Responsive image
博碩士論文 etd-0603113-154334 詳細資訊
Title page for etd-0603113-154334
論文名稱
Title
以氮與鎢摻雜二氧化鈦之合成鑑定與可見光域應用
Synthesis and Characterization of Nitrogen and Tungsten Doped Titanium Dioxide for Photocatalytic Application in Visible-light Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-26
繳交日期
Date of Submission
2013-07-03
關鍵字
Keywords
脫乙基反應、鈦酸管、鎢氮共摻雜、可見光催化、共水熱
Visible light photocatalysis, Deethylation, Cohydrothermal, titanate nanotube, Nitrogen Tungsten Co-doped
統計
Statistics
本論文已被瀏覽 5728 次,被下載 383
The thesis/dissertation has been browsed 5728 times, has been downloaded 383 times.
中文摘要
本研究主要分為兩部分,第一、二章說明光觸媒與離子摻雜的二氧化鈦製備等基本原理,第三章採用四丁基鈦為前驅物,尿素等不同氮來源,三嵌段高分子P123為模板,採溶凝膠法合成含氮摻雜的球形二氧化鈦,在可見光下對亞甲基藍具有降解效果。第四章在此基礎上再嘗試加入鎢酸銨以合成鎢氮共摻雜的球形二氧化鈦,進行X光繞射分析、氮氣吸脫附、掃瞄式電子顯微鏡、電子能譜儀等綜合分析顯示,其結構為中孔洞結構銳鈦礦球形二氧化鈦,氮的鍵結屬γ-N2型鍵結,鎢則以O-W-N 或WO3的結晶附於二氧化鈦表面,適量摻雜的鎢氮共摻雜的二氧化鈦在可見光下對羅丹明B的降解反應優於商用二氧化鈦P25。第二部分第五、六章以商用二氧化鈦P25為鈦的前驅物,與不同重量比例的尿素進行共水熱反應,合成一系列含氮摻雜的鈦酸管,進行X光繞射分析、氮氣吸脫附、掃瞄式電子顯微鏡、電子能譜儀等綜合分析顯示,共水熱方式可成功的以一步驟合成出具高比表面積的含氮摻雜鈦酸管,而隨著尿素添加量的增加,鈦酸管的表面形貌會由管狀逐漸轉變成顆粒狀,氮在鈦酸管中是以Ti-O-N 或 Ti-N-O 的方式鍵結,屬於間隙型化學吸附方式的摻雜。各不同尿素添加量所合成鈦酸管對羅丹明B的降解反應均優於商用二氧化鈦P25,其反應機構推論為脫乙基反應(Deethylation) 與氮摻雜鈦酸管後降低二氧化鈦能階在可見光下產生電子電洞對所引發的礦化 (Mineralization) 兩種機構的加成效果(Synergistic effect)。
Abstract
This dissertation consisits of two sections regarding the visible light driven photocatalysts based upon nitrogen doped and nitrogen tungsten codoped titania. The first Chapter 1 to Chapter 3 emphasized relvent backround of photocatalysis and metal or non-metal doped titania. Within Chapter 4, a sphere-like W,N-codoped TiO2 photocatalysts were prepared by a simple one-pot synthesis route. The morphology and microstructure characteristics of W,N-codoped titania photocatalysts with different amount of tungsten doping were characterized by means of XRD, BET, SEM, XPS, DRS and UV–vis. The metal and nonmetal codoped W,N-TiO2 sample shows the photocatalytic activity, which is much superior to the commercial titania P25 and undoped titania under visible light irradiation. The probable mechanism of codoping effect is proposed. The tungsten ions with changing valences in the W,N-TiO2 samples are considered to act as trapping sites, which will effectively decrease the recombination rate of photo-induced electrons and holes and then increase the photo-oxidation efficiency of the catalysts. The second section in Chapter 5 and Chapter 6 regards a facile one-step cohydrothermal synthesis via urea treatment has been adopted to prepare a series of nitrogen-doped titanate nanotubes with highly efficient visible light photocatalysis of rhodamine B, in an effect to identify the effect of nitrogen doping on the photodegradation efficiency. The morphology and microstructure of the thus-prepared N-doped titanates were characterized by nitrogen adsorption/desorption isotherms, transmission electron microscopy, and scanning electron microscopy. With increasing urea loadings, the N-doped titanates change from a porous multi-layer and nanotube-shaped to a dense and aggregated particle-shaped structure, accompanied with reduced specific surface area and pore volume and enhanced pore diameter. Interstitial linkage to titanate via Ti-O-N and Ti-N-O is confirmed by X-ray photoelectron spectroscopy. Factors governing the photocatalytic degradation such as the specific surface area of the catalyst and the degradation pathway are analyzed, a mechanistic illustration on the photodegradation is provided, and a 3-stage degradation mechanism is identified. The synergistic contribution due to the enhanced deethylation and chromophore cleavage on rhodamine B molecules and the reduced band gap on the catalyst TiO2 by interstitial nitrogen-doping has been accounted for the high photodegradation efficiency of the N-doped titanate nanotubes.
目次 Table of Contents
Table of contents
論文審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of contents v
List of figures x
List of tables xiv
Chapter 1. Introduction 1
1.1 Introduction 1
1.2 Photoinduced Reactivity of Titanium Dioxide 3
1.3 Mesoporous Titanium Dioxide 8
1.4 Nitrogen Doped Mesoporous Titanium Dioxide 11
1.5 Rationale and Objective of this study 14
Chapter 2. Literature Review 19
2.1 Mesoporous Materials 19
2.2 Titanium-based Mesoporous Materials 23
2.3 Doping on Titania-based Mesoporous Materials 28
2.3.1 Metal Doped Titanium Dioxide 28
2.3.2 Non-metal Doped Titanium Dioxide 30
2.3.3 Nitrogen Doped Methods 31
2.3.4 XPS debate in Nitrogen Doped Titania 32
2.4 Photodegradation Application of Dye Pollutant over Nitrogen-doped Titania in Visible-light 38
2.4.1 Operational Parameters in Photocatalyst Efficiency 39
2.4.2 Direct and Indirect Photocatalysis 40
2.5 Photocatalysis Ability of Titanate Nanotube 43
Chapter 3. Synthesis and Characterization of N-doped Titanium Dioxide by Different N source 47
3.1 Experimental Scheme 47
3.1.1 Chemical Reagents 48
3.1.2 Synthesis of Mesoporous Titanium Dioxide 48
3.1.3 Nitrogen-Doped Mesoporous Titanium Dioxide 50
3.2 Characterization 53
3.3 Photocatalytic Activity Evaluation 55
3.4 Results and Discussion 56
3.4.1 Characterization of Mesoporous N-Doped Titanium Dioxide 56
3.4.2 Photocatalytic Activity 73
3.5 Conclusion 75
Chapter 4. Enhancement of Visible Light Photo- activity of Tungsten-Nitrogen Codoped Mesoporous Titania Sphere via a Facile One-pot Synthesis 76
4.1 Introduction 76
4.2 Experimental 79
4.2.1 Preparation of W-N Codoped Titania Spheres 79
4.2.2 Characterizations 80
4.2.3 Photocatalytic Activity 81
4.3 Results and Discussion 82
4.3.1. Morphological and Microstructural Characterizations 82
4.3.2 Photocatalytic Activity 95
4.4 Conclusions 98
Chapter 5. One Step Co-hydrothermal Synthesis of Nitrogen- doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity 100
5.1 Introduction 100
5.2 Experimental 103
5.2.1 Preparation of N-doped TiO2 Nanotubes 103
5.2.2 Characterizations 104
5.2.3 Photocatalytic Activity 104
5.3. Results and Discussion 105
5.3.1. Morphological and Microstructural Characterizations of N-doped TiO2 Nanotubes 105
5.3.2. Chemical Identification of N-doped TiO2 Nanotubes 112
5.3.3 Photocatalytic Activity 117
5.4 Conclusions 121
Chapter 6. Effect of Nitrogen Doping on the Micro- structure and Visible Light Photocatalysis of Titanate Nanotubes by a Facile Co- hydrothermal Synthesis via Urea Treatment 123
6.1. Introduction 123
6.2 Experimental 128
6.2.1 Preparation of N-doped Titanate Nanotubes 128
6.2.2 Characterizations 128
6.2.3 Photocatalytic Activity 129
6.3 Results and Discussion 130
6.3.1. Morphological and Microstructural Characterizations of N-doped Titanate Nanotubes 130
6.3.2. Chemical Identification of N-doped Titanate Nanotubes 137
6.3.3 Photocatalytic Activity 141
6.3.4 Nitrogen-doping Effect 145
6.4 Conclusions 149
Vitae 164
參考文獻 References
References
[1] S.S. Mao, X. Chen, Selected nanotechnologies for renewable energy applications, Int. J. Energy Res. 31 (2007) 619-636.
[2] A. Fujishima, K. Honda, Electrochemical Photolysis of water at a Semiconductor electrode, Nature 238 (1972) 37.
[3] M. Anpo, Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method, Pure Appl. Chem. 72 (2000) 1787-1792.
[4] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269.
[5] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243-2245.
[6] J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater. 14 (2002) 3808-3816.
[7] H. Kisch, S. Sakthivel, M. Janczarek, D. Mitoraj, A low-band gap, nitrogen-modified titania visible-light photocatalyst, J. Phys. Chem. C 111 (2007) 11445-11449.
[8] R. Tomovska, M. Marinkovski, R. Frajgar, Current State of Nanostructured TiO2-based Catalysts: Preparation Methods, in: Nanotechnology-Toxicological Issues and Environmental Safety and Environmental Safety, Springer, 2007, pp. 207-229.
[9] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
[10] A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol., A 108 (1997) 1.
[11] G.J.d.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev. 102 (2002) 4093-4138.
[12] N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nature Nanotechnology 3 (2008) 106-111.
[13] N. Serpone, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B 110 (2006) 24287-24293.
[14] S. Yin, Y. Aita, M. Komatsu, T. Sato, Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system, J. Eur. Ceram. Soc. 26 (2006) 2735-2742.
[15] G.R. Torres, T. Lindgren, J. Lu, C.-G. Granqvist, S.-E. Lindquist, Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B 108 (2004) 5995-6003.
[16] P.G. Wu, C.H. Ma, J.K. Shang, Effects of nitrogen doping on optical properties of TiO2 thin films, Appl. Phys. A 81 (2005) 1411-1417.
[17] F. Fabreguette, L. Imhoff, M. Maglione, B. Domenichini, M.C.M. de Lucas, P. Sibillot, S. Bourgeois, M. Sacilotti, Correlation between the electrical properties and the morphology of low-pressure MOCVD titanium oxynitride thin films grown at various temperatures, Chem. Vap. Deposition 6 (2000) 109-114.
[18] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates, Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B 108 (2004) 6004-6008.
[19] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B 109 (2005) 11414-11419.
[20] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
[21] J. Lin, J.C. Yu, An investigation on photocatalytic activities of mixed TiO,-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol., A 116 (1994) 63-67.
[22] V. Puddu, R. Mokaya, G.L. Puma, Chem. Comm. 45 (2007) 4749-4756.
[23] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide, J. Phys. Chem. B 110 (2006) 14391-14397.
[24] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.
[25] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11 (1999) 1307-1311.
[26] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
[27] P. Yang, The chemistry of nanostructured materials, World Scientific Publishing Company, 2003.
[28] F. Schuth, Non-siliceous Mesostructured and Mesoporous Materials, Chem. Mater. 13 (2001) 3184-3195.
[29] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable,Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6024-6036.
[30] A. Sayari, P. Liu, Non-silica periodic mesostructured materials: recent progress, Microporous Mater. 12 (1997) 149-177.
[31] Y.Y. Lili Zhao, Lixin Song, Xingfang Hu, Andre´ Larbot, Synthesis and characterization of nanostructured titania film for photocatalysis, Appl. Surf. Sci. 239 (2005) 285-291.
[32] Y. Li, J. Hagen, W. Schaffarath, P. Otschik, D. Haarer, Titanium dioxide films for photovoltaic cells derived from a sol-gel process, Sol. Energy Mater. Sol. Cells 56 (1999) 167-174.
[33] M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells, J. Electrochem. Soc. 150 (2003) G488-G493.
[34] J. Blanchard, F. Ribot, C. Sanchez, P. Bellot, A. Trokiner, Structural characterization of titanium-oxo-polymers synthesized in the presence of protons or complexing ligands as inhibitors, J. Non-Cryst. Solids 265 (2000) 83-97.
[35] D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method, Angew. Chem Int. Ed. Engl. 34 (1995) 2014-2017.
[36] P. Yang, D. Zhao, D.I. Margolese, B. F., G.D. Stucky, Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework, Chem. Mater. 11 (1999) 2813-2826.
[37] K. Liu, H. Fu, K. Shi, F. Xiao, L. Jing, B. Xin, Preparation of large-pore mesoporous nanocrystalline TiO2 thin films with tailored pore diameters, J. Phys. Chem. B 109 (2005) 18719-18722.
[38] K. Liu, H. Fu, K. Shi, B. Xin, L. Jing, W. Zhou, Hydrophilicity and formation mechanism of large-pore mesoporous TiO2 thin films with tunable pore diameters, Nanotechnology 17 (2006) 3641-3648.
[39] P. Yang, D. Zhao, D.I. Margolese, B. F., G.D. Stucky, Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks, Nature 396 (1998) 152-155.
[40] M. Anpo, Utilization of TiO2 photocatalysts in green chemistry, Pure Appl. Chem. 72 (2000) 1265-1270.
[41] Y.-X. Weng, Y.-Q. Wang, J.B. Asbury, H.N. Ghosh, T. Lian, Back Electron Transfer from TiO2 Nanoparticles to FeIII (CN)63-: Origin of Non-Single-Exponential and Particle Size Independent Dynamics, J. Phys. Chem. B 104 (2000) 93-104.
[42] D. Dvoranová, V. Brezová, M. Mazúr, M.A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal., B 37 (2002) 91-105.
[43] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structure of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids 63 (2002) 1909-1920.
[44] M. Zhou, J. Yu, B. Cheng, H. Yu, Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts, Mater. Chem. Phys. 93 (2005) 159-163.
[45] O. Carp , C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry 32 (2004) 33-177.
[46] J.-Y. Lee, J. Park, J.-H. Cho, Electronic properties of N-and C-doped TiO2, Appl. Phys. Lett. 87 (2005) 011904-011904-011903.
[47] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven NF-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization, Chem. Mater. 17 (2005) 2588-2595.
[48] L. Lin, R.Y. Zheng, J.L. Xie, Y.X. Zhu, Y.C. Xie, Synthesis and characterization of phosphor and nitrogen co-doped titania, Appl. Catal., B 76 (2007) 196-202.
[49] S. Sato, Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chem. Phys. Lett. 123 (1986) 126-128.
[50] S.Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine, J. Mater. Chem. 13 (2003) 2996-3001.
[51] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B 107 (2003) 5483-5486.
[52] C. Burda, Y. Lou, X. Chen, A.C.S.S. Stout, J.L. Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Lett. 3 (2003) 1049-1051.
[53] N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study, J. Appl. Phys. 72 (1992) 3072.
[54] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B 108 (2004) 19384-19387.
[55] J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, Highly Efficient Formation of Visible Light Tunable TiO2-x Nx Photocatalysts and Their Transformation at the Nanoscale, J. Phys. Chem. B 108 (2004) 1230-1240.
[56] X. Chen, C. Burda, Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles, J. Phys. Chem. B 108 (2004) 15446-15449.
[57] M. Sathish, B Viswanathan, R. P. Viswanath, C.S. Gopinath, Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst, Chem. Mater. 17 (2005) 6349~6353.
[58] H. Li, J. Li, Y. Huo, Highly active TiO2-N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions, J. Phys. Chem. B 110 (2006) 1559-1565.
[59] M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, M. Anpo, Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation, J. Phys. Chem. B 110 (2006) 25266-25272.
[60] H. Chen, A. Nambu, W. Wen, J. Graciani, Z. Zhong, J.C. Hanson, E. Fujita, J.A. Rodriguez, Reaction of NH3 with Titania: N-doping of the Oxide and TiN formation, J. Phys. Chem. C 111 (2007) 1366-1372.
[61] A.R. Gandhe, J.B. Fernandes, A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight, J. Solid State Chem. 178 (2005) 2953-2957.
[62] Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources, Appl. Catal., B 57 (2005) 223-231.
[63] V. Pore, M. Heikkila, M. Ritala, M. Leskela, S. Areva, Atomic layer deposition of TiO2-x Nx thin films for photocatalytic applications, J. Photochem. Photobio. A: Chem. 177 (2006) 68-75.
[64] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, J. Phys. Chem. C 111 (2007) 6976-6982.
[65] N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Factors influencing the photocatalytic degradation of rhodamine B by TiO2-coated non-woven paper, J. Photochem. Photobiol., A 195 (2008) 346-351.
[66] M.A. Carreon, S.Y. Choi, M. Mamak, N. Chopra, G.A. Ozin, Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films, J. Mater. Chem. 17 (2007) 82-89.
[67] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B 102 (1998) 5845-5851.
[68] G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation, Enviro. Sci. Technol. 34 (2000) 3982-3990.
[69] F. Chen, J. Zhao, H. Hidaka, Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst, Int. J. Photoenergy 5 (2003) 209-217.
[70] O. Merka, V. Yarovyi, D.W. Bahnemann, M. Wark, pH-control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13, J. Phys. Chem. C 115 (2011) 8014-8023.
[71] J.C. Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpinski, A.A. Romero, Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview, Materials 2 (2009) 2228-2258.
[72] H. Xu, G. Vanamu, Z. Nie, H. Konishi, R. Yeredla, J. Phillips, Y. Wang, Photocatalytic oxidation of a volatile organic component of acetaldehyde using titanium oxide nanotubes, J. Nanomater. 2006 (2006) 23-23.
[73] J. Yu, H. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes, J. Mol. Catal. A: Chem. 249 (2006) 135-142.
[74] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, Synthesis of nanotube from a layered H2Ti4O9‧H 2O in a hydrothermal treatment using various titania sources, J. Mater. Sci. 39 (2004) 4239-4245.
[75] V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernikova, L. Szatmary, M. Klementova, V. Balek, Sodium titanate nanorods: preparation, microstructure characterization and photocatalytic activity, Appl. Catal. B: Environ 63 (2006) 20-30.
[76] H.H. Ou, C.H. Liao, Y.H. Liou, J.H. Hong, S.L. Lo, Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes, Environ. Sci. Technol. 42 (2008) 4507-4512.
[77] H. Yu, J. Yu, B. Cheng, J. Lin, Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites, J. Hazard. Mater. 147 (2007) 581-587.
[78] M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, J. Mol. Catal. A: Chem. 217 (2004) 203-210.
[79] R. Yoshida, Y. Suzuki, S. Yoshikawa, Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes, Mater. Chem. Phys. 91 (2005) 409-416.
[80] C.K. Lee, C.C. Wang, M.D. Lyu, L.C. Juang, S.S. Liu, S.H. Hung, Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates, J. Colloid Interface Sci. 316 (2007) 562-569.
[81] A. Riss, T. Berger, H. Grothe, J. Bernardi, O. Diwald, E. Knozinger, Chemical control of photoexcited states in titanate nanostructures, Nano lett. 7 (2007) 433-438.
[82] K.M. Coakley, M.D. McGehee, Conjugated Polymer Photovoltaic Cells, Chem. Mater. 16 (2004) 4533-4542.
[83] C. Sanchez, G.J.d.A.A. Soler-Illier, Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides : their role in the templated construction of mesostructured hybrid organic-inorganic composites, New J. Chem. 24 (2000) 493-499.
[84] K. Liu, M. Zhang, W. Zhou, L. Li, J. Wang, H. Fu, Preparation, characterization, and photo-induced hydrophilicity of nanocrystalline anatase thin films synthesized through evaporation-induced assembly, Nanotechnology 16 (2005) 3006.
[85] R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760-762.
[86] Hisahito Ogawa, Atsushi Abe, Masahiro Nishikawa, S. Hayakawa, Preparation of Tin Oxide Films from Ultrafine Particles, J. Electrochem. Soc. 128 (1981) 685.
[87] B. Chi, L. Zhao, T. Jin, One-Step Template-Free Route for Synthesis of Mesoporous N-Doped Titania Spheres, J. Phys. Chem. C 111 (2007) 6189-6193.
[88] R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes, J. Phys. Chem. B 108 (2004) 10617-10620.
[89] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin, G. Pacchioni, Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light, J. Am. Chem. Soc. 128 (2006) 15666-15671.
[90] M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B 108 (2004) 17269-17273.
[91] F. Peng, L. Cai, H. Yu, H. Wang, J. Yang, Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity, J. Solid State Chem. 181 (2008) 130-136.
[92] Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne, New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2, J. Phys. Chem. B 109 (2005) 20948-20952.
[93] T. Tachikawa, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima, Photoinduced charge separation in titania nanotubes, J. Phys. Chem. B 110 (2006) 14055-14059.
[94] J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, X. Gao, Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation, J. Mol. Catal. A: Chem. 261 (2007) 131-138.
[95] M. Li, P. Tang, Z. Hong, M. Wang, High efficient surface-complex-assisted photodegradation of phenolic compounds in single anatase titania under visible-light, Colloids Surf., A 318 (2008) 285-290.
[96] T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template, Int. J. Hydrogen Energy 31 (2006) 786-796.
[97] J.-J. Zou, H. He, L. Cui, H.-Y. Du, Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method, Int. J. Hydrogen Energy 32 (2007) 1762-1770.
[98] M. Zhou, J. Yu, B. Cheng, Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method, J. Hazard. Mater. 137 (2006) 1838-1847.
[99] J. Luka, M. Klementova, P. Bezdi ka, S. Bakardjieva, J. ubrt, L. Szatmary, A. Gruskova, Characterization of Zr-doped TiO2 prepared by homogenous co-precipitation without high-temperature treatment, J. Mater. Sci. 42 (2007) 9421-9428.
[100] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett. 32 (2003) 364-365.
[101] Daimei Chen, Dong Yang, Qun Wang, Z. Jiang, Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles, Ind. Eng. Chem. Res 45 (2006) 4110-4116.
[102] M.A. Henderson, J.M. White, H. Uetsuka, H. Onishi, Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor, J. Amer. Chem. Soc. 125 (2003) 14974-14975.
[103] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven NF-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 17 (2005) 2596-2602.
[104] J. Yu, M. Zhou, B. Cheng, X. Zhao, Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders, J. Mol. Catal. A: Chem. 246 (2006) 176-184.
[105] G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H.M. Cheng, Synergistic Effects of B/N Doping on the Visible Light Photocatalytic Activity of Mesoporous TiO2, Angew. Chem. Int. Ed. 47 (2008) 4516-4520.
[106] J.A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N.C. Castillo, J. Kiwi, C. Pulgarin, Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light, Appl. Catal., B 84 (2008) 448-456.
[107] J.A. Rengifo-Herrera, J. Kiwi, C. Pulgarin, N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol., A 205 (2009) 109-115.
[108] Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J.N. Kondo, M. Hara, K. Domen, Metal ion and N co-doped TiO2 as a visible-light photocatalyst, J. Mater. Res. 19 (2004) 2100-2108.
[109] R. Sasikala, A.R. Shirole, V. Sudarsan, C. Sudakar, R. Naik, R. Rao, S.R. Bharadwaj, Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation, Appl. Catal., A 377 47-54.
[110] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C 111 (2007) 10618-10623.
[111] X.-Z. Shen, J. Guo, Z.-C. Liu, S.-M. Xie, Visible-light-driven titania photocatalyst co-doped with nitrogen and ferrum, Appl. Surf. Sci. 254 (2008) 4726-4731.
[112] A. Fuerte, M.D. Hernandez-Alonso, A.J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J.C. Conesa, J. Soria, Visible light-activated nanosized doped-TiO2 photocatalysts, Chem. Comm. (2001) 2718-2719.
[113] T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability, Chemistry of materials 13 (2001) 2838-2842.
[114] T. Kwon, Y. Song, I. Lee, J. Choi, D.Y. Rag, Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction, J. Catal. 191 (2000) 192-199.
[115] J. Engweiler, J. Harf, A. Baiker, WOx/TiO2 Catalysts Prepared by Grafting of Tungsten Alkoxides: Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH3, J. Catal. 159 (1996) 259-269.
[116] G.R. Bamwenda, K. Sayama, H. Arakawa, The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3-Fe2+- Fe3+ aqueous suspension, J. Photochem. Photobio. A: Chem. 122 (1999) 175-183.
[117] W.H.R. Shaw, J.J. Bordeaux, The decomposition of urea in aqueous media, J. Am. Chem. Soc. 77 (1955) 4729-4733.
[118] D. Cordischi, D. Gazzoli, M. Occhiuzzi, M. Valigi, Redox Behavior of VI B Transition Metal Ions in Rutile TiO2 Solid Solutions: An XRD and EPR Study, J. Solid State Chem. 152 (2000) 412-420.
[119] S. Yin, K. Ihara, M. Komatsu, Q. Zhang, F. Saito, T. Kyotani, T. Sato, Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity, Solid state comm. 137 (2006) 132-137.
[120] N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study, J. Appl. Phys. 72 (1992) 3072-3079.
[121] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide, J. Phys. Chem. B 110 (2006) 14391-14397.
[122] A. Scholz, B. Schnyder, A. Wokaun, Influence of calcination treatment on the structure of grafted WOx species on titania, J. Mol.Catal. A: Chem. 138 (1999) 249-261.
[123] G. Ramis, G. Busca, C. Cristiani, L. Lietti, P. Forzatti, F. Bregani, Characterization of tungsta-titania catalysts, Langmuir 8 (1992) 1744-1749.
[124] Y.R. Do, W. Lee, K. Dwight, A. Wold, The Effect of WO3 on the Photocatalytic Activity of TiO2, Journal of Solid State Chemistry 108 (1994) 198-201.
[125] K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties, Chem. Mater. 13 (2001) 2349-2355.
[126] H. Tada, A. Kokubu, M. Iwasaki, S. Ito, Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3, Langmuir 20 (2004) 4665-4670.
[127] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82 (2003) 281-283.
[128] D.V. Bavykin, S.N. Gordeev, A.V. Moskalenko, A.A. Lapkin, F.C. Walsh, Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence, J. Phys. Chem. B 109 (2005) 8565-8569.
[129] M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, C.A. Grimes, Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells, J. Phys. D: Appl. Phys. 39 (2006) 2498-2503.
[130] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes, Nano Lett. 6 (2006) 1080-1082.
[131] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, S. Kleber, P. Schmuki, TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation, Chem. Phys. Lett. 419 (2006) 426-429.
[132] Q. Chen, W. Zhou, G.H. Du, L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater. 14 (2002) 1208-1211.
[133] Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer, D.Y. Song, Titanate nanotubes and nanorods prepared from rutile powder, Adv. Funct. Mater. 15 (2005) 1310-1318.
[134] R. Ma, Y. Bando, T. Sasaki, Nanotubes of lepidocrocite titanates, Chem. Phys. Lett. 380 (2003) 577-582.
[135] L.Q. Weng, S.H. Song, S. Hodgson, A. Baker, J. Yu, Synthesis and characterisation of nanotubular titanates and titania, J. Eur. Ceram. Soc. 26 (2006) 1405-1409.
[136] J. Yu, H. Yu, B. Cheng, X. Zhao, Q. Zhang, Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method, J. Photochem. Photobiol., A 182 (2006) 121-127.
[137] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases, J. Catal. 203 (2001) 82-86.
[138] S. Yin, J. Wu, M. Aki, T. Sato, Photocatalytic hydrogen evolution with fibrous titania prepared by the solvothermal reactions of protonic layered tetratitanate (H2Ti4O9), Int. J. Inorg. Mater. 2 (2000) 325-331.
[139] G. Li, G. Song, J. Chen, M. Zhu, P.K. Wong, Photocatalytic degradation of methylene blue by magnetically separable BiVO4 supported on Fe3O4 nanoparticles, in: 2nd Conference on Environmental Science and Information Application Technology Photocatalytic, IEEE, 2010, pp. 352-355.
[140] X. Cheng, X. Yu, Z. Xing, Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity, Appl. Surf. Sci. 258 (2012) 3244-3248.
[141] X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331 (2011) 746-750.
[142] Q. Xiang, J. Yu, M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity, Phys. Chem. Chem. Phys. 13 (2011) 4853-4861.
[143] F. Wang, X. Chen, X. Hu, K.A.M.S. Wong, J.C. Yu, WO3/TiO2 microstructures for enhanced photocatalytic oxidation, Sep. Purif. Technol. 91 (2012) 67-72.
[144] W. Wang, C. Lu, Y. Ni, M. Su, W. Huang, Z. Xu, Preparation and characterization of visible-light-driven N-F-Ta tri-doped TiO2 photocatalysts, Appl. Surf. Sci. 258 (2012) 8696-8703.
[145] C.C. Hu, T.C. Hsu, L.H. Kao, One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity, Int. J. Photoenergy Vol. 2012, Article ID 391958, 9 pages, 2012. doi:10.1155/2012/391958.
[146] S. Zhou, J. Lv, L.K. Guo, G.Q. Xu, D.M. Wang, Z.X. Zheng, Y.C. Wu, Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites, Appl. Surf. Sci. 258 (2012) 6136-6141.
[147] G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Photooxidation pathway of sulforhodamine-B. dependence on the adsorption mode on TiO2 exposed to visible light radiation, Environ. Sci. Technol. 34 (2000) 3982-3990.
[148] H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B 109 (2005) 22432-22439.
[149] K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism, J. Phys. Chem. A 113 (2009) 10024-10032.
[150] C.C. Tsai, H. Teng, Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments, Chem. Mater. 18 (2006) 367-373.
[151] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem. 14 (2004) 3370-3377.
[152] X. Sun, Y. Li, Synthesis and characterization of ion-exchangeable titanate nanotubes, Chem. Eur. J. 9 (2003) 2229-2238.
[153] A.K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, S. Ismat Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO2, Solid State Commun. 144 (2007) 334-338.
[154] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature 453 (2008) 638-641.
[155] Q. Xiang, J. Yu, W. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity, Chem. Commun. 47 (2011) 6906-6908.
[156] X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, Oxidative decomposition of Rhodamine B dye in the presence of VO2+ and/or Pt (IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization, J. Phys. Chem. B 110 (2006) 26012-26018.
[157] C. Chen, W. Zhao, P. Lei, J. Zhao, N. Serpone, Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications, Chem. Eur. J. 10 (2004) 1956-1965.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code