Responsive image
博碩士論文 etd-0604113-135631 詳細資訊
Title page for etd-0604113-135631
論文名稱
Title
台灣電力調度碳排放總量管制之可行性評估
Feasibility Assessment of Carbon Emission Cap for Power Dispatch in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-11
繳交日期
Date of Submission
2013-07-08
關鍵字
Keywords
改良型粒子群演算法、溫室氣體、經濟調度、獨立發電業、碳排放、碳排放管制、最佳化電力潮流
CO2 emission, Greenhouse Gas, Economic Dispatch, CO2 Cap, Independent Power Producer, Optimal Power Flow, Modified Particle Swarm Optimization
統計
Statistics
本論文已被瀏覽 5679 次,被下載 613
The thesis/dissertation has been browsed 5679 times, has been downloaded 613 times.
中文摘要
近年來由於化石燃料價格逐年攀升,使得以往價格便宜的火力發電優勢越來越低,加上二氧化碳目前已被公認為導致全球氣候暖化的主因,隨著經濟發展以及世界人口數目逐年上升的情況下,再生能源發電逐漸成為節能減碳的主流方法之一。為避免溫室氣體排放所造成的全球暖化效應,碳交易市場也隨之興起,但過往的碳交易模式,對於收購碳權方所在的環境及空氣組成並無助益,加上台灣目前並無加入任何國際碳交易市場,對於台灣而言,根本上還是應該從電力系統的發電規劃以及電力調度的燃料配比轉換,與增加再生能源發電容量等方式才能逐漸改善日益嚴重的空污以及暖化問題。
本文以改良式具時變加速度係數粒子群最佳化演算法(MPSO-TVAC)用以求解台灣電力公司的電力系統,在考慮短期(民國101年)、中期(民國106年)以及長期(民國111年)等不同的負載狀態並加入陸域與離岸式風力機組併網,此外,本文也將獨立發電業者(IPP)加入電力系統評估。評估電力系統的碳排放總量管制下之最佳電力潮流策略,如果無法經由電力調度達到該年度的總量限制,則評估該年系統需增加再生能源的裝置容量以及適當的再生能源收購價格使得該年度的碳排放能符合排放限制額度。
Abstract
In recent years, the advantages of conventional thermal power diminish due to the rising prices of fossil fuels, when carbon dioxide is recognized as the main cause of global warming. With the growth of economy and the world's population, renewable energy has become the mainstream of carbon reduction methods. To avoid the global warming, there are also carbon trading markets in some countries, but the air pollution of the buyers remains the same. Taiwan can't join any international carbon trading market, where the reduction of greenhouse gas emission of the power system can be done by the change of fuel ratio as an option.
This thesis uses modified time-varying acceleration coefficient particle swarm optimization (MPSO-TVAC) method to solve the optimal power flow with CO2 cap, and considers the short-term, medium and long-term loading conditions. This thesis will also consider independent power producer (IPP), land and offshore wind turbines for evaluation. If the solution can't converge, this method will also evaluate the shorted capacity and the price of getting more renewable energy.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖次 vi
表次 viii
第一章 緒論 1
1.1研究背景與動機 3
1.2 文獻回顧 4
1.3 本文貢獻與章節概要 5
第二章 應用資料探勘於電力系統碳排放與問題描述 7
2.1發電機組碳排放數學模型 7
2.2資料探勘(Data Mining) 9
2-2.1 資料探勘的功能 10
2-2.2 資料探勘的方法 10
2-3 資料探勘應用流程 11
2-3.1 變數值域正規化 13
2-3.2 資料排序及選取 13
2.4台灣電力系統碳排放模型建構之研究方法 14
2.2.1 迴歸建模法描述 14
2.5台灣負載歷時曲線建立與正規化 17
2.6電力系統長期負載規劃的成本函數模型 19
2.7問題描述 21
2.3.1目標函數 22
2.3.2電力系統負載平衡等式 24
2.3.3不等式限制式 24
第三章 風力發電總量模型之建模 26
3.1一般常見用於風力發電之機率及參數估計模型 26
3.2相似預測法描述 29
第四章 電力潮流與最佳化演算法 32
4.1等效電流注入法求解電力潮流 32
4.1.1負載匯流排模型推導 33
4.1.2電壓控制匯流排模型推導 36
4.2最佳化演算法 41
4.2.1 粒子群最佳化演算法 41
4.2.2傳統粒子群演算法 42
4.2.2 具時變加速度係數粒子群最佳化演算法 45
4.2.3 改良式具時變加速度係數粒子群最佳化演算法(MPSO-TVAC) 47
第五章 系統測試與案例分析 49
5.1台電345kV輸電系統模型 49
5.2應用資料探勘於系統資料建模結果 52
5.2.1應用資料探勘結合台電資料建構發電機組碳排放模型 52
5.2.2應用資料探勘於風力發電量/裝置容量評估 54
5.3平衡碳排放量的成本最小化 56
5.4碳排放量最小化 60
5.6加入碳排放總量管制之成本最小化 63
5.5未能達到碳排放總量管制之再生能源增量評估 64
第六章 結論與未來研究方向 66
6.1 結論 66
6.2未來研究方向 67
參考文獻 68
附錄A 台灣電力系統風力發電總量統計 72
附錄B 各案例系統潮流解 87
參考文獻 References
[1] 我國燃料燃燒二氧化碳排放統計與分析,經濟部能源局,民國101年10月。
[2] 吳孟哲,“應用SSSC於電力市場之碳交易評估”,碩士論文,國立中山大學電機系研究所,民國一百年六月。
[3] J. Yuryevich, and K. P. Wong, “Evolutionary Programming Based Optimal Power Flow Algorithm, ”IEEE Transactions on Power Systems, Vol. 14, pp.1245-1250, Nov. 1999.
[4] A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, “Optimal Power Flow by Enhanced Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 14, Iss. 2, pp. 229-236, May 2002.
[5] H. J. Chuang, “Optimization of inverter placement for mass rapid transit systems by immune algorithm,” IEE Proceedings-Electric Power Applications, Vol. 152, Iss. 1, pp. 61-71, Jan. 2005.
[6] M. A. Abido, “Optimal Power Flow Using Particle Swarm Optimization,”Electrical Power and Energy Systems, Vol. 24, pp. 563-571, 2002.
[7] R.C. Eberhart, and J. Kennedy, (1995). A new optimizer using particle swarm theory. Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 39-43.
[8] J. Kennedy, and R.C. Eberhart, (1995). Particle swarm optimization. Proc. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, 1942-1948.
[9] R. C. Eberhart, and J. Kennedy, (1995). A new optimizer using particle swarm theory. Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 39-43.
[10] 全球暖化背後的科學證據(2007),科學人雜誌。
[11] IPCC(2006),Guidelines for National Greenhouse Gas Inventories Volume2 : Energy
[12] 我國常用排放係數,中華民國經濟部能源局。
[13] U. Fayyad, Gregory, Piatetsky-Shapiro and P. Smyth, “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Communications of the ACM, vol.39, no.11, pp. 27-34. Nov. 1996
[14] UniMiner探宇科技股份有限公司:http://www.uniminer.com/center01.htm,2010年6月。
[15] 環境影響說明書第167次會議決議事項,大林電廠更新改建計畫,環境影響評估審查委員會。
[16] S. A. Malcolm, and S. A. Zenios (1994), Robust optimization for power systems capacity expansion under uncertainty, The Journal of the Operational Research Society, Vol. 45, No. 9, 1040-1049.
[17] 100年長期負載預測與電源開發規劃摘要報告,中華民國經濟部能源局,101年4月。
[18] J. G. Slootweg, S.W. H. de Hann, H. Polinder, W. L. Kling, “General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations”, IEEE Trans. Power Systems, Vol. 18, No. 1, pp. 144-151, Feb. 2003.
[19] “SimPowerSystems for Use with Simulink,” MATLAB, Aug. 2006.
[20] A. N. Celik, “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the south ernregion of Turkey,” Renewable Energy, pp.593-604, Jul. 2003.
[21] 凌拯民、陳卿翊、蔡宗明,“台南/澎湖地區年風速特性之機率分佈參數估計”,南台科技大學學報,第三十四卷第一期,民國九十八年七月。
[22] Y. F. Isaac, Lun, and C. L. Joseph, “A study of Weibull Parameters Using Long-term Wind Observations,” Renewable Energy, pp. 145-153, 2000.
[23] D. Weisser and T. J, Foxon, “Implication of Seasonal and Diurnal Variations of Wind Velocity for Power Output Estimation of a Turbine: A Case Study of Grenada,” International Journal of Energy Research, pp. 1165-1179, 2003.
[24] 桑慧敏,機率與推論統計原理,國立清華大學。
[25] J. Carpentier, “Contribution a. ‘1’etude du dispatching economique,” Bull. Soc. Francaise Elect., Vol. 3, pp. 431-447, 1962.
[26] R. W. Barcelo, W. W. Lemmon and H. R. Koen, “Optimization of the real-time dispatch with constraints for secure operation of bulk power system,” IEEE Transactions on Power Apparatus and System, Vol. 96, Iss. 3, part 1, pp.741-757, May. 1977.
[27] H. Saadat, “Power System Analysis,” McGraw-Hill, Inc., 2/e, 1996.
[28] W. M. Lin and J. H. Teng, “Distribution Fast-Decoupled State Estimation by Measurement Pairing,” IEE Proceedings, Generation, Transmission, and Distribution, Vol. 143, no. 1, pp. 43-48, Jan.1996.
[29] W. M. Lin, C. H. Huang and T. S. Zhan, “A Hybrid Current-Power Optimal Power Flow Technique,” IEEE Transactions on Power Systems, Vol. 23, no. 1, pp. 177-185, Feb. 2008.
[30] W. M. Lin, Y. S. Su, H. C. Chin and J. H. Teng, “Three-Phase Unbalanced Distribution Power Flow Solutions with Minimum Data Preparation,” IEEE Transactions on Power Systems, Vol. 143, pp. 1179-1183, Aug. 1999.
[31] W. M. Linand S. J. Chen, “Bid-Based Dynamic Economic Dispatch with An Efficient Interior Point Method,” International Journal of EPES, Vol. 24, pp. 51-57, Apr. 2002.
[32] 林惠民,“自由化下電力和備轉容量之最佳調度以及節點現貨價格計算之研究”,國科會計畫成果報告,NSC89-TPC-7-110-006,2000。
[33] 詹東昇,“應用以電流為基礎的網路模型於輸電系統負載潮流之研究”,國立中山大學電機研究所碩士論文,民國八十八年六月。
[34] M. Dorigo V. Maniezzo, and A. Colorni, (1996). The ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems and Cybernetics-Part B, Vol 26-1, 29-41.
[35] R.G. Reynolds, and W. Sverdlik, (1994), Problem solving using cultural algorithms EVolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, Vol. 2, 645-650.
[36] J. Kennedy, and R. C. Eberhart, (2001). Swarm Intelligence. Morgan Kaufmann Press.
[37] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” Proc. IEEE Evol. Comput, Vol. 3, pp. 69-73, 1999.
[38] F. S. Cheng, J. S. Tu, C. H. Lv and M. T. Tsay, “A Generalized Regression Neural Network for Solving Economic Dispatch Problem,” ICEE for the 21st Century with focus on Sustainability and Reliability, pp. 113, Jul. 2007.
[39] A. Ratnaweera, S. k. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240-255, Jun. 2004.
[40] K. T. Chaturvedi, M. Pandit and L. Srivastava, “Self-Organizing Hierarchical 102 Particle Swarm Optimization for Nonconvex Economic Dispatch,” IEEE Transactions on Power System, Vol. 23, Iss. 3, pp. 1079-1087, Aug. 2008
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code