Responsive image
博碩士論文 etd-0603117-171138 詳細資訊
Title page for etd-0603117-171138
論文名稱
Title
具製程與電壓變異補償之漏電流抑制兩倍電壓輸出緩衝器與低雜訊電流平衡式儀表放大器
A Leakage Reduction 2×VDD Output Buffer with Compensation to Process and Voltage Variation and a Low Noise Current-Balancing Instrumentation Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-21
繳交日期
Date of Submission
2017-07-03
關鍵字
Keywords
低雜訊、電壓迴轉率、製程偵測器、儀表放大器、漏電流、輸出緩衝器
Instrumentation amplifier, Leakage current, Process detector, Low noise, Slew rate, Output buffer
統計
Statistics
本論文已被瀏覽 5666 次,被下載 116
The thesis/dissertation has been browsed 5666 times, has been downloaded 116 times.
中文摘要
本論文提出之具製程與電壓變異補償之漏電流抑制兩倍電壓輸出緩衝器,係
為了避免傳輸兩倍電壓準位時導致閘極過壓問題,在輸出級使用電晶體堆疊的技
術。此外,在輸出級使用臨界電壓較低的電晶體使整體電壓迴轉率上升,於補償
路徑的電晶體使用臨界電壓較高的電晶體來抑制漏電流,同時增加輸出級MOS
的長度。因此,本論文提出漏電流與電壓迴轉率折衷之最佳設計方式。而為了降
低電壓迴轉率的變異量,另提出一新型製程偵測器,能在高速傳輸前就達到製程
偵測並進行補償,使電壓迴轉率的補償效果,經量測證實可達到20% 以上。

本論文另提出低雜訊電流平衡式儀表放大器,係有別於一般傳統式儀表放大
器使用太多的電阻,導致雜訊太大而影響精確性和穩定性。本論文提出使用電流
平衡式儀表放大器架構,並改良轉導級與轉阻級電路。此外,轉導放大器設計一
電流調節放大器,使電流更加穩定並減少不必要的電流鏡堆疊設計,達到低雜
訊、高開迴路增益、高共模拒斥比。
Abstract
A leakage reduction 2×VDD output buffer with compensation to process and voltage
variation is firstly proposed in this thesis. The proposed circuit architecture consists of
two parts: process and voltage compensation circuit and output buffer. When digital signal
with two times of supply voltage levels, the output stage of the buffer utilizes stacked
MOSFETs to prevent the gate-oxide overstress. In addition, an approach of leakage current
reduction for the output stage, including MOSFETs type selection and MOSFETs
length tuning, is proposed. An optimal solution between leakage current and the slew rate
is disclosed. To avoid the slew rate deviation, a novel process detector is also proposed to
quickly detect the variation. The improvement of the slew rate deviation is reduced by at
least 20% by measurements.

A low noise current-balancing instrumentation amplifier is the second research topic
in this thesis. Traditional instrumentation amplifiers are suffered from large noise since
many resistors are used. We propose a current-balancing instrumentation amplifier where
the transconductance stage and the transimpedance stage use fewer resistors, especially the
transconductance stage with an electronics tuning amplifier such that the current mirror is
more stabilized and the height of the stacked resistors is reduced. Therefore, the currentbalancing
instrumentation amplifier attains low noise, high gain, and high CMRR.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 具PVTL 補償兩倍電壓輸出緩衝器. . . . . . . . . . . . . . . 4
1.2.2 儀表放大器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 具製程與電壓變異補償之漏電流抑制兩倍電壓輸出緩衝器. . 9
1.3.2 低雜訊電流平衡式儀表放大器. . . . . . . . . . . . . . . . . . 9
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 具製程與電壓變異補償之漏電流抑制兩倍電壓輸出緩衝器. . . . . . . . . 11
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 電路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 輸出緩衝器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 VDDIO 偵測電路. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 電壓準位轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 前置驅動電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 輸出級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 製程與電壓偵測補償電路. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 NMOS 變異偵測器. . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 PMOS 變異偵測器. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 電壓變異偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 數位邏輯電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 電路模擬與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 補償電路與最高傳輸速度模擬. . . . . . . . . . . . . . . . . . 27
2.5.2 預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 晶片實作與量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.1 晶片照相. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.3 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 低雜訊電流平衡式儀表放大器. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 低雜訊電流平衡式儀表放大器電路設計. . . . . . . . . . . . . . . . . 45
3.2.1 輸入級與轉阻級. . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 轉導級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 輸出級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 電路模擬與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 電路規格模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 雜訊模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 溫度對儀表放大器之影響. . . . . . . . . . . . . . . . . . . . 53
3.3.4 預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 具製程與電壓變異補償之漏電流抑制兩倍電壓輸出緩衝器. . . . . . 57
4.2 低雜訊電流平衡式儀表放大器. . . . . . . . . . . . . . . . . . . . . . 58
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
參考文獻 References
[1] [Online]. Available: http://news.cnet.com/2100-1001-984051.html.
[2] F.-S. Altolaguirre and M.-D. Kerr, “Power-rail esd clamp circuit with diode-string
esd detection to overcome the gate leakage current in a 40-nm cmos process,” IEEE
Int. Electron Devices, vol. 60, no. 10, pp. 3500–3507, Oct. 2013.
[3] [Online]. Available: http://www.sercomm.com/contpage.aspx?langid=10&type=prod&L1id=9&L2id=8.
[4] [Online]. Available: https://portal.stpi.narl.org.tw/index/article/10120;jsessionid=F525E9B99057C7A2387FAF4EFF2B7923.
[5] 林葦, “具電壓迴轉率補償之混合電壓輸入輸出緩衝器,” Master’s thesis, 國立中山大學, Jul. 2015.
[6] Z.-Y. Hou, K.-W. Ruan, and C.-C. Wang, “2×vdd 40-nm cmos output buffer with
slew rate self-adjustment using leakage compensation,” IEEE Transactions on Circuits
and Systems II (TCASII), vol. 1, no. 99, pp. 1–5, Aug. 2016.
[7] [Online]. Available: https://zh.wikipedia.org/wiki/儀表放大器.
[8] A. Goel and G. Singh, “Novel high gain low noise CMOS instrumentation amplifier
for biomedical applications,” in Proc. IEEE Int. Conf. on Machine Intelligence and
Research Advancement (ICMIRA), pp. 392–396, Aug. 2013.
[9] G. Gupta and R. Tripathy, “CMOS instrumentation amplifier design with 180-nm
technology,” in Proc. IEEE Int. Conf. on Circuit Power and Computing Technologies
(ICCPCT), pp. 1114–1116, Jul. 2014.
[10] 劉人瑋, “3 倍VDD 之雙向混合電壓共容輸入輸出緩衝器與具有製程及溫度補償之2 倍VDD 輸出緩衝器,” Master’s thesis, 國立中山大學, Jul. 2010.
[11] [Online]. Available: http://www.weeqoo.com/zhuanti/zukangfenxiyi/.
[12] 蘇冠逢, “應用電性鑑別偵測法於三明治免疫電極檢測晶片之研究,” Master’s thesis, 國立成功大學, Jul. 2013.
[13] W.-J. Lu, H.-Y. Tseng, and C.-C. Wang, “A high-speed 2×VDD output buffer with
PVT detection using 40-nm CMOS technology,” in Proc. IEEE Int. Symposium on
Circuits and Systems (ISCAS), pp. 2079–2082, May 2013.
[14] J.-H. Yang, G.-F. Li, and H.-L. Liu, “Off-state leakage current in nano-scale mosfet
with hf-based gate dielectrics,” in Proc. IEEE Int. Nano Electronics Conf. (INEC),
pp. 1189–1192, Mar. 2008.
[15] A.-A. Khan, A. Audhikary, M.-A. Amin, and R. Nandi, “A comparative analytical
approach for gate leakage current optimization in silicon mosfet a step to more reliable
electronic device,” in Proc. IEEE Int. Conf. on Electrical Engineering and
Information Communication Technology (ICEEICT), pp. 22–24, Mar. 2016.
[16] A. Sanyal, A. Rastogi, W. Chen, and S. Kundu, “An efficient technique for leakage
current estimation in nanoscaled cmos circuits incorporating self-loading effect,”
IEEE Transaction on Computers, vol. 59, no. 7, pp. 922–932, Jul. 2010.
[17] A. Mishra and R.-A. Mishra, “Leakage current minimization in dynamic circuits
using sleep switch,” in Proc. Students Conf. on Engineering and System (SCES),
pp. 1–6, Mar. 2012.
[18] R. Oh, J.-W. Jang, and M.-Y. Sung, “Design and verification of an all-digital on-chip
process variation sensor,” in Proc. IEEE Int. Symposium on Circuits and Systems
(ISCAS), pp. 1684–1687, May 2013.
[19] K. Roy, S. Mukhopadhyay, and H. Meimand, “Leakage current mechanisms and
leakage reduction techniques in deep-submicrometer cmos circuits,” Proceedings of
the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003.
[20] X. Qi, S.-C. Lo, and A. Gyure, “Subthreshold leakage currents optimization,” IEEE
Circuits and Device Magazine, vol. 3, no. 1, pp. 39–47, Oct. 2006.
[21] T.-Y. Tsai, W. Lin, and C.-C. Wang, “A high-speed 2×VDD output buffer with PVTL
detection using 40-nm CMOS technology,” in Proc. Int. Conf. on IC Design and
Technology (ICICDT), pp. 1–4, Jul. 2015.
[22] C.-C. Wang, W.-J. Lu, K.-W. Juan, W. Lin, H.-Y. Tseng, and C.-Y. Juan, “Process
corner detection by skew inverters for 500 mhz 2×vdd output buffer using 40-nm
cmos technology,” Microelectronics Journal (MEJ), vol. 46, no. 1, pp. 1–11, Jan.
2015.
[23] F.-J. Lidgey and C. Toumazou, “Novel current-mode instrumentation amplifier,”
Electronics Letters, vol. 25, no. 1, pp. 228–230, Oct. 1989.
[24] C.-H. Hsu, C.-C. Huang, K.-S. Lim, W.-C. Hsiao, and C.-C. Wang, “A high performance
current-balancing instrumentation amplifier for ECG monitoring systems,”
in Proc. Int. SoC Design Conf. (ISOCC), pp. 83–86, Nov. 2009.
[25] C.-C. Hung, K. Halonen, M. Ismail, and V. Porra, “Micropower CMOS GM-C filters
for speech signal processing,” in Proc. IEEE Int. Symposium on Circuit and Systems
(ISCAS), pp. 1972–1975, Jun. 1997.
[26] T.-Y. Tsai, Y.-Y. Chou, and C.-C. Wang, “A method of leakage reduction and slewrate
adjustment in 2×VDD output buffer for 28 nm CMOS technology and above,”
in Proc. Int. Conf. on IC Design and Technology (ICICDT), pp. 1–4, Jun. 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code