Responsive image
博碩士論文 etd-0603115-210823 詳細資訊
Title page for etd-0603115-210823
論文名稱
Title
修飾羧基之牛血清蛋白及白蛋白其抗菌機制
Bactericidal mechanism of carboxyl group-modified bovine serum albumin and ovalbumin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-30
繳交日期
Date of Submission
2015-07-07
關鍵字
Keywords
抗菌蛋白、脂質體、破膜活性、抗菌活性、羧基修飾
Liposomes, Membrane-damaging activity, Bactericidal activity, Antimicrobial protein, Carboxyl groups modification
統計
Statistics
本論文已被瀏覽 5703 次,被下載 308
The thesis/dissertation has been browsed 5703 times, has been downloaded 308 times.
中文摘要
本論文主要目的在於研究牛血清蛋白(BSA)與白蛋白(OVA)經semicarbazide修飾羧基後對於蛋白質物化特性及抗菌活性的影響。質譜分析及RP-HPLC結果顯示修飾後的BSA與OVA分子量明顯增加,並且其親水性,CD spectra分析則顯示修飾羧基改變蛋白質二級結構。由抗菌實驗發現SEM-BSA可抑制革蘭氏陰性菌E. coli(大腸桿菌)與革蘭氏陽性菌S. aureus (金黃色葡萄球菌)的生長,但SEM-OVA僅可抑制S. aureus的生長,對E. coli則無明顯抗菌活性。降低E. coli細胞壁成分lipopolysaccharide (LPS)穩定度及抑制S. aureus合成lipoteichoic acid (LTA)均能提高SEM-BSA與SEM-OVA的抗菌活性。以propidium iodide (PI)染劑證明SEM-BSA及SEM-OVA可增加S. aureus細胞膜通透性;相對SEM-BSA,SEM-OVA對E. coli細胞膜通透性無明顯影響。使用脂質體模擬細菌細胞膜,探討SEM-BSA及SEM-OVA與細菌細胞膜組成脂質體的交互作用,證明SEM-BSA與SEM-OVA可引發模擬S. aureus細胞膜脂質體膜融合且具有破膜活性;與相對SEM-BSA不同,SEM-OVA對E. coli細胞膜組成脂質體則不具破膜及膜融合活性,同時亦發現LPS與LTA可抑制SEM-BSA及SEM-OVA的破膜作用。SEM-BSA對模擬細菌細胞膜脂質體具較高親合性,並可插入細胞膜內,破壞細胞膜結構;SEM-OVA對細菌細胞膜脂質體親合性較低, 且SEM-OVA與E. coli及S. aureus脂質體膜結合方式不同。綜合上述實驗結果顯示SEM-BSA與SEM-OVA可透過破壞細菌膜而產生抗菌效果,而SEM-OVA與E. coli細胞膜結合方式可能使其無法有效對E. coli產生抗菌活性。
Abstract
The aim of this study is to investigate the physicochemical properties and antimicrobial activities of semicarbazide-modified bovine serum albumin (BSA) and ovalbumin (OVA). MALDI-TOF and RP-HPLC showed that modification of carboxyl groups caused an increase in molecular weight and hydrophilicity of SEM-BSA and SEM-OVA compared with those of BSA and OVA. CD spectra measurement revealed that modification of carboxyl groups caused a change in the secondary structure of BSA and OVA. SEM-BSA exhibited a growth inhibition on E. coli and S. aureus, while SEM-OVA only shows bactericidal activity against S. aureus. Destabilization of structural stability of lipopolysaccharide (LPS) or inhibition of lipoteichoic acid (LTA) synthesis promoted antibacterial activity of SEM-BSA and SEM-OVA. Propidium iodide (PI) staining indicated that SEM-BSA and SEM-OVA induced membrane permeability of S. aureus. Compared to SEM-BSA, SEM-OVA insignificantly affected the membrane permeability of E. coli. SEM-BSA and SEM-OVA induced membrane fusion and permeability of S. aureus membrane-mimicking vesicles. Unlike SEM-BSA, SEM-OVA did not damage E. coli membrane-mimicking vesicles. Both LPS and LTA suppressed membrane-damaging activity of SEM-BSA and SEM-OVA. SEM-BSA showed higher binding affinity with bacterial membrane-mimicking vesicles compare to SEM-OVA. Moreover, SEM-BSA penetrated into membrane and perturbed the membrane structure. The interacted-mode of SEM-OVA with S. aureus and E. coli membrane-mimicking vesicle differed. Taken together, the antibacterial action of SEM-BSA and SEM-OVA are related to their ability to damage bacterial membrane. The membrane-interacted mode of SEM-OVA may elucidate its inability to display antibacterial activity against E. coli.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
目次 vi
圖次 vii
表次 x
英文縮寫表 xi
第一章、緒論 1
1.1 傳統抗生素的抗菌機制與瓶頸 1
1.2 細菌細胞壁組成與致病機 1
1.3 抗菌胜肽與抗菌蛋白 2
1.4修飾蛋白質使其具有抗菌活性 3
1.5 BSA與OVA具有與脂質膜交互作用的潛力 3
1.6 研究目的 4
第二章、實驗材料與方法 6
2.1實驗材料 6
2.2細菌培養配方 8
2.3實驗方法 9
2.3.1製備羧基修飾蛋白 9
2.3.2 MALDI-TOF質譜分析 9
2.3.3 Circular dichroism (CD,Jasco J-810 spectropolarimeter)光譜分析 9
2.3.4逆向高效能液相層析法 (RP-HPLC) 9
2.3.5 Bacterial strains 9
2.3.6 抗菌能力分析 9
2.3.7 測試細菌細胞膜通透性 10
2.3.8 製備脂質體 10
2.3.9 Calcein螢光釋放分析 11
2.3.10 膜融合能力分析 12
2.3.11 FPE螢光分析 12
2.3.12 Polydiacetylene (PDA)呈色反應 13
2.3.13 以掃描式電子顯微鏡觀察處理修飾蛋白後的細胞型態變化 13
2.3.14 分析修飾蛋白和plasmid DNA親和力 13
第三章、結果 15
3.1羧基修飾蛋白物化特性分析 15
3.2 探討SEM-BSA與SEM-OVA的抗菌能力 15
3.3干擾細胞壁合成及穩定性對抗菌能力的影響 15
3.4 處理修飾蛋白和細菌細胞膜通透性改變之關連性 16
3.5 以脂質體探討SEM-BSA與SEM-OVA的破膜特性 16
3.6 探討以SEM-BSA及SEM-OVA處理脂質體對於膜融合及穩定性的影響 17
3.7 比較SEM-BSA和SEM-OVA對模擬細菌脂質體的親和性 17
3.8 處理修飾蛋白造成細菌表面型態改變 17
3.9 SEM-BSA及SEM-OVA可和plasmid DNA結合 18
第四章、討論 19
附表 23
附圖 25
參考文獻 40
會議發表著作 48
附錄 49
參考文獻 References
Alakomi, H.L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., and Helander, I.M. (2000). Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl Environ Microbiol 66, 2001-2005.
Beltrao, P., Albanèse, V., Kenner, Lillian R., Swaney, Danielle L., Burlingame, A., Villén, J., Lim, Wendell A., Fraser, James S., Frydman, J., and Krogan, Nevan J. (2012). Systematic Functional Prioritization of Protein Posttranslational Modifications. Cell 150, 413-425.
Branco, P., Viana, T., Albergaria, H., and Arneborg, N. (2015). Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. Int J Food Microbiol 205, 112-118.
Brown, K.L., Poon, G.F., Birkenhead, D., Pena, O.M., Falsafi, R., Dahlgren, C., Karlsson, A., Bylund, J., Hancock, R.E., and Johnson, P. (2011). Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol (Baltimore, Md : 1950) 186, 5497-5505.
Chen, H., Davidson, P.M., and Zhong, Q. (2014). Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof. Int J Food Microbiol 191, 75-81.
Coico, R. (2005). Gram staining. Current protocols in microbiology Appendix 3, Appendix 3C.
Condemine, G., Berrier, C., Plumbridge, J., and Ghazi, A. (2005). Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. J Bacteriol 187, 1959-1965.
Eng, R.H., Smith, S.M., Buccini, F.J., and Cherubin, C.E. (1985). Differences in ability of cell-wall antibiotics to suppress emergence of rifampicin resistance in Staphylococcus aureus. J Antimicrob Chemother 15, 201-207.
Epand, R.F., Wang, G., Berno, B., and Epand, R.M. (2009). Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother 53, 3705-3714.
Gomes, E.S., Schuch, V., and de Macedo Lemos, E.G. (2013). Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 44, 1007-1034.
Hong, P.K., Gottardi, D., Ndagijimana, M., and Betti, M. (2014). Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity. Food Chem 142, 285-293.
Hsu, C.H., Chen, C., Jou, M.L., Lee, A.Y., Lin, Y.C., Yu, Y.P., Huang, W.T., and Wu, S.H. (2005). Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33, 4053-4064.
Huang, B.X., Kim, H.Y., and Dass, C. (2004). Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom 15, 1237-1247.
Ianeselli, L., Zhang, F., Skoda, M.W., Jacobs, R.M., Martin, R.A., Callow, S., Prevost, S., and Schreiber, F. (2010). Protein-protein interactions in ovalbumin solutions studied by small-angle scattering: effect of ionic strength and the chemical nature of cations. J Phys Chem B 114, 3776-3783.
Jung, S., Sonnichsen, F.D., Hung, C.W., Tholey, A., Boidin-Wichlacz, C., Haeusgen, W., Gelhaus, C., Desel, C., Podschun, R., and Waetzig, V. (2012). Macin family of antimicrobial proteins combines antimicrobial and nerve repair activities. The j biol chem 287, 14246-14258.
Kahne, D., Leimkuhler, C., Lu, W., and Walsh, C. (2005). Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105, 425-448.
Kao, P.-H., Chiou, Y.-L., Chen, Y.-J., Lin, S.-R., and Chang, L.-S. (2012). Guanidination of notexin promotes its phospholipase A2 activity-independent fusogenicity on vesicles with lipid-supplied negative curvature. Toxicon 59, 47-58.
Kohanski, M.A., Dwyer, D.J., and Collins, J.J. (2010). How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8, 423-435.
Kolusheva, S., Shahal, T., and Jelinek, R. (2000). Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39, 15851-15859.
Kuroda, K., and Caputo, G.A. (2013). Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5, 49-66.
Laganas, V., Alder, J., and Silverman, J.A. (2003). In Vitro Bactericidal Activities of Daptomycin against Staphylococcus aureus and Enterococcus faecalis Are Not Mediated by Inhibition of Lipoteichoic Acid Biosynthesis. Antimicrob Agents Chemother 47, 2682-2684.
Laverty, G., Gorman, S.P., and Gilmore, B.F. (2011). The Potential of Antimicrobial Peptides as Biocides. Int J Mol Sci 12, 6566-6596.
Lee, J.-K., Park, S.-C., Hahm, K.-S., and Park, Y. (2014). A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice. Biomaterials 35, 1025-1039.
Li, L., He, L., Tan, S., Guo, X., Lu, H., Qi, Z., Pan, C., An, X., Jiang, S., and Liu, S. (2010a). 3-hydroxyphthalic anhydride-modified chicken ovalbumin exhibits potent and broad anti-HIV-1 activity: a potential microbicide for preventing sexual transmission of HIV-1. Antimicrob Agents Chemother 54, 1700-1711.
Li, L., Qiao, P., Yang, J., Lu, L., Tan, S., Lu, H., Zhang, X., Chen, X., Wu, S., and Jiang, S. (2010b). Maleic anhydride-modified chicken ovalbumin as an effective and inexpensive anti-HIV microbicide candidate for prevention of HIV sexual transmission. Retrovirology 7, 37.
Liu, Y., Xia, X., Xu, L., and Wang, Y. (2013). Design of hybrid beta-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials 34, 237-250.
Lopez-Alonso, J.P., Diez-Garcia, F., Font, J., Ribo, M., Vilanova, M., Scholtz, J.M., Gonzalez, C., Vottariello, F., Gotte, G., and Libonati, M. (2009). Carbodiimide EDC induces cross-links that stabilize RNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation, and activity. Bioconjug Chem 20, 1459-1473.
Nazir, T., Abraham, S., and Islam, A. (2012). Emergence of Potential Superbug Mycobacterium Tuberculosis, Lessons from New Delhi Mutant-1 Bacterial Strains. Int J Health Sci 6, 87-94.
Nir, S., and Nieva, J.L. (2000). Interactions of peptides with liposomes: pore formation and fusion. Prog Lipid Res 39, 181-206.
Oeemig, J.S., Lynggaard, C., Knudsen, D.H., Hansen, F.T., Norgaard, K.D., Schneider, T., Vad, B.S., Sandvang, D.H., Nielsen, L.A., and Neve, S. (2012). Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem 287, 42361-42372.
Orsi, N. (2004). The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17, 189-196.
Pan, Y., Shiell, B., Wan, J., Coventry, M.J., Roginski, H., Lee, A., and Michalski, W.P. (2007). The molecular characterisation and antimicrobial activity of amidated bovine lactoferrin. INT DAIRY J 17, 606-616.
Rehault-Godbert, S., Labas, V., Helloin, E., Herve-Grepinet, V., Slugocki, C., Berges, M., Bourin, M.C., Brionne, A., Poirier, J.C., and Gautron, J. (2013). Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities. J Biol Chem 288, 17285-17295.
Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A., and Charlier, P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32, 234-258.
Sitohy, M., and Osman, A. (2010). Antimicrobial activity of native and esterified legume proteins against Gram-negative and Gram-positive bacteria. Food Chem 120, 66-73.
Torrent, M., de la Torre, B.G., Nogues, V.M., Andreu, D., and Boix, E. (2009). Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem J 421, 425-434.
Tsai, C.-Y., Chen, Y.-J., Fu, Y.-S., and Chang, L.-S. (2015). Antibacterial and membrane-damaging activities of mannosylated bovine serum albumin. Archives of Biochemistry and Biophysics 573, 14-22.
Van Amersfoort, E.S., Van Berkel, T.J.C., and Kuiper, J. (2003). Receptors, Mediators, and Mechanisms Involved in Bacterial Sepsis and Septic Shock. Clin Microbiol Rev 16, 379-414.
Wadhwani, P., Reichert, J., Bürck, J., and Ulrich, A.S. (2012). Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41, 177-187.
Wall, J., Golding, C.A., Van Veen, M., and O'Shea, P. (1995). The use of fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane interactions. Mol Membr Biol 12, 183-192.
Wang, J., Li, Y., Wang, X., Chen, W., Sun, H., and Wang, J. (2014). Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2. Biochim Biophys Acta 1838, 2910-2918.
Wang, K., Yan, J., Dang, W., Liu, X., Chen, R., Zhang, J., Zhang, B., Zhang, W., Kai, M. and Yan, W. (2013). Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides 39, 80-88.
Yang, S.-Y., Chen, Y.-J., Kao, P.-H., and Chang, L.-S. (2014). Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities. Arch Biochem Biophys 564, 43-51.
Yocum, R.R., Rasmussen, J.R., and Strominger, J.L. (1980). The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J Biol Chem 255, 3977-3986.
Yokouchi, Y., Tsunoda, T., Imura, T., Yamauchi, H., Yokoyama, S., Sakai, H., and Abe, M. (2001). Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids Surf B Biointerfaces 20, 95-103.
Yun, C.H., and Kim, H. (1989). Ovalbumin-induced fusion of acidic phospholipid vesicles at low pH. J Biol Chem 105, 406-411.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code