23, pp369-375.

[76] S. Gupta, F. Carrillo, C. Li, L. Pruitt, and C. Puttlitz, “Adhesive forces significantly affect modulus determination of soft polymeric materials in nanoindentation,” Material Lecture, 2007, 61, pp448–451.

[77] Y. Yin, S.F. Ling, and Y. Liu, “A dynamic indentation method for characterizing soft incompressible viscoelastic materials,” Materials Science and Engineering: A, 2004, 379, pp334-340.

[78] M.F. Mina, F. Ania, F.J. Balta Calleja, and T. Asano, “Microhardness studies of PMMA/Natural rubber blends,” Journal of Apply Polymer Science, 2004, 91(1), pp205-210.

[79] Y.Y. Lim, and M.M. Chaudhri, “Indentation of elastic solids with rigid cones,” Philosophical Magazine, 2004, 84(27), pp2877-2903.

[80] Y.Y. Lim, and M.M. Chaudhri, “Experimental investigations of the normal loading of elastic spherical and conical indenters on to elastic flats,” Philosophical Magazine, 2003, 83(30), pp3427-3462.

[81] S. Zhu, C. Chan, and Y. Mai, “Micromechanical properties on the surface of PVC/SBR blends spatially resolved by a Nanoindentation technique,” Polymer Engineering Science, 2004, 44(3), pp609-614.

[82] J.J.C. Busfield, and A.G. Thomas, “Indentation tests on elastomer blocks,” Rubber Chemical Technology, 1999, 72(5), pp876-894.

[83] M.R. Vanlandingham, N.K. Chang, C.C. White, and S.H. Chang, “Viscoelastic characterization polymers using instrumented indentation. I. Quasi-Static testing,” Journal of Polymer Science, Part B: Polymer Physics, 2005, 43(14), pp1794-1811.

[84] G.C. Abuin, P. Nonjola, E. A. Franceschini, F. H. Izraelevitch, M. K. Mathe and H.R. Corti, “Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells,” International Journal of Hydrogen Energy, 2010, 35(11), pp5849-5854.

[85] Z. Zhang, C. Renaud, Z.Q. Feng and H.P. Yin, “Mechanical contact analysis on the interfaces in a proton exchange membrane fuel cell,” Mécanique & Industries, 2010, 11, pp183-188.

[86] D.X. Li, Z.D. Zhan, L.Z. Sun, “Nonlinear elastic Load–Displacement relation for spherical indentation on rubberlike materials,” Journal of Materials Research, 2010, 25(11), pp2197-2202.

[87] M. Ghateea, and J.T.S. Irvine, “Investigation of electrical and mechanical properties of tetragonal/cubic zirconia composite electrolytes prepared through stabilizer coating method,” International Journal of Hydrogen Energy, 2010, 35(17), pp9427-9433.

[88] K.K. Poornesh, C. Cho, D.Y. Kim and Y. Tak, “Effect of Gas-Diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell,” Energy, 2010, 35(12), pp5241-5249.

[89] Dow Corning technical library, http://www.dowcorning.com

[90] M. M. Green, H. A.Wittcoff, “Organic chemistry principles and industrial practice,” Weinheim, Germany: Wiley, 2003.

[91] D. K. Louie, “Handbook of sulphuric acid manufacturing,” Richmond Hill, Canada: DKL Engineering, Inc. 2005.

[92] AZom Journal of Materials Online, http://www.azom.com

[93] Lanxess company, http://www.lanxess.com

[94] ThomasNet, http://www.thomasnet.com/

[95] Dupon company, http://www.dupont.com/

[96] D. Lin-Vien, N.B. Colthup, W.G. Fateley, and J.G. Grasselli, “The handbook of infrared and raman characteristic frequencies of organic molecules,” Academic Press, Boston, 1991.

[97] E.W. Colvin, “Silicone in organic synthesis,” Butterworth and Co. Ltd., Butterworths, 1981.

[98] A. Streiwieser Jr., C.H. Heathcock, “Introduction to organic chemistry,” Macmillian Publishing Co., New York, 1976.


[99] S. Yamazaki, Y. Katoa and I. Taniguchi, “A study of photoreaction of stain films on silicon by infrared spectroscopy,” Surface Science, 1967, 7(1), pp68-78.

[100] Infrared Spectroscopy, http://www.spectroscopynow.com/

[101] B. Tang, XQ. Li, JW. Wang, “EPDM rubber and applications,” Beijing: Chemical Industry Press, 2005.

[102] N.S Tomer, F. Delor-Jestin, R.P. Singh, J. Lacoste, “Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber,” Polymer Degradation and Stability, 2007, 92, pp457–63.

[103] K. P. Menard, “Dynamic mechanical analysis,” CRC Press, 1999.

[104] N. McCrum, B. Williams, and G. Read, “An elastic and dielectric effects in polymeric solids,” Dover, New York, 1991.

[105] X. Li, B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 2002, 48. pp11-36.

[106] J. Mark, K. Ngai, W. Graessley, L. Mandelkern, E. Samulski, J. Koenig, G. Wignall, “Physical properties of polymers,” Cambridge Univ. Press., Cambridge, 2004.

[107] J. D. Ferry, “Viscoelastic properties of polymers,” John Wiley & Sons Inc., New York, 1961.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code