Responsive image
博碩士論文 etd-0603117-133621 詳細資訊
Title page for etd-0603117-133621
論文名稱
Title
環境溫濕度對氣冷式冷凝器性能影響之研究
Study on the Effect of Ambient Temperature and Humidity on the Performance of Air - cooled Condenser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-26
繳交日期
Date of Submission
2017-07-03
關鍵字
Keywords
噴霧、絕熱冷卻、空氣加濕、氣冷式冷凝器、大氣溫度
Evaporative cooling, Air humidifying, Air-Cooled Condenser, Atomization, Ambient air temperature
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
本研究主要目的是為了提高仁武資源焚燒廠,所使用之氣冷式蒸氣冷凝器(Air - Cooled Condenser)的冷卻效率,進一步增加發電機組發電量。故對ACC冷卻效率影響原因進行探討,當我們對空氣溫度記錄進行觀察時,發現空氣溫度出現30°C以上的高溫,會開始影響冷凝器的冷卻效率,並使發電機組被迫降低發電量運轉,且經我們推估空氣溫度升至34°C時,可能會損失約4兆瓦的功率輸出。
針對ACC因空氣溫度上升,造成冷卻效率影響的問題,我們尋找許多空氣降溫的改善方案,並從中選擇噴霧式絕熱冷卻方法,來進行改善測試,以降低入口空氣溫度。本研究所採用的噴霧式絕熱冷卻方法,是利用水霧蒸發帶走空氣熱量,降低空氣溫度,來改善ACC冷卻效率。
我們根據相關噴霧式絕熱冷卻方法,將選用設備裝設於ACC入風口處,也一併設置相關紀錄設備,於改善測試期間,進行ACC及發電機數據的相關紀錄收集。於完成數據收集後進行多項式迴歸分析,來得到相關試驗結果。
以本研究的試驗結果來說,ACC透過新增的噴霧系統,確實可以降低入口空氣的溫度,並進一步增加發電機組的發電量。我們經多項式迴歸分析後,發現每噸蒸汽可增加2.7千瓦時的功率,由此數值我們進行回收年限推算,其年限在6.9年左右。在業界一般來說回收年限為五年以下較為適當,故我們檢討年限過長原因探究,係因霧化液滴經碰撞結合滴落,及貼附於鋼構上未汽化,造成噴霧冷卻效率降低,無法達其目的,在此我們也提出建議,並尋求其他解決方法,來改善氣冷式冷凝器的冷卻功率。
Abstract
The main objective of this research is to improve the incineration efficiency of Ren-Wu refuse incineration plant, by doing so, the efficiency of Air Cooled Condenser needs to be increased, which can result in extra power-generation during summer-days.
After certain period of observation on on-site ambient air temperature, it was found that ACC condensation efficiency started to deteriorate when the ambient air temperature rose above 30°C. ACC efficiency reduction had a direct effect on the plants power generation, more than 4MW loss of power generation was observed when the ambient air temperature hit 34°C.
In this research was a solution in cooling the air temperature. The water spray system created infinitesimal water-droplets which absorbed the heat from ambient air then evaporated. Through this phenomenon, the cooling of ambient air is achievable, hence, the ACC efficiency can be improved.
The result from data analysis confirmed that water spray adiabatic cooling system can help in reducing the ambient air temperature, which can further increase the power generation during summer, extra 2.7 kW of power generation can be produced from 1 ton of steam. The result from project financial analysis also showed that the return on investment would take at least 6.9 years for the return on investment. For the project investment perspective, suitable return on investment period should be less than 5 years. Consequently, further investigation was made to find the reason for such long-due return on investment. Unfortunately, the result showed that due to the unmodifiable structure of ACC site, portions of water spray droplet were collided with the metal structure and failed to evaporate, hence result in the overall-system efficiency reduction, deviated from the design calculation.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章:緒論 1
1.1研究背景及動機 1
1.2研究目標現況 1
1.3研究目的 2
第二章:文獻回顧 4
2.1 冷卻技術說明 1
2.2空氣冷凝器介紹 6
2.3冷凝器的主要功能影響 13
2.4溫升上升對ACC的影響 14
2.5 ACC改善方法 15
2.6多項式迴歸分析 16
第三章:研究及測試方法 20
3.1絕熱冷卻 20
3.2氣象條件 24
3.3系統設計安裝 28
3.3.1噴嘴研究 28
3.3.2系統安裝 35
3.4經濟分析 39
3.4.1設備成本分析 39
3.4.2運轉成本分析 40
3.5項目效益分析 42
第四章:試驗結果與分析討論 44
4.1試驗結果 44
4.2分析討論 49
第五章:結論與建議 53
5.1結論 53
5.2建議 54
參考文獻 55
附錄 60
參考文獻 References
AlkhedhairGuan A., Gurgenci H., Jahn I.and He. S. (2014). Experimental study on inlet air cooling by water spray for natural draft dry cooling towers enhancement. 19th Australasian Fluid Mechanics Conference. Melbourne, Australia.
Abdullah Alkhedhair Gurgenci, Ingo Jahn, Zhiqiang Guan and Suoying HeHal. (2013). Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers. Applied Thermal Engineering, 416-424.
Abdullah Mohammed Alkhedhair. (2015). Modelling and Experimental Study of Spray Cooling Systems for Inlet Air Pre-Cooling in Natural Draft Dry Cooling Towers. The University of Queensland.
Blaise Hamanaka, Haihua Zhao and Phil Sharpe. (2009). Comparison of Advanced Cooling Technologies Efficiency Depending on Outside Temperature. Idaho National Laboratory.
Branfield, G., 2003, Precooling of fin-tube heat exchanger inlet air using fine water spray, B.Eng thesis, University of Stellenbosch, Rep. of South Africa
Barigozzi G., Perdichizzi A.and Ravelli. S. (2010). Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant. Applied Energy, 1366-1376.
Barigozzi G., Perdichizzi A., and Ravelli. S.(2013). Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system. Applied Energy , 65-74.
Botes H.and. Kröger. DG (1996). Adiabatic pre-cooling of the inlet air to an air-cooled heat exchanger. R & D Journal.
Conradie A. E. and Kröger D. G. (1995). Performance evaluation of dry-cooling systems for power plant applications. Applied Thermal Engineering, 219-232.
Duvenhage K., (1993). Warmteruiling met adiabatiese voorverkoeling, MSc Thesis, University of Stellenbosch, Rep. of South Africa
Esterhuyse B.D.and Kröger D.G. (2005). The effect of ionisation of spray in cooling air on the wetting characteristics of finned tube heat exchanger. Applied Thermal Engineering, 3129-3137.
HoltermanH.J. (2003). Kinetics and evaporation of water drops in air. Wageningen UR: IMAG.
Heynsa J.A.and Kröger D.G. (2012). Performance Characteristics of an Air-Cooled Steam Condenser with a Hybrid Dephlegmator. R & D Journal of the South African Institution of Mechanical Engineering, 31-36.
Johan Adam Heyns and Kröger D.G (2008). Performance characteristics of an air‐cooled steam condenser incorporating a hybrid (dry/wet) dephlegmator. California Energy Commission.
John G. Bustamante, Alexander S. Rattner and Srinivas Garimella. (2015). Achieving near-water-cooled power plant performance with air-cooled condensers. Applied Thermal Engineering, 1-10.
KaiserLucas A.S., Viedma A.and ZamoraM B. (2004). Numerical model of evaporative cooling processes in a new type of cooling tower. International Journal of Heat and Mass Transfer, 986–999.
Luc De Backer and William M. Wurtz (2003). Why every air cooled condenser needs a cooling tower. San Antonio, Texas: Cooling Technology Institute.
Mark G. Lawrence. (2005). The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air. BAMS.
Maulbetsch J.S, Di Filippo M.N, Owen M. and Kroger D.G.(2010) Wind effects on air-cooled condensers for power plant cooling california energy commission

Micheletti Wayne C., Burns. John M. (2002). Emerging Issues and Needs in Power Plant Cooling Systems.
Michael H. Kutner(2005) Applied Linear. Statistical Models. Fifth Edition.
Moser M., Trieb F., Fichter T., Kern J., Maier H. and Schicktanz P. (2014). Techno-economic analysis of enhanced dry cooling for CSP. Energy Procedia, 1177-1186.
Manish Baweja,and Bartaria Dr.V.N (2013). Experimental Performance Analysis of Air-Cooled Condenser for Low Pressure Steam Condensation. International Journal of Modern Engineering Research, 839-844.
Matthew S. Layton, and Joseph O’Hagan (2002). Comparison of Alternate Cooling Technologies for California Power Plants. California Energy COmmission.
Please refer to Energy Management Psychrometry WTF (2015/06/12) site (http://blog.kwiqly.com/2012/01/psychrometry-wtf-1-dry-bulb-temperature.html)
Rupeshkumar A. RamaniAmitesh Paul V. and Anjana D. SapariaB D. (2011). Performance characteristics of an air-cooled condenser under ambient conditions. International Conference On Current Trends In Technology, Nuicone – 2011.
Richard B. Boulay, Miroslav J. Cerha and Mo Massoudi (2005). Dry and hybrid condenser cooling design to maximize operating income. ASME Power.
Richard E. Putman, Dirk Jaresch. (2006). The impact of air cooled condensers on plant design and operations.
Sureshkumar R., Kale S.R. and Dhar P.L. (2008). Heat and mass transfer processes between a water spray and ambient air – II. Simulations. Applied Thermal Engineering, 361-371.
Sureshkumar R., Kale S.R.and Dhar P.L. (2008). Heat and mass transfer processes between a water spray and ambient air – I. Experimental data. Applied Thermal Engineering, 349-360.
Simarpreet Singh. (2012). Pre-determination of the Fouling and Cleanliness Factor of the Heat Exchanger. International Journal of Engineering Research and Applications, 1177-1179.
Suoying He, Zhiqiang Guan, Hal Gurgenci, Ingo Jahn, Yuanshen Lu and Abdullah M. Alkhedhair (2014). Influence of ambient conditions and water flow on the performance of pre-cooled natural draft dry cooling towers. Applied Thermal Engineering, 621-631.
Spary system co (2014).-Guidelines for Spray Nozzle Selection
Tissot J.,Boulet P., Labergue A., Castanet G., Trinquet F. and Fournaison L. (2012). Experimental study on air cooling by spray in the upstream flow of a heat exchanger. International Journal of Thermal Sciences, 23-31.
Tissot J., Boulet P., Trinquet F., Fournaison L. and Macchi-Tejeda H. (2011). Air cooling by evaporating droplets in the upward flow of a condenser. International Journal of Thermal Sciences, 2122-2131.

Tao Tang, Jian-qun Xu, Sheng-xiang Jin and Hong-qi Wei. (2013). Study on Operating Characteristics of Power Plant with Dry and Wet Cooling Systems. Energy and Power Engineering, 651-656.
Van rooyen J. A.and Kröger. D. G. (2008). Performance trends of an air-cooled steam condenser under windy conditions. California Energy Commission, Pier Energy‐Related Environmental Research Program.
Wachtel G.P.(1974), Atomised water injection to improve dry cooling tower performance, Franklin Institute Research Laboratories, Report no. COO-2241-1
Woest, M., Hearn I.and Lennon S.J. (1991), Investigation into the corrosion behaviour of galvanized finned tubing for cooling under enhanced wet/dry cooling conditions, ESCOM, Scientific Investigations Report No. S91/030
Wen-jei Yang and Clark. DW. (1975). Spray cooling of air-cooled compact heat exchangers. Int. J. Heat Mass Transfer, 311-317.
ZammitK. (2004). Comparison of Alternate Cooling Technologies for U.S. Power Plants. EPRI.

中央氣象局觀測資料(2014)仁武氣象站紀錄資料
仁武廠原廠設計圖面(2000)三菱重工鋼構竣工圖面
仁武廠分散式控制系統日常紀錄資料庫(2014) 仁武廠日常紀錄資料
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.20.238.187
論文開放下載的時間是 校外不公開

Your IP address is 3.20.238.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code