Responsive image
博碩士論文 etd-0603118-141159 詳細資訊
Title page for etd-0603118-141159
論文名稱
Title
結合遮陰偵測及狀態估測之太陽光伏發電系統全域最大功率追蹤
Global Maximum Power Point Tracking for Photovoltaic Generation Systems Using Shading Detection and State Estimation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-07-03
關鍵字
Keywords
太陽光伏發電系統、部分遮陰、全域最大功率追蹤、狀態估測、區間預測
Photovoltaic Generation System, Partial Shading, Global Maximum Power Point Tracking, State Estimation, Section Prediction Metho
統計
Statistics
本論文已被瀏覽 5716 次,被下載 4
The thesis/dissertation has been browsed 5716 times, has been downloaded 4 times.
中文摘要
太陽光伏模組需要長期具備穩定供電且能適應外在環境氣候變化的能力,若能針對太陽光伏發電系統(Photovoltaic Generation System, PVGS)的輸出效能提升技術加以研究,則一來可提高太陽光伏發電系統的實用性,二來可增加該產業的競爭力。為了增加太陽光伏發電系統的輸出,有必要探討部分遮陰情形(Partially Shaded Conditions, PSC)之環境因素所造成的影響,以及快速地在部分遮陰的影響下追蹤全域最大功率點(Global Maximum Power Point, GMPP)。因此本論文提出一結合遮陰偵測及狀態估測之全域最大功率追蹤,狀態估測係透過所擷取的多組太陽光伏發電系統電壓與電流取樣值,估測目前的照度與溫度等環境狀態及太陽光伏發電系統參數,進而求得最大功率電壓操作點。本文所提之追蹤法包含三階段流程,第一階段為太陽光伏模組參數修正流程,其目的為修正內部特性曲線參數以因應各廠家的太陽光伏模組規格;第二階段為遮陰偵測流程,其目的為透過擷取的電流/電壓特性曲線數據,判定太陽光伏發電系統是否發生部分遮陰;第三階段為具區間預測法(Section Prediction Method, SPM)之全域最大功率追蹤流程,其目的為依照遮陰偵測流程的結果估測當前全域最大功率點,或是透過區間預測法估測全域最大功率點所在區間,並於此區間利用狀態估測求得全域最大功率電壓操作點。本文所提追蹤法之優點為若遮陰偵測流程判斷當前太陽光伏發電系統未發生遮陰時,只需截取當前的兩組電流電壓取樣值即可操作在全域最大功率點,無須執行較複雜的區間預測法,故可有效縮短暫態追蹤時間;而若遮陰偵測流程判定發生遮陰情形時,亦可利用區間預測法快速判斷全域最大功率追蹤點可能的區間,有效地減少取樣點及判斷次數,進而減少追蹤損失。實驗結果與全天候太陽光伏發電系統輸出的模擬結果證實,本文所提之追蹤法可有效地判斷當前特性曲線是否發生部分遮陰,且不論遮陰與否,所提之方法可有效減少追蹤損失且可達99%平均追蹤精確度。
Abstract
Photovoltaic modules need to have the permanent ability to resist environmental alteration and supply stable power. Output power improvement of Photovoltaic Generation Systems (PVGSs) can not only raise the practicality of PVGSs but also increase the industry competitiveness. To increase the output power of PVGSs, the effect of environmental factors especially the Partially Shaded Conditions (PSC) should be further investigated. This dissertation proposes a Global Maximum Power Point (GMPP) tracking algorithm for PVGSs using shading detection and state estimation. Using the captured voltages and currents from a PVGS, the proposed state estimation can be used to calculate the approximate solar irradiance, ambient temperature and other PVGS’s parameters. In this way, the maximum power point can be calculated and tracked efficiently. The proposed tracking algorithm consists of three stages. Stage I is the parameter correction of PVGS. The purpose is to correct the PVGS’s parameters to meet the characteristic curve of PVGSs manufactured by different vendors. Stage II is shading detection used to diagnose whether a PVGS is under PSC. Stage III is GMPP tracking that utilizes the capatured voltages and currents and state estimation to find out the GMPP. A Segment Prediction Method (SPM) is proposed to predict the GMPP segment from Current-Voltage (I-V) characteristic curve and to enhance the tracking performance. Using shading detection as proposed in Stage II, if the PVGS is not under PSC, two captured voltages and currents are enough to calculate the GMPP without executing SPM. The transient tracking time can be effective shortened. When the PVGS is under PSC, the global maximum power point tracking as proposed in Statge III can use SPM to quickly predict the GMPP segment. The tracking time can also be effectively reduced since the proposed SPM does not need to scan all segments for GMPP tracking. Simulation and experimental results show that PSC can be effectively detected and more than 99% tracking accuracy and lower tracking losses are achieved by the proposed tracking algorithm regardless of PSC or not.
目次 Table of Contents
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文大綱 4
第二章 太陽光伏發電系統介紹 6
2.1 太陽光伏發電簡介 6
2.2 太陽光伏電池特性 7
2.3 太陽光伏發電系統基本架構 11
2.3.1 不均勻照度時無旁路二極體 12
2.3.2 不均勻照度時有旁路二極體 14
第三章 全域最大功率追蹤技術簡介 16
3.1 傳統最大功率追蹤技術 16
3.2 進階最大功率追蹤技術 17
3.2.1 二階段式搜尋技術 18
3.2.2 軟性計算搜尋技術 19
3.3 部分遮陰情形檢測方法 21
3.3.1 串列短路電流檢測法 21
3.3.2 三點式線性函數檢測法 22
3.3.3 兩點式特性參數檢測法 23
3.3.4 部分遮陰檢測方法分析與評估 24
第四章 太陽光伏發電系統遮陰偵測 27
4.1 部分遮陰對電流/電壓特性曲線的影響 27
4.2 結合狀態估測之最大功率追蹤法 35
4.3 結合遮陰偵測及狀態估測之全域最大功率追蹤 43
4.3.1 太陽光伏模組參數修正流程 44
4.3.2 遮陰偵測流程 48
4.3.3 全域最大功率追蹤流程 54
第五章 模擬與實驗結果 64
5.1 模擬設計與分析 64
5.2 模擬測試結果 72
5.2.1 本文所提之方法進行頻繁部分遮陰檢測 74
5.2.2 本文所提之方法進行間隔性部分遮陰檢測 76
5.2.3 部分遮陰檢測與遮陰時間同步性評估 77
5.3 實驗測試設計 80
5.3.1 升壓式轉換器介紹 84
5.3.2 升壓式轉換器電路元件設計 86
5.4 實驗設計與測試結果 88
5.4.1 均勻照度無部分遮陰 91
5.4.2 不均勻照度發生部分遮陰 96
5.4.3 均勻照度變化均勻照度之動態測試結果 101
5.4.4 不均勻照度變化不均勻照度之動態測試結果 104
第六章 結論與未來展望 107
6.1 結論 107
6.2 未來展望 108
參考文獻 109
參考文獻 References
[1] “99-108年長期負載預測與電源開發規劃摘要報告”,經濟部能源局,100年1月
[2] “2010年能源產業技術白皮書”,經濟部能源局,99年4月
[3] “太陽能發電裝置容量年底達5百萬瓦”,http://www.epochtimes.com/b5/8/12/27/n2376878.htm
[4] “26% of the world will run on renewables by 2020”、https://goo.gl/i252iV
[5] “GTM Research: Global solar capacity to rival nuclear by end of 2017”,https://goo.gl/KgG6rZ
[6] 潘建光,“太陽能產業發展趨勢與未來動向”,中山大學能源整合及管理小聯盟教育訓練、103年10月
[7] “Global Solar To Smash Milestones, Reach 600 GW In 2020”, https://goo.gl/9T8jno
[8] B. Ando, S. Baglio, A. Pistorio, G. M. Tina, and C. Ventura, “Sentinella: Smart monitoring of photovoltaic systems at panel level,” IEEE Trans. Instrum. Meas., vol. 64, no. 8, pp. 2188–2199, Aug. 2015.
[9] A. R. Jha. Solar cell technology and appLication. New York: Auerbach, 2009, pp. 1-280.
[10] 戴寶通、鄭晃忠,“太陽光伏技術手冊”,台灣電子材料與元件協會,2008年6月。
[11] 林冠宇,“獨立型太陽能發電系統用準Z源換流器之設計與研製”,國立台灣科技大學電機工程系碩士學位論文,民國102年7月。
[12] “太陽光電資訊網,太陽光電發電原理”, http://solarpv.itri.org.tw/page2.html
[13] K.H.Hussein, I Muta, T.Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Proc. Gener. Transm. Distrib.,vol. 142, no.1, pp. 59-64 Jan. 1995.
[14] “太陽光變頻器技術發展現況”,https://goo.gl/E9Fw1g
[15] J. Sachin and V. Agarwal, “An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 622-631, Jun. 2008.
[16] L. Wu, Z. Zhao, and J. Liu, “A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation,” IEEE Trans. Energy Convers., vol.22, no.44, pp.881-886, Dec. 2007.
[17] M. A. S. Masoum, S.M.M. Badejani, and E.F. Fuchs, “Microprocessor – controlled new class of optimal battery chargers for photovoltaic applications,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 599-606, Sep. 2004.
[18] M. A. S. Masoum, H. Dehbonei, and E.F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp.514-522, Dec. 2002.
[19] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum power point tracking method for multiple photovoltaic-and-power-converter module system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 217-223, Feb. 2002.
[20] T.L. Kottas, Y.S. Boutalis, and A.D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., vol. 21,no. 3,pp. 793-803, Sep. 2006.
[21] Liang-Rui Chen, “A biological swarm chasing algorithm for tracking the PV maximum power point,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 484-493, June 2010.
[22] B. Subudhi,;and R. Pradhan, “A comparative study on maximum power point tracking techniques for photovoltaic power systems,” IEEE Trans. on Sustainable Energy, vol. 4, no. 1, pp. 89-98, 2013.
[23] T. Esram, and P.L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 2, no. 2, pp. 439-339, 2007.
[24] V. Salas, , E. Olías, A. Barrado, A. Lázaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 90, no.11, pp. 1555-1578, July 2006.
[25] C. A. R. Paja, G. Spagnuolo, G. Petrone, M. Vitelli, and J. D. Bastidas, “Amultivariable MPPT algorithm for granular control of PV systems,” in Proc. IEEE Int. Symp. Ind. Electron., 2010, pp. 3433–3437.
[26] 陳敬孝,“基於分段搜尋法之太陽能全域最大功率追蹤”,國立台灣科技大學電機工程系博士學位論文,民國104年7月。
[27] H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems operating under partially shaded conditions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689-1698, Apr. 2008.
[28] E. Koutroulis and F. Blaabjerg, “A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions,” IEEE Journal of Photovoltaics, vol. 2, no. 2, pp. 184-190, Apr. 2012.
[29] A. Kouchaki, H. Iman-Eini, and B. Asaei, “A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions,” Solar Energy, vol. 91, pp. 221-232, Mar. 2013.
[30] N. Gokmen, E. Karatepe, F. Ugranli, and S. Silvestre, “Voltage band based global MPPT controller for photovoltaic systems,” Solar Energy, vol. 98, pp. 322-334, Nov. 2013.
[31] M. F. Kashif, S. Choi, Y. Park, and S. K. Sul, “Maximum power point tracking for single stage grid-connected PV system under partial shading conditions,” in Proceedings of the 2012 IEEE 7th International Power Electronics and Motion Control Conference (ECCE Asia), Harbin, China, 2012, pp. 1377-1383.
[32] A. Kouchaki, H. Iman-Eini, and B. Asaei, “Maximum power point tracking algorithm based on I-V characteristic of PV array under uniform and non-uniform conditions,” in Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu Sabah, Malaysia, 2012, pp. 331-336.
[33] Y. H. Liu, C. L. Liu, J. W. Huang, and J. H. Chen, “Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments,” Solar Energy, vol. 89, pp. 42-53, Jan. 2013.
[34] R. Akkaya, A. A. Kulaksız, and Ö. Aydoğdu, “DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive,” Energy Conversion and Management, vol. 48, no. 1, pp. 210-218, Jun. 2007.
[35] Syafaruddin, E. Karatepe, and T. Hiyama, “Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions,” IET Renewable Power Generation, vol. 3, no. 2, p. 239, Jun. 2009.
[36] Syafaruddin, E. Karatepe, and T. Hiyama, “Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions,” Energy Conversion and Management, vol. 62, pp. 131-140, Jun. 2012.
[37] K. Punitha, D. Devaraj, and S. Sakthivel, “Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions,” Energy, vol. 62, pp. 330-340, Oct. 2013.
[38] Syafaruddin, T. Hiyama, and E. Karatepe, “Investigation of ANN performance for tracking the optimum points of PV module under partially shaded conditions,” in Proceedings of the 2010 Conference Proceedings (IPEC), Singapore, 2010, pp. 1186-1191.
[39] IA Ibrahim, T Khatib, A Mohamed, W Elmenreich, “Modeling of the output current of a photovoltaic grid-connected system using random forests technique,” Energy Exploration & Exploitation, pp. 132-148, August 2017.
[40] Hussain Shareef, Ammar Hussein Mutlag, Azah Mohamed, “Random Forest-Based Approach for Maximum Power Point Tracking of Photovoltaic Systems Operating under Actual Environmental Conditions,” Computational Intelligence and Neuroscience, May 2017.
[41] Nikolaou N., Batzelis E., Brown G., “Gradient Boosting Models for Photovoltaic Power Estimation Under Partial Shading Conditions,” Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy, vol 10691, Sep. 2017 .
[42] Y. Shaiek, M. Ben Smida, A. Sakly, and M. F. Mimouni, “Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators,” Solar Energy, vol. 90, pp. 107-122, Feb. 2013.
[43] S. Daraban, D. Petreus, and C. Morel, “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading,” Energy, vol. 74, pp. 1-15, Jul. 2014.
[44] H. R. Mohajeri, M. P. Moghaddam, M. Shahparasti, and M. Mohamadian, “Development a new algorithm for maximum power point tracking of,” in Proceedings of the 2012 20th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2012, pp. 489-494.
[45] S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Solar Energy Materials and Solar Cells, vol. 94, no. 9, pp. 1441-1447, May. 2010.
[46] L. R. Chen, C. H. Tsai, Y. L. Lin, and Y. S. Lai, “A biological swarm chasing algorithm for tracking the PV maximum power point,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 484-493, Jun. 2010.
[47] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays a PSO approach,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 367-380, Jan. 2011.
[48] K. Ishaque, Z. Salam, A. Shamsudin, and M. Amjad, “A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm,” Applied Energy, vol. 99, pp. 414-422, Jun. 2012.
[49] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[50] Y. H. Liu, S. C. Huang, J. W. Huang, and W. C. Liang, “A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions,” IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 1027-1035, Dec. 2012.
[51] K. Ishaque and Z. Salam, “A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3195-3206, Aug. 2013.
[52] a. Shi, W. Zhang, Y. Zhang, F. Xue, and T. Yang, “MPPT for PV systems based on a dormant PSO algorithm,” Electric Power Systems Research, vol. 123, pp. 100-107, Feb. 2015.
[53] 鍾宜成,“利用串列太陽能板短路電流之全域最大功率追蹤法”,國立中山大學電機工程系碩士學位論文,民國105年7月。
[54] Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and Chung-YuenWon, “A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1001-1009, Apr. 2011.
[55] T. L. Nguyen and K. S. Low, “A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3456-3467, Oct. 2010.
[56] K. Ishaque, Z. Salam, A. Shamsudin, and M. Amjad, “A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm,” Applied Energy, vol. 99, pp. 414-422, Jun. 2012.
[57] K. Sundareswaran, P. Sankar, P. S. R. Nayak, S. P. Simon, and S. Palani, “Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony,” IEEE Transactions on Sustainable Energy, vol. 6, no. 1, pp. 198-209, Jan. 2015.
[58] Jubaer Ahmed, Zainal Salam, “An Accurate Method for MPPT to Detect the Partial Shading Occurrence in a PV System,” IEEE Transactions on INDUSTRIAL INFORMATICS, VOL. 13, NO. 5, OCTOBER 2017.
[59] J. H. Teng, “Handling Current-Magnitude Measurement in Transmission and Distribution System State Estimator,” IEE Proc.-Generation, Transmission and Distribution, Vol. 147, No. 4, pp. 202 – 206, Sep. 2000.
[60] “Top-10 solar module suppliers in 2016”,https://goo.gl/RDmef1
[61] Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R.; “Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization,” IEEE Trans. on Power Systems, Vol. 25, Issue 1, 2010, pp. 360 – 370.
[62] Z. M. Salameh, B. S. Borowy, and A. R. A. Amin, “Photovoltaic Module-Site Matching Based on the Capacity Factors,” IEEE Trans. Energy Convers., Vol. 10, no. 2, pp. 326–332, Jun. 1995.
[63] Jen-Hao Teng, Shang-Wen Luan, Dong-Jing Lee, Yong-Qing Huang, “Optimal Charging/Discharging Scheduling of Battery Storage Systems for Distribution Systems Interconnected with Sizeable PV Generation Systems,” IEEE Trans. on Power Systems, Vol. 28, No. 2, May 2013, pp. 1425-1433.
[64] “可程控直流電源 Model 62000H-S series”,https://goo.gl/Q9HbXr。
[65] 符曉、朱洪順,“TMS320F2833X DSP應用開發與實踐”,北京航空航天大學出版社。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code