Responsive image
博碩士論文 etd-0603114-171942 詳細資訊
Title page for etd-0603114-171942
論文名稱
Title
銅柱凸塊在循環溫度負載下之可靠度研究
Reliability of Cu pillar bump under cyclic thermal loading
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-30
繳交日期
Date of Submission
2014-08-04
關鍵字
Keywords
可靠度、田口法、銅柱凸塊、覆晶、溫度循環
Reliability, Flip Chip, Cu Pillar Bump, taguchi method, Temperature Cyclic Test
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
本文之研究在於針對覆晶球柵陣列(FCBGA)封裝體,改變其封裝體之銅柱凸塊幾何結構尺寸,以達到最佳的疲勞壽命,使封裝體因為銅柱凸塊之疲勞損傷所導致的失效機率大為降低。
本文將分為實驗與數值模擬兩種方式,來分析覆晶球柵陣列封裝體在溫度循環負載下所產生的疲勞損傷。實驗將分為兩部分,第一部份使用雲紋干涉儀取得封裝體在溫度負載下之翹曲數據,第二部分進行溫度循環實驗取得封裝體之疲勞壽命。而數值模擬為利用Surface Evolver 數值模擬軟體所建立的錫球接點模型導入ANSYS數值模擬軟體中,進行溫度循環負載之疲勞分析,並與實驗結果比對。最後配合統計實驗設計田口法L18(21×37)直交表設定參數組合,求得各控制因子的影響效果程度,最終進行變異數誤差統合,以找出各個參數的顯著程度,並提出優化封裝體結構之建議方案。
藉由溫度循環負載實驗與數值模擬結果顯示,採用Ti/Cu/Cu/Ni的UBM形式與ENEPIG的銅墊表面處理方式之銅柱凸塊在溫度循環負載下擁有較高壽命週期,這是由於銅柱凸塊與晶片界面間的鋁墊,其每溫度循環負載週期所受到的應變能密度增量最小,使其表現出較長的疲勞壽命。
配合田口品質工程方法探討各控制因子之間的互動對封裝體可靠度影響,其結果顯示,FCBGA封裝體中,對於錫球可靠度的影響為錫球高度、UBM直徑大小、銅柱的厚度與UBM的形式,其貢獻度分別為55%、17%、12%與11%;對於ELK可靠度的影響為UBM直徑大小與PI開孔大小,其貢獻度分別達54%與20%,表現出高顯著性;對於本試片損壞位置的鋁墊,其UBM直徑大小與PI開孔大小貢獻度達50%與23%。
透過本文之完成,希望能提供業界使用銅柱凸塊於FCBGA封裝體的最佳化參數,以期能降低FCBGA封裝體的成本與提高可靠度,並縮短開發時間,提升產品的競爭力。
Abstract
The thesis is to find out the longest fatigue life of the flip chip ball grid array (FCBGA) package by changing the geometry of copper pillar bump. The probability of failure of the package due to fatigue damage is then greatly reduced.
The fatigue damage of a flip-chip package (FCBGA) in cyclic thermal loading via both experiment and simulation is investigated. Experiments were divided into two parts. First, Shadow Moiré was used to evaluate the warpage of a package at elevated temperature. Then, we conducted the thermal cyclic experiments to obtain the fatigue lives. Utilizing Surface Evolver we can predict the solder joint shape after reflow. Then, the finite element analysis ANSYS is adopted to build up models under thermal cycling to obtain deformations of entire package. Also, the software of ANSYS is used to model the FCBGA packages with the statistical experimental design of Taguchi method L18 (21×37) orthogonal array setting parameters and to study the degree of effect for each factor. Eventually, we use the analysis of variance to obtain the contribution of each factor and to identify the significant degree for various parameters by variance error integration.
The cyclic thermal loading tests and numerical simulation results show that copper pillar conducted the Ti/Cu/Cu/Ni of UBM type and ENEPIG of surface finished have the highest fatigue life under cyclic thermal loading. Attributed to the Al trace between copper pillar and die, the accumulated strain energy density per temperature cycle is a minimum. Thus, it exhibits longer fatigue life.
Taguchi Method is introduced to find optimal control factors for FCBGA reliability. According to the obtain results, the effects of solder balls reliability are ball height, UBM diameter, pillar bump thickness and UBM type, and their contributions are 55%, 17%, 12% and 11%, respectively. The UBM diameter and PI opening affect the contribution of reliability performance to 54% and 20% for ELK layer compared with other controlling factors of high significance and impact. The UBM diameter and PI opening affect the contribution of reliability performance to 50% and 23% for Al trace.
The findings of this study provide the manufacturers some suggestions for the optimal level of copper pillar bump, cutting cost hopefully, enhancing FCBGA reliability, and shortening manufacturing period, and improving the cutting edge of the products.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖次 vii
表次 x
第一章 緒論 1
1-1 前言 1
1-2 封裝簡介 1
1-3 研究動機與目的 3
1-4 文獻回顧 3
1-5 組織與章節 5
第二章 理論基礎 7
2-1 Surface Evolver 7
2-2 線性與非線性分析理論 9
2-2-1 潛變 9
2-2-2 黏塑性材料 10
2-3 韋伯分佈 11
2-4 田口式品質工程 14
2-5 變異數分析 15
第三章 實驗與數值模擬 22
3-1 實驗規劃與數值模擬流程 22
3-2 實驗試片 22
3-3 陰影雲紋干涉實驗 (Shadow Moire) 22
3-3-1 實驗說明 22
3-3-2 陰影雲紋干涉實驗設備 23
3-3-3 陰影雲紋干涉實驗過程 23
3-4 溫度循環實驗 23
3-4-1 實驗說明 23
3-4-2 溫度循環實驗設備 24
3-4-3 溫度循環實驗規範 24
3-4-4 溫度循環實驗過程 24
3-5 Surface Evolver數值模擬 25
3-5-1 模型建立 25
3-5-2 模擬條件給定 25
3-6 ANSYS數值模擬 26
3-6-1 基本假設 26
3-6-2 ANSYS模擬流程 26
3-7 分析流程與參數規劃 28
3-7-1 品質特性選定 29
3-7-2 控制因子與變動水準 29
3-7-3 訂定田口直交表 30
第四章 實驗與模擬結果 47
4-1 陰影雲紋干涉實驗 (Shadow Moire) 47
4-2 溫度循環實驗 47
4-3 模擬結果 48
4-3-1 模擬結果之收斂性分析 49
4-3-2 總體模型模擬結果 49
4-3-3 子模型模擬結果 49
第五章 分析討論 69
5-1 田口分析最佳參數組合 69
5-1-1 錫球應變能密度增量 69
5-1-2 ELK最大主應力 71
5-1-3 鋁墊應變能密度增量 72
5-2 變異分析統合 72
5-2-1 錫球應變能密度增量變異分析 73
5-2-2 ELK最大主應力變異分析 74
5-2-3 鋁墊應變能密度增量變異分析 75
第六章 結論 86
參考文獻 88
參考文獻 References
[1] 鍾文仁、陳佑任,IC 封裝製程與CAE 應用,全華科技圖書股份有限公司,2005。
[2] J.W. Nah, J. O. Suh, K. N. Tu, S. W. Yoon, C. T. Chong, V. Kripesh, B.R. Su and C. Chen, “Electromigration in Pb-free Solder Bumps with Cu Column as Flip Chip Joints,” Electronic Components and Technology Conference, 2006.
[3] W.T. Chen and C.W. Nelson, “Thermal Stress in Bonded Joints,” IBM Journal of Research and Development, Vol.23, No.2, pp.179-188, 1979.
[4] R. Darveaux, I. Turlik, Lih-Tyng Hwang and A. Reisman, ”Thermal Stress Analysis of a Multichip Package Design,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol.12, No.4, pp.663-672, 1989.
[5] A. Kuo, “Thermal Stress at the Edge of a Bimetallic Thermostat,” Journal of Applied Mechanics, Vol.56, pp.585-589, 1989.
[6] J.H. Lau and D.W. Rice, “Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method,” Advances in Electronic Packaging ASME, pp.385-392, 1992.
[7] J.H. Lau, “Flip Chip Technologies,” McGraw-Hill Companies, Inc. New York, 1997.
[8] M.R. Stiteler and C.Ume, “System for Real Time Measurement of Thermal Induced PWB/PWA Warpage,” American Society of Mechanical Engineers, Manufacturing Engineering Divison, MED Vol.3, No.12-17, pp.19-32, 1995.
[9] J. Zhu, D. Zou and S. Liu, “High Temperature Analysis of IC Packages by Moire’ Interferometry/FEM Hybrid Method,” Electronic Components and Technology Conference, pp.444-452, 1997.
[10] Y. P. Wang, M. Prakash, and Y. Guo, “Three Dimensional Optical Interferometry/Finite Element Hybrid Analysis of a PBGA Package,” Advances in Electronic Packaging ASME, Vol. 19-2, pp. 1767-1774, 1997.
[11] W. Ren, J. Wang, Z. Qian, D. Zou and S. Liu, “Investigation of Nonlinear Behaviors of Packaging Materials and Its Application to a Flip-Chip Package,” International Symposium on Advanced Packaging Materials, pp. 31-40, 1999.
[12] L.L. Mercado and V. Sarihan, “Predictive Design of Flip-Chip PBGA for High Reliability and Low Cost,” Electronic Components and Technology Conference, pp.342-348, 1999.
[13] J.G. Hwang, D.P. Lai and J.J. Lee, “The Application of Incompatible Mesh to Thermal Stress Analysis of Flip-Chip BGA,” Proc. SEMICON Taiwan, vol. 99, pp.91-99, 1999.
[14] Y.S. Lai, T.H. Wang, “Verification of submodeling technique in thermomechanical reliability assessment of flip-chip package assembly,” Microelectronics Reliability, Vol. 45, pp. 575–582, 2005.
[15] S. Gallois-Garreignot, V. Fiori, C. Moutin, C. Tavernier, “Chip/Package Interactions on advanced Flip-Chip packages: Mechanical Investigations on Copper pillar bumping,” Electronic System-Integration Technology Conference, pp.1- 6, 2012.
[16] W.G. Ning, C.S. Zhu, H. Li , G.W. Xu, L. Luo, H.Y. Guo, F. Jing, “Optimal design toward enhancement of thermo-mechanical reliability of polyimide layers in a flip-chip-on-lead-frame dual flat no-leads package with copper pillar bumps.” Materials Science in Semiconductor Processing, Vol. 16, pp.933–939, 2013.
[17] K. A. Brakke, “Surface Evolver Manual, Version 2.70,” Mathematics Department Susquehanna University, 2013.
[18] 劉光庭,SAC405錫球經迴焊過後的幾何外型預測,國立中山大學機械與機電工程研究所碩士論文,2008。
[19] S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, “Constitutive Behavior of Lead-free Solders vs. Lead containing Solders-Experiments on Bulk Specimens and Flip Chip Joints”, IEEE Electronic Components and Technology Conference, pp.890-902, 2001.
[20] L. Anand, “Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature,” Transactions of The ASME, Vol.104, pp.12-17, 1982.
[21] 林豊誠,晶圓級封裝體結構評估之可靠度測試分析,國立中山大學機械與機電工程研究所碩士論文,2011。
[22] 潘峻銳,封裝結構之尺寸與材料參數對熱傳效益之影響,國立中山大學機械與機電工程研究所碩士論文,2012。
[23] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2013。
[24] “Temperature Cycling,” JESD22-A104-B, JEDEC Solid State Technology Association, July 2000.
[25] “ANSYS Modeling and Meshing Guide,” ANSYS Release 10.0. ANSYS, Inc.
[26] P. J. Cheng, C. M. Chung, T. M. Pai, D.Y. Chen, “A challenge of 45 nm extreme low-k chip using Cu pillar bump as 1st interconnection,” Electronic Components and Technology Conference, pp. 1618-1622, 2010.
[27] X.R. Zhang, W.H. Zhu, B.P. Liew, M. Gaurav, A. Yeo, K.C. Chan, “Copper pillar bump structure optimization for flip chip packaging with Cu/Low-K stack,” Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems,pp.1-7, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.255.162
論文開放下載的時間是 校外不公開

Your IP address is 3.149.255.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code