Responsive image
博碩士論文 etd-0603117-100229 詳細資訊
Title page for etd-0603117-100229
論文名稱
Title
酸性添加物對氧化鎢奈米結構形貌之影響並應用於乙醇氣體感測器
Effect of Acidic Addition on Morphology of Tungsten Oxide Nanostructures for Ethanol Gas Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-25
關鍵字
Keywords
酸性添加物、水熱法、氧化鎢、乙醇感測器、奈米結構
tungsten oxide, ethanol gas sensor, hydrothermal synthesis, acid addition, nanostructures
統計
Statistics
本論文已被瀏覽 5723 次,被下載 34
The thesis/dissertation has been browsed 5723 times, has been downloaded 34 times.
中文摘要
本論文研究氧化鎢(WO3)之各種形式粉末奈米結構,並塗佈於矽基板上製作乙醇氣體感測器。透過水熱法生長氧化鎢奈米片(WO3 nanosheet),過程中調配酸性添加物,聚合成氧化鎢奈米花(WO3 nanoflower)以及氧化鎢奈米片堆(WO3 nanostacked-sheets)。分別與P型矽基板形成氧化鎢奈米結構WO3 nanostructure/p-Si (n-p)的乙醇感測元件並且進行物性及電性之量測。文中主要探討氧化鎢奈米材料的聚集與材料對乙醇感測的優勢,進而加強感測器對乙醇之感測能力。
實驗結果顯示,聚集堆疊之奈米結構元件因為具有較高比表面積,相較於奈米片更有利於乙醇氣體之感測。其中以酸性添加物製作之氧化鎢奈米花 WO3 nanoflower/p-Si以及氧化鎢奈米片堆WO3 nanostacked-sheets/p-Si之乙醇感測器在150oC下對800ppm乙醇氣體具有830%以及1020%的響應度,響應時間分別為51秒和21秒。因此,提高奈米結構的維度可增加較高的比表面積,而有利於乙醇氣體感測並提高響應度。
Abstract
In this thesis, various forms of tungsten oxide (WO3) powder nanostructures are discussed and coated on silicon substrates for ethanol gas sensors. WO3 nanosheets are prepared by hydrothermal method. Furthermore, WO3 nanoflowers and nanostacked-sheets are transformed by adding different acid additions. These nanostructures are coated on p-type silicon substrate to form ethanol sensing elements (WO3 nanostructure/p-Si) and measured their physical and electrical properties. This research discusses the aggregation of WO3 nanomaterials and the advantages of the materials for ethanol sensing. Thus, the nanostructures enhance the sensing ability of the sensor to ethanol gas.
According to the experimental results, the aggregated stacks of nanostructure are more favorable to ethanol gas sensing due to their large surface area. Among the fabricated devices, WO3 nanoflower and nanostacked-sheets have high responsivity of 832% and 1020%, respectively under 150 oC and 800 ppm ethanol gas. The response times of the sensors are 51s and 21s, respectively. Therefore, the aggregated nanostructures have improved the devices’ sensitivity by providing higher surface-to-volume ratios.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒 論 1
1-1前言 1
1-2乙醇氣體介紹 1
1-3乙醇感測器介紹 2
1-4 奈米結構 3
1-5 金屬氧化物半導體與感測原理 4
1-6 氧化鎢 5
1-6-1 氧化鎢的構造與簡介 5
1-6-2 氧化鎢的應用 5
1-7論文架構 6
第二章 理 論 7
2-1 粉末生長機制 7
2-1-1 水熱法 7
2-1-2 氧化鎢的合成 7
2-2氣體感測器工作原理 8
2-2-1 工作溫度 8
2-2-2 電阻式氣體感測器 9
2-2-3 PN異質接面感測器 9
2-3 酸鹼金屬氧化物對乙醇分解的影響 11
2-4 氣體響應度的定義與探討 12
2-5 蒸鍍機 13
2-6 量測機台 14
2-6-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 14
2-6-2 X光繞射儀(X-ray diffractometer; XRD) 15
2-7 氣體量測系統 16
第三章 實 驗 步 驟 與 材 料 選 擇 18
3-1 材料選用 18
3-2 電極製作之材料與系統 19
3-3 水熱法生長與量測相關機台 19
3-3-1 掃描式電子顯微鏡(FE-SEM) 19
3-3-2 XRD粉末繞射儀 20
3-3-3 氣體量測系統 20
3-4 製成步驟與參數調配 21
3-4-1基板清洗步驟與說明 21
3-4-2 水熱法生長氧化鎢奈米片奈米結構 22
3-4-3 生熱法生長氧化鎢奈米花奈米結構 22
3-4-4 水熱法生長氧化鎢奈米片堆奈米結構 23
3-4-5 電極鋁蒸鍍 24
第四章 結 果 與 討 論 25
4-1 物性特性 25
4-1-1 氧化鎢奈米片生長結果與分析 25
4-1-2 氧化鎢奈米花生長結果與分析 26
4-1-3 水熱法生長氧化鎢奈米片堆 26
4-2 奈米結構生長機制分析 27
4-2-1 奧斯特瓦爾德熟成(Ostwald Ripening) 27
4-2-2 生長機制分析 27
4-3 電性分析 28
4-3-1 N(氧化鎢奈米片)/P(矽)結構電性分析 28
4-3-2 N(氧化鎢奈米花)/P(矽)結構電性分析 29
4-3-3 N(氧化鎢奈米片堆)/P(矽)結構電性分析 29
4-4 元件結構與電性理論探討 30
4-4-1 氧化鎢(WO3)奈米片元件結構之電性結果探討 30
4-4-2 氧化鎢(WO3)奈米花元件結構之電性結果探討 31
4-4-3 氧化鎢(WO3)奈米片堆元件結構之電性結果探討 31
4-4-4 元件能帶圖之電性結果探討 32
4-4-5 元件與氣體關係之電性結果探討 32
4-5 元件工作溫度分析 33
4-6 元件響應時間與恢復時間分析 34
第五章 結 論 與 未 來 展 望 35
5-1結論 35
5-2 未來展望 36
參考文獻 37
附表 41
附圖 48
參考文獻 References
[1] 工研院工安衛中心, “物質安全資料表”, 財團法人工業技術研究院 工業安全衛生技術發展中心 ,序號49,第三頁
[2] 陳偉明,葉名倉, “乙醇(Ethanol)”, 高瞻自然科學教學平台 ,30 July 2009,
[3] Yean-San Long,Cheng-Lung Lee,Hsien-Chen Ma,Chia-Chen Liang Xian-Liang Chen Ming-Je Kao, “呼氣酒精計量品保追溯與認證再見識領域之應用”,台灣警察專科學校警專學報,第五卷第四期,民國101.10,Pages 161-178
[4] 潘信宏,陽明益, “In-situ Methanol Concentration Sensing Technology for Fuel Cell Application”, 奈米通訊 NANO CONNUNICATION ,第二十二卷No.2 ,Pages 7-8
[5]MuhammadU.Qadri,ToniStoycheva,Maria Cinta Pujol,EduardLlobet,XavierCorreig, Josep FerreBorull, MagdalenaAguiló, FrancescDíaz, “WO3 nano-needles by Aerosol Assisted CVD for optical sensing”,ELSEVIER Procedia Engineering Volume 25,2011,page 761-764
[6] YuanxingFang, Wei CheatLee, Giacomo E.Canciani, Thomas C.Draper, Zainab F.Al-Bawi, Jasbir S.Bedi, Christopher C.Perry, QiaoChen,“Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting”,Materials Science and Engineering,Volume 202 ,Pages 39-45
[7] Hyungjoo Na, Youngkee Eun, Min-Ook Kim, Jungwook Choi, Jongbaeg Kim, “Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction”,Scientic Reports, Article number: 18265 ,20 May 2015
[8] Chai Yan Ng, Khairunisak Abdul Razak, Zainovia Lockman, “Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate”,Thin Solid Films,Volume 595, 30 November 2015, page 73-78
[9] Chong Wang, Xin Li, Changhao Feng,Yanfeng Sun, Geyu Lu, , “Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization and their gas sensing properties”,Sensor and Actuators :Chemical,Volume 210,April 2015,Pages75-81
[10] Yi Shen, Li Pan, ZhengYu Ren, Yali Yang, Yilin Xiao, Zhen Li, , “Nanostructured WO3 film synthesized on mica substrate with novel photochromic properties”,Journal of Alloys and Compounds,Volume 657,5 February 2016, Page450-456
[11] Wen Zeng, He Zhang,Zgongchang Wang, “Effects of different petal thickness on gas sensing properties of flower-like WO3‧H2O hierarchical architectures”,Applied Surface Science,Volume 347,30 August 2015,Pages 73-78
[12] Sung Hoon Ahn,Jiheng Zhao,Jong Hak Kim,Xiaolin Zheng, “Effect of Interfacial Blocking Layer Morphology on the Solar Peroxydisulfate Production of WO3 Nanoflakes”,Volume 244,1 August 2017,Pages 184-191
[13]Junchen Zhon,Shiwei Lin,Yongjun Chen,A.M.Gaskov, “Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance”,Volume 403,1 May 2017,Pages 274-281
[14] 蔡鳴遠, “氧化鋅與氧化銅雙層奈米結構應用於乙醇氣體感測器之研究”,國立中山大學電機工程系,碩士論文,July 2016,Page 8
[15] Shixiu Cao,Cong Zhao, Tao Han,Lingling Peng, “hydrothermal synthesis,characterization and gas sensing properties of the WO3 nanofibers”,Materials letters,Volume 169,15 April 2016,Pages 17-20
[16] B. Bhooloka Rao,“Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour,”Material chemistry and physics, Volume 64, Issue 1, 31 March 2000, Pages 62–65
[17] Seungbok Choi, Maryam onyani,Gun-Joo Sun,Jae Kyung Lee,Soong Keun Hyun, “Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors”,Applied Surface Science,Available online ,25 January 2017
[18] Z. Mitrovic, S. Stojadinovic, L. Lozzi, S.A. škrabic, M. Rosic, N. Tomic, N. Paunovic, S. Lazovic, M.G. Nikolic, S. Santucci, “WO3/TiO2 composite coatings: structural, optical and photocatalytic properties”,ACS Applied Materials&Interfaces ,4 August 2016,Pages 2805-2811
[19] 楊雲凱, “物理氣相沉積介紹”,奈米通訊 nano communication,Volume 22 No.4
[20] 羅聖全, “研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM”,小奈米大世界,
[21] 林麗娟, “X光繞射原理及其應用”,X光材料分析技術與應用專題 工業材料研究所,工業材料86期,Februnary 1997
[22] 蔡鳴遠, “氧化鋅與氧化銅雙層奈米結構應用於乙醇氣體感測器之研究”,國立中山大學電機工程系,碩士論文,July 2016,Page 20
[23] 楊雲凱,“物理氣相沉積(PVD)介紹“,奈米通訊NANO COMMUNICATION 22卷NO.4,Page33-35
[24] Ostwald, W. (1896). Lehrbuch der Allgemeinen Chemie, vol. 2, part 1. Leipzig, Germany
[25] Linzhi Li,Jingzhe Zhao,Yi Wang,Yunling Li,Dechong Ma,Yan Zhao,Shengnan Hou,Xinli Hao, “ Oxalic acid mediated synthesis of WO3·H2O nanoplates and self-assembled nanoflowers under mild conditions“,Journal of Solid State Chemistry,Volume 184 Issue 7,July 2011,Pages 1661-665
[26] Ming-Ru Yu, Gobalakrishnan Suyambrakasam, Ren-Jang Wu, Murthy Chavali , “Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor,”Materials Research Bulletin, Volume 47, Issue 7, July 2012, Pages 1713–1718.
[27] S. S. Mehta ,S. S. Suryavanshi ; I. S. Mulla, “Organic acids assisted hydrothermal synthesis of WO3 nanoplates and their gas sensing properties”,Physics and Technology of Sensors,8-10th Match 2015
[28] Yan Lu,YongHua Ma,Shuyi Ma,Shaohui Yan, “Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor”,Volume 43 Issue 10,July 2017, Pages 7508-7515
[29] Xiuqin Zhao, Jae Yeop Lee, Cho-Rong Kim, Joohoe Heo, Chang Mi Shin, Jae-Young Leem, Hyukhyun Ryu, Ji-Ho Chang, Hong Chan Lee, Woo-Gwang Jung, Chang-Sik Son, Byoung Chul Shin, Won-Jae Lee, Swee Tiam Tan, Junliang Zhao, Xiaowei Sun,“Effects of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process,” Dependence of the properties of hydrothermally grown ZnO on precursor concentration,” Physica E: Low-dimensional Systems and Nanostructures, Volume 41, Issue 8, August 2009, Pages 1423–1426
[30] Zhenbo Wang,Dong Wang,Jianbo Sun, “Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection”,Sensors and Actuators B:Chemical,Volume 245,June 2017,Pages 828-834
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code