Responsive image
博碩士論文 etd-0603113-195209 詳細資訊
Title page for etd-0603113-195209
論文名稱
Title
高級與傳統淨水場原水中微量有機物與 生物可利用有機碳之去除比較
Comparing removal of trace organic carbon and assimilable organic carbon (AOC) in raw water at advance and traditional water treatment plants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-11
繳交日期
Date of Submission
2013-07-03
關鍵字
Keywords
淨水場、水質分析、生物可利用有機碳、類神經網路、水處理
water treatment plant, water treatment, artificial neural network (ANN), assimilable organic carbon (AOC), water quality analysis
統計
Statistics
本論文已被瀏覽 5773 次,被下載 570
The thesis/dissertation has been browsed 5773 times, has been downloaded 570 times.
中文摘要
我們發現國內之飲用水水質變化之原因,最主要是因為原水經水處理場處理程序效能導致給配水系統異營性微生物生長,此現象稱為後生長(Aftergrowth)或再生長(Regrowth)。
本研究針對高級及傳統淨水處理場之原水、各種淨水處理程序與管網之水質項目進行採樣及分析來探討:(1)傳統水處理和高級水處理程序水中微量有機物之去除效率;(2) 淨水處理程序中生物可利用有機碳(Assimilable Organic Carbon,簡稱AOC)之濃度變化;(3)以類神經網路系統中之AutoNet(6.03)方法建立AOC之預測模式。
研究採樣時間從2009年12月至2010年11月,每月採樣一次,其原水取得為水庫貯留水,就高級淨水處理場及傳統淨水處理場中去除水中微量有機物進行分析(含TOC、DOC、UV254和 AOC),實驗結果表明高級淨水處理場中採用較先進水處理流程之預臭氧接觸槽、脈動式膠凝沉澱池及生物活性碳濾床之AOC去除率分別為19%、36%及22%。證明其新設預臭氧接觸槽、脈動式膠凝沉澱池和生物活性碳濾床可有效去除AOC;總有機碳TOC和溶解性有機碳DOC於預臭氧接觸槽之生成率為5%及7%。傳統淨水處理場中則以平底式混凝沉澱池之AOC去除率39%最為有效,快濾池只能去除3%的AOC,前加氯之總有機碳TOC和溶解性有機碳DOC生成率為3%及2%。以採樣分析之13項水質數值進行類神經網路模式模擬預測,預測值差異百分比介於13.6~27.4%,依模擬預測結果建議高級水處理場需將TDS及NH3-N數值納入定期監測;傳統水處理場則應將DOC、UV254及水溫數值納入定期監測。
研究中發現,高級淨水處理場之預臭氧處理單元的臭氧濃度介於1.0~1.24 mg/L,受優養化湖水之藻類及其他物質消耗影響,對於可利用之有機碳原為AOC-P17可用轉變成AOC-NOX可利用之氧化作用不足。結晶軟化槽處理單元之AOC-P17生成量達73.9%,其可能生成機制以腐植質中之腐植酸溶於鹼性環境中,與加入之鹼劑扮演一重要的陽離子與微量金屬離子之吸附劑,進行離子交換作用,釋出AOC-P17可利用機質有關。澄清湖水庫於底泥挖除工程後接續之排砂道工程可減少原水中14.1%之TOC;本研究期間,仁義潭水庫之原水TOC平均值為1.25mg/L,稍高於澄清湖水庫之0.8 mg/L,如能以底泥挖除工程配合引流端之沉澱池固定排砂工程施作,應可降低原水取水口之AOC。於GW淨水場前加氯處理單元後,AOC-NOX可利用機質生成率為183%,且以AOC-P17可利用機質為主要去除對象,無法對於低分子量AOC-NOX可利用機質進行有效去除,建議配合各淨水場之原水特性,增設高級淨水處理單元之薄膜處理單元及配水管網之管線維修防止外滲,對於降低飲用水之AOC應是較容易完成之近程目標。
Abstract
We found numerous factors deteriorate the quality of drinking water in water treatment plant (WTP). These problems are caused by the performance of WTP processes and heterotrophic microbial growth in water distribution network.
In this study, analysis on water quality items of raw water sampled from various water treatment processes in advanced and traditional WTP and pipeline networks. We conducted to explore: (a) the efficiency of traditional and advanced water treatment processes in removing trace organics; (b) fluctuations in the concentration of assimilable organic carbon (AOC) during the water treatment process; (c) the applicability of the AutoNet (6.03) method for constructing an AOC forecast model in an artificial neural network (ANN).
The sampling period was December, 2009 to November, 2010 and raw water was sampled once a month. Raw water was obtained from two reservoirs. An analysis of the trace organics, such as total organic carbon (TOC), dissolved organic carbon (DOC), UV254, and AOC. The results of removal of the advanced and traditional WTP showed that the pre-ozone contactor, pulsator, and biological activated carbon (BAC) filter used in advanced WTP had AOC removal rates of 19%, 36%, and 22%, respectively. This proved that pre-ozone contactor, pulsator, and BAC filters can effectively remove AOC. The growth rates of TOC and DOC in the pre-ozone contactor were 5% and 7%, respectively. In a traditional WTP, the flat bottom coagulation-sedimentation basin was the most effective in AOC removal (39%). The rapid sand filter only removes 3% of the AOC. The TOC and DOC pre-chlorination growth rates were 3% and 2%, respectively. The variations in the forecasted ANN values were based on the 13 water quality values rom the sample analyses, which varied from 13.6% ~ 27.4%. Based on the simulated forecasts, it is recommended that advanced WTP should regularly monitor the total dissolved solids (TDS) and NH3-N values. Traditional WTP should regularly monitor the DOC, UV254, and water temperature values.
In the pre-ozone treatment units of the advanced WTPs, the ozone concentrations varied from 1.0 mg/L to 1.24 mg/L and were affected by the eutrophication of algae in the lake water and the consumption of other materials. This led to the insufficient oxidation of AOC, which converted AOC-P17 to AOC-NOX. The quantity of AOC-P17 generated in the pellet softening treatment unit reached 73.9%. This may be related to the release of the AOC-P17 through the mechanism of humic acid dissolved in alkaline environments. When combined with alkali agents, humic acid becomes a cation and trace metal ion adsorbent that produces an ion-exchange reaction. The sediment releasing project combined with the Chengcing Lake Reservoir sediment excavation projects can remove 14.1% of the TOC in the raw water. During the current study, the mean TOC value of the Jen-Yi-Tan Reservoir was 1.25mg/L, which was slightly higher than the 0.8 mg/L at the Chengcing Lake Reservoir. If sediment excavation projects coordinate the regular release of sediment on the sedimentation basin of intake, the AOC of the raw water at the intake can be reduced. After the pre-chlorination of the GWWTP, the AOC-NOX growth rate was 183% and the primarily removed organic matter was AOC-P17. The AOC-NOX with low molecular weight could not be effectively removed. It is recommended that based on the raw water characteristics of each WTP, installing additional membrane-based treatment units and maintaining water distribution networks to prevent leaks in advanced WTPs be the feasible short-term goal to reduce the AOC in drinking water.
目次 Table of Contents
摘 要 i
Abstract iii
目 錄 v
圖目錄 x
表目錄 xii
第一章 前言 1
1-1研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 水源現況 4
2-1-1卡爾森優養指數(CTSI) 4
2-1-2自然水體BOM之影響 6
2-2水質水源保護區 7
2-2-1蘭潭仁義潭飲用水水質水源保護區 7
2-2-2澄清湖飲用水水質水源保護區 9
2-3淨水廠現況 10
2-3-1 GW淨水場 10
2-3-2 CW淨水場 12
2-4淨水處理程序 16
2-4-1傳統淨水處理程序 16
2-4-1-1分水井 17
2-4-1-2量水堰 17
2-4-1-3膠凝沉澱池 18
2-4-1-4快濾池 18
2-4-2高級淨水處理程序 19
2-4-2-1臭氧接觸池 19
2-4-2-3粒狀活性碳濾池 24
2-5有機物的來源與種類 27
2-6配水管網微生物 29
2-6-1管網微生物生長 29
2-6-2配水管網微生物生長之影響因子 30
2-6-3控制配水管網微生物生長 31
2-7生物可利用有機碳之測定 32
2-7-1生物可利用有機碳之菌種概述 34
2-7-2傳統淨水程序對AOC去除之影響 37
2-7-3臭氧處理對AOC去除之影響 38
2-7-4 AOC對飲用水水質之影響 39
2-8淨水處理程序之消毒副產物 40
2-8-1加氯消毒副產物 41
2-8-1-1三鹵甲烷 41
2-8-1-1-1來源及分類 41
2-8-1-1-2生成因素 42
2-8-1-1-3法規管制 45
2-8-1-2鹵化乙酸 46
2-8-1-2-1來源及分類 46
2-8-1-2-2生成因素 48
2-8-1-2-3法規管制 50
2-8-2加臭氧消毒副產物 51
2-9 GMDH理論 52
2-9-1網路架構 53
2-9-2演算方法 53
第三章 研究方法 55
3-1研究流程之規劃 55
3-2採樣 56
3-2-1時程與採樣點規劃 56
3-2-2現場採樣程序 56
3-3分析項目及方法 57
3-3-1水溫 58
3-3-2氫離子濃度指數 59
3-3-3導電度 59
3-3-4總溶解固體 59
3-3-5總有機碳 60
3-3-6溶解性有機碳 60
3-3-7生物可利用有機碳 60
3-3-7-1培養基配製 61
3-3-7-2菌種保存與活化 63
3-3-7-3菌種純種鑑定與特性分析 64
3-3-7-4 AOC器皿之清潔方式 66
3-3-7-5生長曲線及產率之求取 67
3-3-7-6水樣分析方式 67
3-3-8氨氮 70
3-3-9硝酸鹽氮 70
3-3-10 UV254 70
3-3-11 SUVA 71
3-4菌種鑑定 71
3-5建立預測模式 72
3-5-1 Autonet6.03軟體簡介 72
3-5-2 基本參數設定 73
第四章結果與討論 75
4-1原水中有機物性質分析 75
4-1-1水質分類 75
4-1-2 原水中有機物性質比較 79
4-2 淨水處理程序 85
4-2-1 前氧化處理單元 85
4-2-2 混凝沉澱處理單元 88
4-2-3 結晶軟化處理單元 90
4-2-4 過濾處理單元 92
4-2-5 後臭氧&生物活性碳處理單元 94
4-2-6 清水消毒處理單元 96
4-2-7 淨水場各處理單元AOC 去除效率評估 98
4-3配水管網AOC 之變化 100
4-4淨水場AOC 預測模式 102
4-4-1 淨水處理程序之預測方程式 102
4-4-1-1 GW淨水場 102
4-4-1-2 CW淨水場 104
4-4-2 配水管網之預測方程式 105
4-4-2-1 GW淨水場 105
4-4-2-2 CW淨水場 106
4-4-3 整體水質預測方程式 107
4-4-3-1GW淨水場 107
4-4-3-2 CW淨水場 108
4-4-4預測模式驗證 109
4-4-5預測模式結果受水質參數影響評估 109
4-4-6 AOC預測模式外部驗證 111
第五章 結論與建議 112
5-1 結論 112
5-2 建議 114
參考文獻 116
學位考試口試委員意見修正書 129
參考文獻 References
A. Cierjacks1, B. Kleinschmit, I. Kowarik, M. Graf, F. Lang (2011) “Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data” River Res. 27, 8:1048–1057
Amy, G., and Debroux, J. (1998) “National Organic Matter (NOM) in Watersheds.” in The Panel Discussion of The 4th International Workshop on Drinking Water Quality Management and Treatment Technology ,Taipei, Taiwan .
AWWARF (1993a) Characterization of Natural Organic Matter and Its Relationship to Treatability, AWWA Research Foundation and American Water Works Association, Denver, CO. USA
AWWARF (1993b) Assimilable Organic Carbon Measurement Techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.USA
AWWARF (1998) Microbial impact of Biological filtration, AWWA Research Foundation and American Water Works Association, Denver, CO. USA
AWWA (1999) Water Quality and Treatment, McGraw-Hill, New York, p.6.4.
Bao M.L., Griffini O., Santianni D., Barbieri K., Durrini D. and Pantani F., (1999).
”Removal of bromate ion from water using granular activated carbon.”,Water
Research, 33, pp:2959-2970
Biswas P., Lu C. and Clark R. M., (1993) , “Chlorine concentration decay in pipes”, Wat. Res., 27, 12:1715–1724
Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. (2002), “Bulk Water Phase and Biofilm Growth in Drinking Water at Low Nutrient Conditions.” Wat. Res., 36: 4477-4486.
C Lu, F Su (2007)“Adsorption of natural organic matter by carbon nanotubes.” Sep. and Pur. Tech.Vol. 58(1): 113–121.
C Pelekani, V.L Snoeyink (1999) “Competitive adsorption in natural water: role of activated carbon pore size.” Wat. Res., 33-5: 1209–1219.
Charnock, C. and Kjønnø, O. (2000) “Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon in Norwegian Raw and Drinking Waters.” Wat. Res., 34(10):2629-2642.
Chungsying L., (1995) “Simultaneous transport of substrates,disinfectants and microorganisms in water pipe”,Wat. Res., 29, 3. 881–894
Dongsheng Dai, Songhu Li, Jie Li(2013)“The Effect of Water Plant Treatment Processes on the Drinking Water Biological Stability.” ISDEA. 16-18. 1434 – 1436
Edoardo Reisenhofer, A Picciotto, D Li (1995)“ A factor analysis approach to the study of the eutrophication of a shallow, temperate lake (San Daniele, North Eastern Italy)” Analytica Chimica Acta, Volume 306, Issue 1, Pages 99–106
Edwards, G. A.and Amirtharajah, A. (1985) “Removing Color Caused by Humic Acids.” J. AWWA, 77(3):50-57.
Edzwalds, J. K. and Tobiason, J. E. (1999) “Enhanced coagulation: US reruirement and a broader view” Wat. Sci. Tech., 40(9):63-70.
FA Hammes, T Egli (2005)“New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum” Environ. Sci. Technol., 39 (9), pp 3289–3294
Fass, S., Block, J.C., Boualam, M., Gauthier, V., Gatel, D., Cavard, J., Benabdallah, S. and Lahoussine, V. (2003)” Release of Organic Matter in a Discontinuously Chlorinated Drinking Water Network.” ,Wat. Res.,37: 493-500.
Frias, J., Ribas, F. and Luchena, F. (1992) “ A Method for the Measurement of Biodegradable Organic Carbon in Water”, Wat. Res., 26(2):255-258.
Frederik Hammes, Elisabeth Salhi, Oliver Köster, Hans-Peter Kaiser, Thomas Egli, Urs von Gunten (2006)“Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.” Wat. Res. Vol. 40(12): 2275-2286
Frederik Hammes, Sébastien Meylan, Elisabeth Salhi, Oliver Köster, Thomas Egli, Urs von Gunten (2007)“Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton.” Wat.Res.Vol.41(7):1447-1454
Geldreich, E.E. (1996) “Biofilms in Water Distribution systems”, Microbial Quality of Water Supply in Distribution System, Lewis publisher, Boca Raton, Florida.
Gibbs, R.A., Scutt, J.E. and Croll, B.T. (1993) “ Assimilable Organic Carbon Concentrations and Bacterial Numbers in a Water Distribution”, Wat. Sci. Tech., 27(3-4):159-166.
Lars J. Hem, Harry Efraimsen (1999) “Isolation of natural organic matter -The influence on the assimilable organic carbon”, Env.Int. 25., 2–3: 367–371
Heraud J., Kiéné L., Dtay M. and Levi Y., (1997) “Optimised modeling of chlorine residuals in a drinking water distribution system with a combination of on-line sensors”, Water SRT- Aqua. 46 (2): 59-70
Hrudey, S. E. (2009) “Chlorination disinfection by-products, public health risk tradeoffs and me.” Wat. Res., 43(8): 2057-2092.
Hu, J.Y., Wang, Z.S., NG, W.J. and Ong, S.L. (1999) “The Effect of Water Treatment Processes on The Biological Stability of Potable Water.”Wat. Res., 33 (11):2587 -2592.
Hua, Y.H. Fu S.T., Xu, D.R., translation (1999),“Environmental Engineering Chemistry.”Fourth Edition, Taipei:Hill International, Inc.,Translation Clair,N.Sawyer,Perry L.McCarty.,pp.635-639.
Huang J J, Hu H Y, Tang F, Li Y, Lu S Q, Lu Y. (2011)“Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant.” Wat. Res. 45(9): 2775-2781
Huang, W. J. Lin, H. D. Wang, C. Z. (2002) “The removal of ozonation byproducts by granular activated carbon.” IWA 3rd World Water Congress, Melbourne, Australia.
Huck, P. M. (1990) “Measurement of Biodegradable Organic Matter and Bacterial Growth Potential in Drinking Water”J. AWWA, 82(7):78-86.
Huck, P.M., Fedorak, P.M. and Anderson, W.B. (1991) “Formation and Removal of Assimilable Organic Carbon during Biological Treatment.”J. AWWA, 83(12):69-80.
Huck, P.M., Zhang, S.L. and. Price, M.L. (1994) “BOD removal during biological treatment: a first-order model" J. AWWA, 86 (6): 61.
Ivakhnenko, A.G., (1971) “Polynomial Theory of Complex Systems”, IEEE Transactions on Systems, Man and Cybernetics, vol 1(4):364-378.
JA Leenheer, JP Croué (2003)“Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter.” Environ. Sci. Technol., 37 (1):18A–26A
Jia-Yun Han, Hsu Kai-Lin, Lin Chung-Yi, Jie-Chung Lou & Ming-Ching Wu(2012)“Control of assimilable organic carbon (AOC) concentrations in a water distribution system”Des.& Wat. 47(1-3): 11-16
Joret, J. C., Levi, Y., Dupin, T., and Gilbert, M. (1988), “Rapid Methods for Estimating Bioliminable Organic Carbon in Water.” Proceedings AWWA Annual Conference, Orlando, FL.
Joseph, G. J., Patania, N.L., Reagan, K.M., and Aieta, E.M. (1989)“Ozonation : Assessingits Roles in the Formation and Control of Disinfection By-Products.” J. AWWA. 81(8),74-84.
J Świetlik, U Raczyk-Stanisławiak, J Nawrocki (2009)“The influence of disinfection on aquatic biodegradable organic carbon formation” Wat. Res. Vol.43(2): 463–473.
Kainulainen T., Tuhkanen T., Vartiainen T., Heinonen- Tanski H. and Kalliokoski P. (1994) “The effect of different oxidation and filtration processes on the molecular size distribution of humic material.” Water Sci. Technol., 9:169–174.
Karpel N., Leitner V., Miquel M., Dore M., Legube B. (1996)“Oxidation of natural organic matter by ozone and hydroxyl radicals.”In Proceedings of IWSA Natural Organic Matter Workshop.25.1–25.5, Poitiers, France.
Kavanaugh, M. C. (1978) “Modified Coagulation for Improved Removal of Trihalomethane Precursors.” J. AWWA, 66:613-620.
Kiéné L., Lu W. and Levi Y., (1996) “Relative importance of phenomena responsible for the chlorine consumption in drinking water distribution systems”.Proc. AWWAWQTC Boston,USA
Kemmy, F.A., Fry, J.C. and Breach, R.A. (1989) “Development and Operational Implementation of a Modified and Simplified Method for Determination of Assimilable Organic Carbon (AOC) in Drinking Water”, Wat. Sci. Tech.,21(3):155-159.
Kleiser G and Frimmel F.H. (2000)”Removal of precursors for disinfection by-products (DBPs) — differences between ozone- and OH-radical-induced oxidation.”Science Total Environ., 256:1–9.
Krasner, S. W., J. P. Crous, J. Buffle and E. M. Perdue (1996) “Three approaches for characterizing NOM”, J. AWWA, 83(6) 66-79.
Lacey, R. E. and Loeb, S. (1972) Industrial Processing with Membranes, J. Wiley Interscience, New York.
Lai, W.L., Yeh, H.H., Tseng, I.C., Lin, T.F., Chen, J.J. and Wang, G.T. (2002)”Conventional versus advanced treatment for eutrophic source water” J. AWWA, 94(12):96–108.
Lai, W.L., Yeh, H.H., and Tseng, I.C.(2006) “The effect of ozonation and filtration on AOC (Assimilable Organic Carbon) value of water from eutrophic Lake” Ozone Sci. Engng.,28:29-35.
Langlais, B., Reckhow, D. A., and Brink, D. R. (1991), “Practical Application of Ozone, Ozone In Water Treatment: Application and Engineering.” AWWA RF and Lewis Publishers, Chelsea, Michigan.
Lauren A. Weinrich, Eugenio Giraldo and Mark W. LeChevallier (2009)“Development and Application of a Bioluminescence-Based Test for Assimilable Organic Carbon in Reclaimed Waters.” Appl. Environ. Microbiol. vol. 75 (23) :7385-7390.
LeChevallier M. W., Babcock T. M. and Lee R. G. (1987) “Examination and characterization of distribution system biofilms.”Appl. Environ. Microbiol., 53:2714-2724.
LeChevallier, M. W., Lowry, C. and Lee, R. D., (1990) “Disinfectingbiofilms in a model distribution system”, J. AWWA. 82, 7
LeChevallier, M. W. (1990) “Coliform Regrowth in Drinking Water: A Review”, J. AWWA, 82(11) :74-86.
LeChevallier M. W., Schulz W. and Lee R. G. (1991) “Bacterial nutrients in drinking water.” Appl. Environ. Microbiol. vol. 57: 857-862.
LeChevallier M. W., N. J. Welch and D. B. Smith (1996)“Full-scale studies of factors related to coliform regrowth in drinking water.” Appl. Environ. Microbiol. vol. 62(7) :2201-2211.
LeChevallier, M.W. (1999)“ The Case for Maintaining a Disinfectant Residual”, .J. AWWA, 91(1):86-94.
Lee, S.H., O’Connor, J.T. and Banerji, S.K. (1980) “Biologically Mediated Corrosion and Its Effects on Water Quality in Distribution Systems”, J. AWWA, 72(11) :636-645.
Levy, R.V., Hart, F.L. and Cheetham, R.D. (1986) “ Occurrence and Public Health Significance of Invertebrates in Drinking Water Systems”, J.AWWA.,78 (9):105-110.
Lou, J.C., Chang, T.W. Huang, C.E (2009) "Effective removal of disinfection by-products and assimilable organic carbon: An advanced water treatment system." Journal of Hazardous Materials, 172(2-3): 1365-1371.
M Polanska, K Huysman, C Van Keer (2005)“Investigation of assimilable organic carbon (AOC) in flemish drinking water.” Wat. Res. Vol.39(11):2259–2266.
Mark W. LeChevallier, Nancy E. Shaw, Louis A. Kaplan and Thomas L. Bott (1993) “Development of a Rapid Assimilable Organic Carbon Method for Water” Appl. Environ. Microbiol. vol. 59 no. 5 .1526-1531
Miettinen I. T., Vartiainen T. and Martikainen P. J. (1998) “Microbial growth in drinking waters treated with ozone, ozone/hydrogen peroxide or chlorine.” Ozone Sci. Engng., 20:303–315.
MK Ramseier, A Peter, J Traber, U von Gunten (2011)“Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.” Wat. Res.Vol.45(5) :2002–2010
Mompelat S, Le Bot B, Thomas O (2009)“Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water.”Env. Int.,35(5):803-814
Nishijima, W., Akama, T., Shoto, E., Okada, M. (1997a)”Effects of adsorbed substances on bioactivity of attached bacteria on granular activated carbon.” Water Sci. Technol., 35 (8):203–208.
Noeon Park, Boksoon Kwon, In S. Kim, Jaeweon Cho. (2005) “Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters”, J.Sci, 258.1–2:43–54
O’Connor, J., Hash, L. and Edwards, A. B. (1975) “Deterioration of Water Quality in Distribution System” J. AWWA, 67(3):113-120.
Ohkouchi, Y., Ly, B. T., Ishikawa, S., Aoki, Y., Echigo, S., & Itoh, S. (2011). “A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water.” Env. Tech., 32(14), 1605–1613
Parinda Thayanukula, Futoshi Kurisu, Ikuro Kasuga, Hiroaki Furumai (2013)“Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems” Wat. Res. 47. 1:225–232
PrèVost, M., Coallier, J., Mailly, J., Desjardins, R. and Duchesne, D., (1992)“Comparison of Biodegradable Organic Carbon (BDOC) Techniques for Process Control”, J. Water SRT-Aqua , 41(3):141-150.
Pryce L. Haddix, Nancy J. Shaw and M. W. LeChevallier (2004) “Characterization of Bioluminescent Derivatives of Assimilable Organic Carbon Test Bacteria” Appl. Environ. Microbiol. Vol. 70( 2) :850-854
Rittmann, B. E. and Snoeyink, V. L., (1984) “Achieving Biologically Stable Drinking Water”, J. AWWA, 76(10):106-114.
Rossman L. A., Clark R. M. and Grayman W. M., (1994) “Modeling chlorine residuals in drinking-water distribution systems”, J. Env. Eng.120 (4), 803-820.
Rook, J.J., (1974) “Formation of haloforms during chlorination of natural water”, Water Treat. Exam, 23, 234-243.
Sanghyun Jeonga, Gayathri Naidua, Saravanamuthu Vigneswarana, Chao Hoe Ma, Scott A. Rice (2013)“A rapid bioluminescence-based test of assimilable organic carbon for seawater.”Des. 317.160–165.
Schnitzer, R. W. (1976) “The Chemistry of Humic Substances.Environmental Biogeochemistry.” Ann Arbor Science, MI.
Scholz, M., Martin, R.(1997). “Ecological equilibrium on biological active carbon.” Wat. Res., 31 (12): 2959–2968.
Servais, P., Billen, G. and HascoëT, M.C. (1987) “Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters”, Wat. Res., 21(4) :445-450.
Servais, P., Anzil, A. and Ventresque, C. (1989) “Simple Method for Determination of Biodegradable Dissolved Organic Carbon in Water”, Appl. Envir. Microbiology, 55(10):2732-2734.
Servais, P., Laurent, P. and Randon, G. (1995)“Comparison of the Bacterial Dynamics in Various French Distribution System”, J Water SRT-Aqua., 44(1):10-17.
Sh Shu, Y Min, Ny Gao, Wjhe (2008) “Molecular weight distribution variation of assimilable organic carbon during ozonation/BAC process.” Refdoc vol. 57(4):253-258
Standard Methods for the Examination of Water and Wastewater, 21th ed, APHA, (2005), USA.
Susan M. Bradford, Carol J. Palmer, Betty H. Olson (1994)“Assimilable organic carbon concentrations in Southern California surface and groundwater” Wat. Res. 28(2): 427–435
Takeuchi, Y., Mochidzuki, K., Matsunobu, N., Kojima, R., Motohashi, H., Yoshimoto, S. (1997) “Removal of organic substances from water by ozone treatment followed by biological active carbon treatment.” Water Sci. Technol., 35 (7):171–178.
Terashima Y, Ozaki H. and Hashim M. A., (1987) Simultaneous removal of organic carbon and nitrogen compounds by intermittent aeration in oxidation ditch process. Proc. Int. Symp. on Envir. Management, Instanbul.
Te Welscher, R.A.G., Schellart, J.A. and de Visser, P.M. (1998)“Experience with Fifteen Year of Drinking water Distribution without a Chlorine Residual”, specialized Conference on Drinking Water Distribution with orwithout Disinfectant Residual, 28-30 Sep. 1998, Mülheim an der Ruhr, Germany , pp.XIX-1-XIX8.
Thurman, E. M. (1985) Organic Geochemistry of Natural Water. The Netherlands.
Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, U.K., 2002.
Toor, R, Mohseni, M., (2007) “UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water” Chemosphere 66 (11):2087–2095.
Turrell, M. B. (1991) “A study of corrosion and pick up in cast ironwater supply pipes”, PhD Thesis. Hatfield Polytechnic/AnglianWater.
U Von Gunten (2003)“Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.” Wat. Res.Vol. 37( 7):1469–1487.
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982) “Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water.”J. AWWA, 74(10):540-545.
Van Der Kooij, D., Hijnen, W. A. M., and Kruithof, J. C. (1989) “The Effect of Ozonation, Biological Filtration and Distribution on The Concentration of Easily Assimilable Organic Carbon (AOC) in Drinking Water”, Ozone Sci. & Engi., 11:297-311.
Van der W. E. and Vharacklis W. G., (1990) ,“Biolims in potable water distribution systems. In Drinking water Microbiology”,ed. A. G.McFeters, pp249-268. Springer-Verlag Chap. 12
Van Der Kooij, D. (1990) “Assimilable Organic Carbon (AOC) in DrinkingWater”, in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
Van der Kooij, D. & Veenendaal, H.R., (1992) “Assessment of the Biofilm Formation Characteristics of Dringking Water ”, Proc. AWWA WQTC,Toronto, Outario, No.15-19, pp.1099-1110.
Van Der Kooij, D. & Veenendaal, H.R., (1995), Determination Of The Concentration Of Easily Assimilable Organic Carbon (AOC) In Drinking Water With Growth Measurements Using Pure Bacterial Cultures, SWE 95.002, KIWA, Nieuwegein, Netherlands.
Van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. and Hiemstra, P.(1999) “Distributing Drinking Water without Disinfectant Highest Achievement or Height of Folly?”, J. Water SRT-Aqua., 48(1):31-37.
Van der Kooij, D. (1999) Development and application of methods for assessing the biostability of drinking water and materials in contact with drinking water. In: The 5th International Workshop on Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan.
Van Schagen, K., L. Rietveld, et al. (2008). “Control of the fluidized bed in the pellet softening process.” Chemical Engineering Science 63(5): 1390-1400.
Von Gunten, U. and Hoign, J., (1994) “Bromate formation during ozoration of bromide-containing waters:Interaction of ozone andhydroxyl radical reactions.”Environ. Sci. Tech., 28(7), pp.1234-1242.
Weinrich L A, Schneider O D, LeChevallier M W. (2011)“Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination.” App.Env. 77(3): 1148–1150
Weinrich L.A., Jjemba P.K., Giraldo E., LeChevallier M.W.(2010) “Implications of organic carbon in the deterioration of waterquality in reclaimed water distribution systems” Wat. Res., 44(18):5367-75.
Wierenga, J.T. (1985) “Recovery of Coliforms in The Presence of Free Chlorine Residual.” J. AWWA, 77(11) :83-88.
WL Lai, HH Yeh, IC Tseng (2009)“The Effect of Ozonation and Filtration on AOC (Assimilable Organic Carbon) Value of Water from Eutrophic Lake.”J. Int. Ozone Ass.Vol. 28(1): 29-35
X. Liao, C. Chen, Z. Wang, R. Wan, Ch. Chang, X. Zhang, Sh. Xie (2013)“Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment.”Pro. Bio.48(2):312-316
X Li, HP Chu (2003)“Membrane bioreactor for the drinking water treatment of polluted surface water supplies” Wat. Res.Vol.37(19):4781–4791.
YP Tsai (2005)“Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.” Journal of Basic MicrobiologyVolume 45, Issue 6: 475–485
Yumiko Ohkouchia, Bich Thuy Ly, Suguru Ishikawa, Yusuke Aokid, Shinya Echigoa & Sadahiko Itoha (2011) “A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water” Env. Tech.32. 14: 1605-1613
Yumiko Ohkouchi, Bich Thuy Ly, Suguru Ishikawa, Yoshihiro Kawano, Sadahiko Itoh(2013)“Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual” Env. Mon. & Ass., 185(2), pp 1427-1436
工業技術研究院MSDS,原廠及供應商SDS。
行政院環保署全國環境水質監測資訊網。
張家驥(2001),以臭氧為基礎之高級氧化程序處理垃圾滲出水之研究,逢甲大學環境工程與科學研究所碩士論文。
賴文亮(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程研究所博士論文。
翁瑞駿(2008),水中溶解態有機物之特性分析及混凝或活性碳吸附程序處理之移除效率,臺灣大學化學工程學研究所碩士論文。
蔣本基(1999),活性碳去除消毒副產物生成前質及其成潛能之模式分析,台灣大學環境工程學研究所,NSC-89-2211-E002-016。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code