Responsive image
博碩士論文 etd-0604113-091910 詳細資訊
Title page for etd-0604113-091910
論文名稱
Title
應用現地乳化油生物屏障處理受含氯有機物污染之地下水
Application of in situ emulsified biobarrier to remediate chlorinated-solvent contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-07-04
關鍵字
Keywords
即時定量PCR、變性梯度膠體電泳、乳化油生物屏障、現地生物整治、微生態系統
real-time PCR, microcosm, in situ bioremediation, emulsified biobarrier, denaturing gradient gel electrophoresis
統計
Statistics
本論文已被瀏覽 5755 次,被下載 0
The thesis/dissertation has been browsed 5755 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑常被廣泛應用於脫脂、電子零件清洗及乾洗等工業製程中,近年來許多國內外土壤及地下水陸續被檢測出受到含氯有機物的污染。其中以四氯乙烯(tetrachloroethene, PCE) 、三氯乙烯(trichloroethylene, TCE)及1,2-二氯乙烷(1,2-dichloroethane, 1,2-DCA)為國內外最具代表性之含氯有機溶劑。此污染物於地下水中因其特性而常以比水重之非水相液體(dense non-aqueous phase liquid, DNAPL)存在,因而難以整治。生物復育法(bioremediation)為近年來常用的污染整治方法,生物復育法可經由基質及營養鹽添加的方式,達到促進現地微生物生長、加強生物降解反應及達到分解污染物的目的。本研究分為微生態系統(microcosm)批次實驗及現地模場試驗兩部分,其中微生態系統批次實驗利用好氧及厭氧微生態系統批次實驗的方式,加入可激發微生物生長之不同基質,以促進現地微生物之代謝反應,達到降解1,2-DCA的效果;模場試驗部分由於1,2-DCA相關模場取得不易,因此本研究選擇南台灣一主要受TCE污染之場址,並以本團隊研發之乳化油結合生物透水性整治牆概念灌注模場,加強本場址內TCE生物還原脫氯作用,以提升地下水中微生物降解效率,以防止污染源向下游傳輸擴散。研究結果顯示好氧批次實驗中,自然衰減組(A1)與好氧污泥組(A3)在第7天的污染物分解效率超過90%,基質添加組(A2)在第14天時分解效率超過95%。而厭氧批次實驗中,除了自然衰減組(B1)外,其他組別在第10天時,皆能有效分解1,2-DCA至50%以下,甚至厭氧污泥組(B3)於第5天的污染物分解率就已達到80%。變性梯度膠電泳(denaturing gradient gel electrophoresis, DGGE)菌相分析的結果可以看出隨著實驗的進行,菌相產生變化,其中基質添加組(A2、B2)可能因砂糖促進不同的菌群生長,造成菌相改變最大。菌種鑑定的結果顯示各批次實驗中均出現可分解1,2-DCA之菌群, 如Klebsiella、Pseudomonas、Rhodoferax及Xanthobactor,以及其他降解相關的菌群等。即時定量PCR(real-time PCR)結果則發現,Dehalococcoides spp.菌數變化為厭氧基質添加組(B2)主要降解1,2-DCA之菌群;而Desulfitobacterium spp.菌數變化顯示好氧基質添加組(A2)與厭氧批次實驗所有組別(B1、B2、B3、B4)為主要降解1,2-DCA之菌群。現地模場結果得知,溶氧(dissolved oxygen, DO)低於0.5 mg/L及氧化還原電位(oxidation-reduction potential, ORP)值為-58~-131 mV呈現還原態,顯示模場地下水已形成適合厭氧微生物生長環境。TOC注入基質後明顯上升至9,024 mg/L,監測至第210天其值仍377.9 mg/L,顯示乳化油具長效緩釋特性,提供現地微生物基本代謝。地下水之總生菌由103 CFU/mL增加至106 CFU/mL呈現增加趨勢,顯示乳化油可促進微生物生長。模場試驗結果顯示注入乳化油整治區內,第一次注藥BW1-1、C029及BW1-2之目標污染物降解效率分別為97%、58%及6%;第二次注藥C029及C029E之目標污染物降解效率分別為72%及85%,兩次注藥後注藥井之污染物濃度皆符合法規標準之下,副產物監測結果亦顯示於注入後之可測得TCE被微生物分解之副產物順1,1-DCE及VC,但未有濃度累積現象。此外藉由菌相分析法偵測結果可知,現地具有Ralstonia sp., Clostridium sp., Uncultured Burkholderiales bacterium, Hydrogenophaga sp., Acidovorax sp., Zoogloea sp., Hydrocarboniphaga sp., Uncultured Curvibacter sp., Pseudomonas sp., Comamonas sp., Aquabacterium sp., Variovorax strains 等具有降解含氯有機物效果之菌種。由real-time PCR得知模場各注藥井隨著乳化油的添加,各井之菌量呈現增加趨勢,其增加菌量為106 - 107 cells/L,由此可知添加乳化油對於現地可營造出適合Dehalococcoides spp.菌群生長的環境,使得注藥井之菌群生長。本研究顯示已加強式生物整治能有效提高降解效率,此外亦可使現地微生物大量生長,而本團隊自製之乳化油為良好緩釋性物質,且具有長時效供應現地微生物生長之營養鹽降解目標污染物,並符合綠色整治減少二次污染,本研究之效果以提供未來相關整治場址之參考依據。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by halogenated organic compounds that were released into the environment. Halogenated organic compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. Among those halogenated organic compounds, trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA), a human carcinogen, is one of the commonly observed contaminants in groundwater. In this study, aerobic and anaerobic microcosm batch experiments were performed to evaluate the feasibility of biodegradation of 1,2-DCA by adding different growth substrates. The objective of this study was to develop the emulsified oil and apply it as the filling material in the permeable reactive barrier to remediate TCE-contaminated groundwater. In this study, the developed emulsified oil contained soybean oil, lactate, biodegradable surfactant (Simple GreenTM and lecithin), and nutrients. The emulsified oil was able to provide carbon for the enhancement of in situ anaerobic biodegradation for a long period of time. A pilot-scale study was operated at a TCE-contaminated site located in southern Taiwan. The aerobic microcosm results show that approximately 90% of 1,2-DCA removal was observed in the natural degradation group (A1) and the aerobic sludge addition group (A3) after 7 days of incubation. Up to 95% of 1,2-DCA removal could be observed in the substrate supplement group in after 14 days of incubation. In the anaerobic microcosm studies, 50% of 1,2-DCA removal could be obtained in all groups after 10 days except for the natural degradation group (B1). Moreover, the degradation efficiency for the anaerobic sludge group (B3) reached 80% of 1,2-DCA removal in 5 days. The DGGE profiles show that the microbial diversity varied with time and the sugar supplement groups (A2, B2) exhibited the most microbial diversity. Bacterial clones results revealed that the 1,2-DCA biodegradable microbial strains were presented in the microcosms, such as Klebsiella, Pseudomonas, Rhodoferax and Xanthobactor. The real-time PCR results indicated that the Dehalococcoides spp. was the major bacterium that was responsible for the degradation of 1,2-DCA in the anaerobic substrate supplement group (B2). Desulfitobacterium spp. could be the dominant 1,2-DCA degrading bacterium for the aerobic substrate supplement group (A2) and all of the anaerobic groups (B1, B2, B3, B4). Emulsified oil emulsion was pressure-injected into the remediation wells. Based on the groundwater analytical results, dissolved oxygen, oxidation-reduction potential, and sulfate concentrations decreased after injection. However, the anaerobic degradation byproduct, acetic acid, increased after injection. Results also show that the total viable bacteria increased in the upgradient injection (remediation) well. Decrease in TCE concentration (dropped to below 0.01 mg/L) was also observed after substrate injection, and TCE degradation byproducts, cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) were also observed. Result of microbial analyses show that various TCE-degrading bacteria exist in the groundwater samples including Ralstonia sp., Clostridium sp., Uncultured Burkholderiales bacterium, Hydrogenophaga sp., Acidovorax sp., Zoogloea sp., Hydrocarboniphaga sp., Uncultured Curvibacter sp., Pseudomonas sp., Comamonas sp., Aquabacterium sp., and Variovorax strains. This reveals that the anaerobic dechlorination of TCE is a feasible technology at this site. Slug test result show that only a slight variation in soil permeability of the injection well was observed. This indicates that the developed system has the potential to be developed into an environmentally, economically, and naturally acceptable remedial technology. Knowledge obtained from this study will aid in designing a emulsified biobarrier system for site remediation.
目次 Table of Contents
謝誌 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 5
2.1 土壤及地下水氯化碳氫化合物污染概況 5
2.1.1 含氯碳氫化合物污染概述 5
2.1.2 含氯碳氫化合物之性質及管制標準 7
2.1.3 含氯碳氫化合物之傳輸 11
2.2 土壤與地下水整治技術發展趨勢 16
2.2.1 地下水生物整治技術 17
2.2.2 綠色整治技術 21
2.3 含氯碳氫化合物生物反應機制 22
2.3.1 含氯碳氫化合物好氧共代謝反應機制 22
2.3.2 含氯碳氫化合物厭氧還原脫氯反應機制 26
2.4 乳化油加強生物之整治牆 27
2.5 利用乳化油做為厭氧還原脫氯作用之類似場址研究 30
2.6 分子生物檢測 32
2.6.1 微生物多樣性檢測方法之演進 32
2.6.2 變性梯度膠體電泳與定序技術 32
2.6.3菌種鑑定 33
2.6.4 即時定量PCR (real-time PCR) 33
第三章 研究方法、材料與架構 35
3.1 實驗架構 35
3.2 材料與方法 36
3.2.1 藥品材料 36
3.2.2 實驗設備 36
3.3 乳化油之合成 37
3.4微生態系統批次生物分解實驗 37
3.4.1好氧批次生物分解實驗 37
3.4.2厭氧批次生物分解實驗 39
3.5 管柱試驗 41
3.6 現地場址背景介紹 43
3.7 現地模場試驗 44
3.7.1 模場設置規劃 44
3.7.2 水文地質調查 45
3.8 分析方法 48
3.8.1 污染物分析方法 48
3.8.2 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 48
3.8.3 變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE) 49
3.8.4 即時定量PCR (real-time PCR) 49
第四章 結果與討論 53
4.1 微生態系統批次試驗 53
4.1.1 好氧批次試驗 53
4.1.2 厭氧批次試驗 54
4.2 微生態系統批次實驗菌相分析與鑑定 56
4.2.1 好氧批次實驗菌相 56
4.2.2 厭氧批次實驗菌相 58
4.2.3 微生態批次試驗定序 59
4.3 以即時定量PCR偵測Dehalococcoides spp.與Desulfitobacterium spp.數量 61
4.3.1 好氧批次實驗之real-time PCR 61
4.3.2 厭氧批次實驗之real-time PCR 63
4.4 管柱試驗 65
4.4.1 貫穿試驗 65
4.4.2 污染物降解試驗 66
4.5 模場試驗 70
4.5.1 現地地下水水質參數變化 71
4.5.2 電子接受者及供給者分析 74
4.5.3 三氯乙烯及副產物降解趨勢分析 75
4.5.4 菌相分析法偵測結果 78
4.5.5 real-time PCR 87
第五章 結論與建議 89
5.1 批次試驗及管柱試驗 89
5.2 模場試驗 90
5.3 建議 91
參考文獻 93
參考文獻 References
Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J. and Coates, J. D. (2001) “Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chloratereducing bacteria and their phylogenetic position”, Int. J. Syst. Evol. Microbiol. 51(2), 527-533.
Adamson, D. T., Lyon, D. Y. and Hughes, J. B. (2004) “Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous-phase liquid”, Environ. Sci. Technol., 38(7), 2021-2028.
Adamson, D. T., McDade, J. M. and Hughes, J. B. (2003) “Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE”, Environ. Sci. Technol., 37(11), 2525-2533.
Adrian, L., Szewzyk, U., Wecke, J. and Gorisch, H. (2000) “Bacterial dehalorespiration with chlorinated benzenes”, Nature, 408(6812), 580-583.
Alpaslan Kocamemi, B. and Çeçen, F. (2009) “Biodegradation of 1, 2-dichloroethane (1, 2-DCA) by cometabolism in a nitrifying biofilm reactor”, Int. Biodeterior. Biodegrad., 63(6), 717-726.
Alvarez-Cohen, L. and Speitel, G. E. (2001) “Kinetics of aerobic cometabolism of chlorinated solvents”, Biodegradation, 12(2), 105-126.
Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995) “Phylogenetic identification and in situ detection of individual microbial cells without cultivation”, Microbiol. Rev., 59(1), 143-169.
Amos, B. K., Christ, J. A., Abriola, L. M., Pennell, K. D. and Loeffler, F. E. (2007) “Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution”, Environ. Sci. Technol., 41(3), 963-970.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M. P. and Majone, M. (2008) “Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE”, Water Sci. Technol., 57(6), 921-925.
Aulenta, F., Majone, M. and Tandoi, V. (2006) “Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions”, Journal of Chemical Technology and Biotechnology, 81(9), 1463-1474.
Aulenta, F., Pera, A., Rossetti, S., Papini, M. P. and Majone, M. (2007) “Relevance of side reactions in anaerobic reductive dechlorinationmicrocosms amended with different electron donors”, Water Res, 41, 27-38.
Azizian, M. F., Istok, J. D. and Semprini, L. (2007) “Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests”, J. Contam. Hydrol., 90(1-2), 105-124.
Baptista, I. I. R., Peeva, L. G., Zhou, N. Y., Leak, D. J., Mantalaris, A. and Livingston, A. G. (2006) “Stability and performance of Xanthobacter autotrophicus GJ10 during 1,2-dichloroethane biodegradation”, Appl. Environ. Microbiol., 72(6), 4411-4418.
Bennett, P., Gandhi, D., Warner, S. and Bussey, J. (2007). “In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater”, J. Hazard. Mater., 149(3), 568-573.
Bhatt, P., Kumar, M. S., Mudliar, S. and Chakrabarti, T. (2007) “Biodegradation of chlorinated compounds - A review”, Crit. Rev. Environ. Sci. Technol., 37(2), 165-198.
Blümel, S., Busse, H. J., Stolz1, A. and Kämpfer, P. (2001) “Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type”, Int. J. Syst. Evol. Microbiol., 51(5), 1831-1837.
Borden, R. C. and Rodriguez, X. (2006) “Evaluation of Slow Release Substrates for Anaerobic Bioremediation”, Bioremediation Journal, 10(1-2), 59-69.
Borden, R. C. (2006) “Protocol for enhanced in situ bioremediation using emulsified edible oil”, Industrial & Environmental Services.
Borden, R. C. (2007) “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier”, J. Contam. Hydrol., 94(1-2), 13-33.
Cameron, M. L. and Borden, R. C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, J. Contam. Hydrol., 87(1-2), 54-72.
Chang, Y. C., Okeke, B. C., Hatsu, M. and Takamizawa, K. (2001) “In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1”, Bioresour. Technol., 78(2), 141-147.
Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C. and Hsieh, F. M. (2007) “Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida”, J. Hazard. Mater., 148(3), 660-670.
Christ, J.A., Ramsburg, C.A., Abriola, L.M., Pennell, K.D. and Löffler. F.E. (2005) “Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: A review and assessment”, Environ. Health Perspect., 113(4), 465-477.
Coleman, N. V., Mattes, T. E., Gossett, J. M. and Spain, J. C. (2002) “Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites”, Appl. Environ. Microbiol., 68(12), 6162-6171.
Cope, N. and Hughes, J. B. (2001) “Biologically-enhanced removal of PCE from NAPL source zones”, Environ. Sci. Technol., 35, 2014-2021.
Crane, R. A. and Scott, T. B. (2012) “Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology”, J. Hazard. Mater., 211-212, 112-125.
Da Silva, M. L. B., Daprato, R. C., Gomez, D. E., Hughes, J. B., Ward, C. H. and Alvarez, P. J. J. (2006) “Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation", Water Environ. Res., 78(13), 2456-2465.
Davis, G. B., Patterson, B. M. and Johnston, C. D. (2009) “Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale”, J. Contam. Hydrol., 107(1), 91-100.
De Wildeman, S., Diekert, G., van Langenhove, H. and Verstraete, W. (2003) “Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes”, Appl. Environ. Microbiol., 69(9), 5643-5647.
De Wildeman, S., Linthout, G., van Langenhove, H. and Verstraete, W. (2004) “Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane”, Appl. Environ. Microbiol., 63(5), 609-612.
Dey, K. and Roy, P. (2009) “Degradation of trichloroethylene by Bacillus sp.: Isolation strategy, strain characteristics, and cell immobilization”, Curr. Microbiol., 59(3), 256-560.
Dinglasan‐Panlilio, M. J., Dworatzek, S., Mabury, S. and Edwards, E. (2006) “Microbial oxidation of 1, 2‐dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures”, FEMS Microbiol. Ecol., 56(3), 355-364.
Duhamel, M., Edwards, E. A. (2006) “Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides”, FEMS Microbiol. Ecol., 58(3), 538-549.
Dyer, M. (2003) “Field investigation into the biodegradation of TCE and BTEX at a former metal plating works”, Eng. Geol., 70(3-4), 321-329.
Dyer, M., van Heiningen, E. and Gerritse, J. (2000) “In situ bioremediation of 1, 2-dichloroethane under anaerobic conditions”, Geotech. Geol. Eng., 18(4), 313-334.
Egert, M. and Friedrich, M. W. (2003) “Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure”, Appl. Environ. Microbiol., 69(5), 2555-2562.
Egli, C., Scholtz, R., Cook, A.M. and Leisinger, T. (1987) “Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp.”, FEMS Microbiol. Lett., 43(3), 257-261.
Ellis, D. E. and Hadley, P. W. (2009) “Sustainable remediation white paper—Integrating sustainable principles, practices, and metrics into remediation projects”, Biorem. J.,19(3), 5-114.
Environment Agency, (2003) “An illustrated handbook of DNAPL transport and fate in the subsurface”.
Farhadian, M., Vachelard, C., Duchez, D. and Larroche, C. (2008) “In situ bioremediation of monoaromatic pollutants in groundwater: A review:, Bioresour. Technol., 99(13), 5296-5308.
Fletcher, K. E., Ritalahti, K. M., Pennell, K. D., Takamizawa, K. and Löffler, F. E. (2008) “Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1”, Appl. Environ. Microbiol., 74(19), 6141-6143.
Frascari, D., Pinelli, D., Nocentini, M., Zannoni, A., Fedi, S., Baleani, E., Zannoni, D., Farneti, A. and Battistelli, A. (2006) “Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses”, J. Hazard. Mater., 138(1), 29-39.
Freeborn, R. A., West, K. A., Bhupathiraju, V. K., Chauhan, S., Rahm, B. G., Richardson, R. E., and Alvarez-Cohen, L. (2005) “Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors”, Environ. Sci. Technol., 39(21), 8358-8368.
Fries, M. R., Forney, L. J. and Tiedje, J. M. (1997) “Phenol- and toluenedegrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred”, Appl. Environ. Microbiol., 63(4), 1523-1530.
Futamata, H., Harayama, S., Hiraishi, A. and Watanabe, K. (2003) “Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments”, Appl. Microbiol. Biotechnol., 60(5), 594-600.
Futamata, H., Harayama, S. and Watanabe, K. (2001) “Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation”, Appl. Environ. Microbiol., 67(10), 4671-4677.
Futamata, H., Harayama, S., Hiraishi, A. and Watanabe, K. (2003) “Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments”, Appl. Microbiol. Biotechnol., 60(5), 594-600.
Grostern, A. and Edwards, E. A. (2006) “Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes”, Appl. Environ. Microbiol., 72(1), 428-436.
Hage, J.C. and Hartmans, S. (1999) “Monooxygenase mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1”, Appl. Environ. Microbiol., 65(6), 2466-2470.
Hageman, K. J., Field, J. A., Istok, J. D. and Semprini, L. (2004) “Quantifying the effects of fumarate on in situ reductive dechlorination rates”, J. Contam. Hydrol., 75(3-4), 281-296.
Halsey, K. H., Doughty, D. M., Sayavedra-Soto, L. A., Bottomley, P. J. and Arp, D. J. (2007) “Evidence for modified mechanisms of chloroethene oxidation in Pseudomonas butanovora mutants containing single amino acid substitutions in the hydroxylase alpha-subunit of butane monooxygenase”, J. Bacteriol., 189(14), 5068-5074.
Han, Y. L., Kuo, M. C. T., Tseng, I. C. and Lu, C. J. (2007) “Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene”, J. Hazard. Mater., 148(3), 583-591.
Hanada, S., Shigematsu,T., Shibuya, K., Eguchi, M., Hasegawa, T., Suda, F., Kamagata, Y., Kanagawa, T. and Kurane, R. (1998) “Phylogenetic analysis of trichloroethylene-degrading bacteria isolated from soil polluted with this contaminant”, J. Ferment. Bioeng., 86(6), 539-544.
Harkness, M., Fisher, A., Lee, M. D., Mack, E. E.., Payne, J. A., Dworatzek, S., Roberts, J., Acheson, C., Herrmann, R. and Possolo, A. (2012) “Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies”, J. Contam. Hydrol., 131(1-4), 100-118.
He, J., Ritalahti, K.M., Aiello, M.R. and Löffler, F.E. (2003) “Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species”, Appl. Environ. Microbiol., 69(2), 996-1003.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M. and Loffler, F. E. (2005) “Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)-and 1,2-dichloroethene-respiring anaerobe”, Environ. Microbiol., 7(9), 1442-1450.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G., Sherwood, L. B. (2007) “Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane”, Environ. Microbiol., 9, 1651-1657.
Hollender, J., Dott, W. and Hopp, J. (1994) “Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5”, Appl. Environ. Microbiol., 60(7), 2330-2338.
Hunkeler, D. and Aravena, R. (2000) “Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2-dichloroethane by Xanthobacter autotrophicus”, Appl. Environ. Microbiol., 66(11), 4870-4876.
Hunkeler, D., Aravena, R., Berry-Spark, K. and Cox, E. (2005) “Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis”, Environ. Sci. Technol., 39(16), 5975-5981.
Hunter, W. J. (2005) “Injection of innocuous oils to create reactive barriers for bioremediation: Laboratory studies”, J. Contam. Hydrol., 80(1-2), 31-48.
Hunter, W. J. (2006) “Removing selenate from groundwater with a vegetable oil-based biobarriers”, Cur. Microbiol., 53(3), 244-248.
Hunter, W. J. and Shaner, D. L. (2009) “Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies”, J. Contam. Hydrol., 103(1-2), 29-37.
ITRC (The Interstate Technology & Regulatory Council), (2005) “Permeable Reactive Barriers: Lessons Learned/New Directions”.
Jang, W. Y. and Aral, M. M. (2008) “Effect of biotransformation on multispecies plume evolution and natural attenuation”, Transp. Porous Media., 72(2), 207-226.
Jennings, L. K., Giddings, C. G., Gossett, J. M. and Spain, J. C. (2013) “Bioaugmentation for Aerobic Degradation of CIS-1, 2-Dichloroethene”, In Bioaugmentation for Groundwater Remediation, 199-217.
Johnson, D. R., Lee, P. K., Holmes, V. F., Fortin, A. C. and Alvarez-Cohen, L. (2005) “Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment”, Appl. Environ. Microbiol., 71(11), 7145-7151.
Kao, C. M. and Yang, L. (2000) “Enhanced bioremediation of trichloroethene contaminated by a biobarrier system”, Water Sci. Technol., 42(3-4), 429-434.
Kim, Y., Istok, J. D. and Semprini, L. (2004) “Push‐Pull Tests for Assessing In Situ Aerobic Cometabolism”, Ground Water, 42(3), 329-337.
Kim, Y., Istok, J. D. and Semprini, L. (2006) “Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene”, J. Contam. Hydrol., 82(1-2), 165-181.
Kim, Y., Istok, J. D. and Semprini, L. (2008) “Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene”, Chemosphere, 71(9), 1654-1664.
Klecka, G. M., Carpenter, C. L. and Gonsior, S. J. (1998) “Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater”, J. Contam. Hydrol., 34(1), 139-54.
Kocamemi, B. A. and Çeçen, F. (2009) “Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying biofilm reactor”, Int. Biodeterior. Biodegrad., 63(6), 717-726.
Kocamemi, B. A. and Cecen, F. (2010) “Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems”, Bioresour. Technol., 101(1), 430-433.
Kwon, T. S., Yang, J. S., Baek, K., Lee, J. Y., Yang, J. W. (2006) “Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies”, J. Hazard. Mater., 136(3), 610-617.
Lackey, L. W., Gamble, J. R. and Boles, J. L. (2002) “Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams”, Adv. Environ. Res., 7(1), 97-104.
Lalande, J., Villemur, R., and Deschênes, L. (2013) “A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE”, Microb. Ecol., 1-12.
Le, N. B. and Coleman, N. V. (2011) “Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4”, Biodegradation, 22(6), 1095-1108.
Lee, G. T., Ro, H. M. and Lee, S. M. (2007) “Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils”, Environ. Technol., 28(8), 853-860.
Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson, K. S. and Watwood, M. E. (2008) “Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site”, Environ. Pollut., 153(1), 238-246.
Lee, M.D., Beckwith, W., Borden, R.C., Lieberman, M. T., Haas, P., Becvar, E. D. K., Dobson, K. and Sandlin, G.J. (2005) “Vegetable oil pilots to enhance DNAPL sequestration and reductive dechlorination” Proceedings of the Eighth International In Situ and On-site Bioremediation Symposium, Battelle Press, Baltimore, Maryland, USA.
Lieberman, M. T., Borden, R. C., Zawtocki, C., May, I. and Casey, C. (2005) “Long term TCE source area remediation using short term emulsified oil substrate (EOS®) recirculation”, The 21st Annual International Conference on Soils, Sediments, and Water, University of Massachusetts at Amherst, 17-20.
Liu, S. J., Jiang, B., Huang, G. Q. and Li, X. G. (2006) “Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier”, Water Res., 40(18), 3401-3408.
Loffler, F. E. and Edwards, E. A. (2006) “Harnessing microbial activities for environmental cleanup”, Curr. Opin. Biotechnol., 17, 274-284.
Loffler, F. E., Sun, Q., Li, J. R. and Tiedje, J. M. (2000) “16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species”, Appl. Environ. Microbiol., 66(4), 1369-1374.
Long, C. M. and Borden, R. C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, J. Contam. Hydrol., 87(1-2), 54-72.
Lookman, R., Paulus, D., Marnette, E., Pijls, C., Ryngaert, A., Diels, L. and Volkering, F. (2007) “Ground Water Transfer Initiates Complete Reductive Dechlorination in a PCE‐Contaminated Aquifer”, Ground Water Monit. Rem., 27(3), 65-74.
Loy, A., Schulz, C., L cker, S., Schöpfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A. and Wagner, M. (2005) “16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial Order “Rhodocyclales”, Appl. Environ. Microbiol., 71(3), 1373-1386.
Maes, A., Van Raemdonck, H., Smith, K., Ossieur, W., Lebbe, L. and Verstraete, W. (2006) “Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1, 2-DCA-contaminated groundwater”, Environ. Sci. Technol., 40(17), 5544-5552.
Manoli, G., Chambon, J. C., Bjerg, P. L., Scheutz, C., Binning, P. J. and Broholm, M. M. (2012) “A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till”, J. Contam. Hydrol., 131(1-4), 64-78.
Marzorati, M., Borin, S., Brusetti, L., Daffonchio, D., Marsilli, C., Carpani, G. and de Ferra, F. (2006) “Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater”, Biodegradation, 17(2), 143-158.
Marzorati, M., Balloi, A., de Ferra, F., Corallo, L., Carpani, G., Wittebolle, L. Verstraete, W. and Daffonchio, D. (2010) “Bacterial diversity and reductive dehalogenase redundancy in a 1, 2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer”, Microb. Cell. Fact., 9, 12.
Maymó-Gatell, X., Anguish, T. and Zinder, S. H. (1999) “Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195”, Appl. Environ. Microbiol., 65(7), 3108-3113.
McCarty, P. L., Chu, M. Y. and Kitanidis, P.K. (2007) “Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater”, Eur J Soil Sci., 43,276-282.
Mendoza-Sanchez, I., Autenrieth, R. L., McDonald, T. J., Cunningham, J. A. (2010) “Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments”, Biodegradation, 21(3), 365-377.
Mera, N. and Iwasaki, K. (2007) “Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils”, Appl. Microbiol. Biotechnol., 77(2), 437-445.
Mileva, A., Sapundzhiev, Ts. and Beschkov, V. (2008) “Modeling 1,2-dichloroethane biodegradation by Klebsiella oxytoca va 8391 immobilized on granulated activated carbon”, Bioprocess. Biosyst. Eng., 31(2), 75-85.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y. and Noda, N. (2010) “Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. Using alternately binding probe competitive polymerase chain reaction”, Mol. Cell. Probes., 24(3), 131-137.
Monferrán, M. V., Echenique, J. R. and Wunderlin, D. A. (2005) “Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer”, Chemosphere., 61(1), 98-106.
Moreno, B., Vivas, A., Nogales, R., Macci, C., Masciandaro, G. and Benitez, E. (2009) “Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes”, Environ. Sci. Pollut. Res. Int., 16(3), 253-264.
Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. and Backhaus, H. (1996) “Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature-gradient gel electrophoresis”, J. Bacteriol., 178, 5636-5643.
Palleroni, N. J., Port, A. M., Chang, H. K. and Zylstra, G. J. (2004) “Hydrocarboniphaga effusa gen. nov., sp nov., a novel member of the gamma-Proteobacteria active in alkane and aromatic hydrocarbon degradation”, Int. J. Syst. Evol. Microbiol., 54(4), 1203-1207.
Pant, P. and Pant, S. (2010) “A review: Advances in microbial remediation of trichloroethylene (TCE)”, J. Environ. Sci., 22(1), 116-126.
Pereira, M. A., Pires, O. C., Mota, M. and Alves, M. M. (2005) “Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge”, Biotechnol. Bioeng., 92(1), 15-23.
Pfeiffer, P., Bielefeldt, A. R. Illangasekare, T. and Henry, B. (2005 a) “Physical properties of vegetable oil and chlorinated ethene mixtures”, J. Environ. Eng. -ASCE, 131(10), 1447-1452.
Pfeiffer, P., Bielefeldt, A. R., Illangasekare, T. and Henry B. (2005 b) “Partitioning of dissolved chlorinated ethenes into vegetable oil”, Water Res., 39(18), 4521-4527.
Pfiffner, S. M., Palumbo, A. V., Sayles, G. D. and Gannon, D. (2004) “Microbial population and degradation activity changes monitored during a chlorinated solvent biovent demonstration”, Ground Water Monit. Remediat., 24(3), 102-110.
Portier, R. J. (2013). “Bioremediation and Mitigation”, Environ. Toxicol., 93-119.
Ray S., Chowdhury, N., Lalman, J. A., Seth, R. and Biswas, N. (2008) “Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture”, J. Environ. Eng.-ASCE, 34(2), 110-117.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S. and Löffler, F. E. (2006) “Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains”, Appl. Environ. Microbiol., 72(4), 2765-2774.
Rivett, M. O., Clark, L. (2007) “A quest to locate sites described in the world's first publication on trichloroethene contamination of groundwater”, Q. J. Eng. Geol. Hydrogeol., 40(3), 241-249.
Robinson, C., Barry, D. A., McCarty, P. L., Gerhard, J. I. and Kouznetsova, I. (2009) “pH control for enhanced reductive bioremediation of chlorinated solvent source zones”, Science of the Total Environment, 407, 4560-4573.
Saimmai, A., Rukadee, O., Onlamool, T., Sobhon, V. and Maneerat, S. (2012) “Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18”, World J. Microbiol. Biotechnol., 28(10), 2973-2986.
Sánchez, M. A. and González, B. (2007) “Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134”, Appl. Environ. Microbiol., 73(9), 2769-2776.
Satsuma, K. and Masuda, M. (2012) “Reductive dechlorination of methoxychlor by bacterial species of environmental origin: Evidence for primary biodegradation of methoxychlor in submerged environments”, J. Agric. Food Chem., 60(8), 2018-2023.
Scheutz, C., Durant, N. D., Hansen, M. and Bjerg, P. L. (2011) “Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface - A critical review”, Water Res., 45(9), 2701-2723.
Semprini, L. (2013) “Bioaugmentation for the In situ Aerobic Cometabolism of Chlorinated Solvents”, Bioaugmentation for Groundwater Remediation, 219-255.
Sheffield V.C., Cox D.R., Lerman L.S. and Myers R.M. (1989) “Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes”, Proc. Natl. Acad. Sci. U.S.A., 86(1), 232-236.
Shih, Y. H. (2007) “Sorption of Trichloroethylene in Humic Acid Studied by Experimental Investigations and Molecular Dynamics Simulations”, Soil Science Society of America Journal, 71(6), 1813-1821.
Shukla, A. K., Vishwakarma, P., Upadhyay, S. N., Tripathi, A. K., Prasana, H. C. and Dubey S.K. (2009) “Biodegradation of trichloroethylene (TCE) by methanotrophic community”, Bioresour. Technol., 100(9), 2469-2474.
Sung, Y., Fletcher, K. F., Ritalaliti, K. M., Apkarian, R. P., Ramos-Hernandez, N., Sanford, R. A., Mesbah, N. M. and Loffler, F. E. (2006) “Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium”, Appl. Environ. Microbiol., 72(4), 2775-2782.
Suttinun, O., Luepromchai, E. and Müller, R. (2013) “Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation”, Rev. Environ. Sci. Biotechnol., 1-16.
Tan, Y. and Ji, G. (2010) “Bacterial community structure and dominant bacteria in activated sludge from a 70°C ultrasound-enhanced anaerobic reactor for treating carbazole-containing wastewater”, Bioresour. Technol., 101(1), 174-180.
Tartakovsky, B., Manuel, M. E. and Guiot, S. R. (2005) “Degradation of trichloroethylene in a coupled anaerobic-aerobic bioreactor: Modeling and experiment”, Biochem. Eng. J., 26(1), 72-81.
Tillotson, J. M. (2007) “Laboratory Studies in Chlorinated Solvents and Hydrocarbon Bioremediation”, M.S. Thesis: North Carolina State University.
Tringe, S. G. and Rubin, E. M. (2005) “Metagenomics: DNA sequencing of environmental samples”, Nat. Rev. Genet., 6(11), 805-814.
U.S. Environmental Protection Agency (EPA), (1998) “Technical protocol for evaluating natural attenuation of chlorinated solvents in ground”.
U.S. Environmental Protection Agency (EPA), (1999) “Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet”. EPA/600/F-98/601.
U.S. Environmental Protection Agency (EPA), (2004) “How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers”. EPA 510-R-04-002.
U.S. Environmental Protection Agency (EPA), (2008) “Green Remediation: Incorating Sustainable Environmental Practices into Remediation of Contaminated Sites: U.S. EPA office of Solid Waste and Emergrncy Response”. EPA/542/R-08/002.
Van Raemdonck, H., Maes, A., Ossieur, W., Verthé, K., Vercauteren, T.,Verstraete, W. and Boon, N. (2006) “Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1”, J. Microbiol. Methods., 67(2), 294-303.
Vilchez‐Vargas, R., Junca, H. and Pieper, D. H. (2010) “Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes”, Environ. Microbiol., 12(12), 3089-3104.
Villemur, R., Lanthier, M., Beaudet, R. and Lépine, F. (2006) “The Desulfitobacterium genus”, FEMS Microbiol. Rev., 30(5), 706-733.
Vlaanderen, J., Straif, K., Pukkala, E., Kauppinen, T., Kyyrönen, P., Martinsen, J.I., Kjaerheim K., Tryggvadottir, L., Hansen, J., Sparén, P. and Weiderpass, E. (2013) “Occupational exposure to trichloroethylene and perchloroethylene and the risk of lymphoma, liver, and kidney cancer in four Nordic countries”, Occupational and environmental medicine.
Volkering, F., Pijls, C. (2004) “Factors Determining Reductive Dechlorination of cis-1,2-DCE at PCE Contaminated Sites”, Proceedings of the Fourth International Conferenceon Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). Paper 3D-10. Columbus, OH: Battelle Press.
Watanabe, K., Futamata, H. and Harayama, S. (2002) “Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies”, Antonie Van Leeuwenhoek, 81(1-4), 655-663.
Widdowson, M. A. (2004) “Modeling Natural Attenuation of Chlorinated Ethenes Under Spatially Varying Redox Conditions”, Biodegradation, 15(6), 435-451.
Yang, Y., and McCarty P. L. (2002) “Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution”, Environ Sci Technol., 36(15),3400-3404.
Yap, C. L., Gan, S. and Ng, H. K. (2010) “Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils”, J. Hazard. Mater., 177(1), 28-41.
Zaa, C. L. Y., McLean, J. E., Ryan Dupont, R., Norton, J. M. and Sorensen, D. L. (2011) “Dechlorinating and Iron Reducing Bacteria Distribution in a TCE-Contaminated Aquifer”, Ground Water Monit. R., 30(1), 46-57.
Zawtocki, C. (2005) “Naturally cleaner groundwater-soybeanbased emulsion is proving to decontaminate groundwater more quickly than traditional remediation methods”, The Military Engineer, 97, 55-56.
行政院環保署,(2008) “土壤污染管制標準”,環署土字第0970031435 號令。
行政院環保署,(2013),土壤及地下水污染整治網(http://sgw.epa.gov.tw/public/index.asp)
李冠勳,(2011),”三氯乙烯污染場址之微生物整治與監測”,國立中山大學生物科學系研究所,碩士論文。
梁書豪,(2012),”以現地化學及生物整治牆處理受有機溶劑污染之地下水”,國立中山大學環境工程研究所,博士論文。
梁詠祥,(2012),” 煉鋼脫硫渣之特性分析及再利用潛勢評估”,國立中山大學環境工程研究所,碩士論文。
陳家洵,(2008),”地下水之染問題之探討”,Newsletter 應倫通訊第三期公害專題。
陳逸明,(2010),”以乳化型基質處理受三氯乙烯污染之地下水”,國立中山大學 環境工程研究所,碩士論文。
勞工安全衛生研究所,(2013),職場三氯乙烯容許標準建議值文件。
黃慧貞,(2001),”土壤有機質對土壤 水系統中低濃度非離子有機污染物吸附行為之研究”,國立中央大學環境工程研究所,碩士論文。
劉振宇,(2002),”氧化/還原下之現地生物整治”,第五期台灣土壤及地下水環境保護協會簡訊,第3-5頁。
劉瑋晨,(2009),”以基因分析法評估三氯乙烯污染地下水之微生物整治成效”,國立中山大學環境工程研究所,碩士論文。
劉嘉庭,(2011),”利用乳化型釋碳基質提昇三氯乙烯污染地下水之生物降解效率:現地模場試驗”,國立中山大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.172.115
論文開放下載的時間是 校外不公開

Your IP address is 3.144.172.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code