Responsive image
博碩士論文 etd-0604114-105711 詳細資訊
Title page for etd-0604114-105711
論文名稱
Title
辣椒素誘導之肺化學反射於慢性頸部脊髓損傷後的改變
Alteration of capsaicin-induced pulmonary chemoreflex following chronic cervical spinal cord injury
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
肺C 纖維、呼吸、頸部脊髓損傷、辣椒素包迷走神經處理、肺化學反射
respiration, pulmonary chemoreflex, lung C-fibers, cervical spinal cord injury, perivagal capsaicin treatment
統計
Statistics
本論文已被瀏覽 5695 次,被下載 475
The thesis/dissertation has been browsed 5695 times, has been downloaded 475 times.
中文摘要
高位頸部脊髓損傷常會造成呼吸型態的改變,也可能會改變肺迷走傳入神經
的活性。肺C 纖維是肺部主要感覺化學刺激的傳入神經纖維。而辣椒素能刺激肺
C 纖維產生肺化學反射,例如:呼吸暫停、血壓降低與心跳變慢。先前研究指出在
切除單側頸部第二節脊髓後一天,辣椒素無法誘發大鼠產生肺化學反射。本論文
要探討在脊髓損傷後的慢性期,以辣椒素刺激肺C 纖維產生的肺化學反射是否恢
復與肺C 纖維的背景活性對於呼吸型態的影響。成年雄性Sprague-Dawley 大鼠會
接受切除單側頸部第二節脊髓或偽手術(以偽手術大鼠為控制組),所有大鼠皆在麻
醉後自發性呼吸狀態下測量呼吸、心跳及血壓,手術後兩週或八週會以頸靜脈注
射辣椒素誘發肺化學反射。研究結果顯示手術後兩週與八週大鼠皆能產生肺化學
反射,不過完全切除單側頸部第二節脊髓的損傷組大鼠的呼吸暫停都會比控制組
弱。將完全與不完全切除單側頸部第二節脊髓手術後八週大鼠的呼吸型態與肺化
學反射以線性回歸統計發現損傷程度越輕,呼吸型態與肺化學反射會恢復得越接
近控制組。以辣椒素包住迷走神經處理阻斷肺C 纖維來探討肺C 纖維背景活性的
功能。結果顯示以辣椒素包住迷走神經能大幅度減弱辣椒素誘發的肺化學反射,
但是阻斷肺C 纖維並不影響完全切除單側頸部第二節脊髓或偽手術後八週大鼠的
呼吸型態。此論文的結論是慢性頸部脊髓損傷會減弱肺化學反射的呼吸反應,而
且會隨著損傷程度的減輕而恢復。不過慢性頸部脊髓損傷後呼吸型態改變並非肺C
纖維的背景活性所主導。肺化學反射在頸部脊髓損傷慢性期比起急性期有恢復顯
示病患在慢性期可能因為肺防禦性反射的恢復而減少肺部受到刺激而導致發炎的
可能性。
Abstract
High cervical spinal cord injury usually changes the respiratory pattern, which may influence the pulmonary vagal afferent activity. Previous study revealed that pulmonary chemoreflex cannot be evoked following acute C2 hemisection (C2Hx). The first aim of this study is to examine whether capsaicin-induced chemoreflex can recover following chronic C2Hx. Adult male Sprague-Dawley rats received sham operation (i.e., control group) or C2Hx. Pulmonary chemoreflex were evoked by intra-jugular administration of capsaicin in 2 or 8 weeks post-surgery rats. Results showed that pulmonary chemoreflex can be evoked; however, the apneic period in complete C2Hx group was weaker than control group. Linear regression analysis of complete and incomplete C2Hx rats indicated that respiratory pattern and pulmonary chemoreflex recovered as the severity of spinal cord injury decreased. The second aim of the present study was to investigate whether background activity of lung C-fibers can influence the breathing pattern during the chronic injury phase by blocking lung C-fiber conduction using perivagal capsaicin treatment. Our data showed pulmonary chemoreflex was attenuated by perivagal capsaicin treatment; however the respiratory pattern was not changed after perivagal capsaicin treatment in control and complete C2Hx rats. We conclude that capsaicin-induced apnea was attenuated following chronic C2Hx; moreover, it recovers as the severity of spinal cord injury decrease. Nevertheless, respiratory pattern remains unchanged after blocking lung C-fibers. Recovery of pulmonary chemoreflex reveals that the occurrence of inflammation may decrease because the defensive reflex altered in the chronic phase.
目次 Table of Contents
論文審定書 .................................................................................................... i
中文摘要 ..................................................................................................... ii
英文摘要 ...................................................................................................... iii
目錄 .............................................................................................................. iv
圖次 ............................................................................................................. vii
表次 ............................................................................................................ viii
第一章 前言 ................................................................................................. 1
第一節 頸部脊髓損傷對呼吸的影響 ....................................................... 1
第二節 肺化學反射 ................................................................................... 4
第三節 目的 .......................................................................................... 7
第二章 材料方法 ......................................................................................... 9
第一節 實驗動物 ....................................................................................... 9
第二節 頸部第二節脊髓切除手術 ........................................................... 9
第三節 呼吸氣流與血壓測量 ................................................................... 9
第四節 辣椒素配製 ............................................................................ 10
第五節 以辣椒素包住迷走神經 ............................................................. 10
第六節 組織學 ......................................................................................... 10
第七節 實驗計畫表 ................................................................................. 11
第八節 數據分析與統計 ......................................................................... 12
第三章 結果 ............................................................................................... 14
第一節 肺化學反射於頸部脊髓損傷後的表現 ................................ 14
第二節 頸部脊髓損傷程度對於肺化學反射表現之影響 ................ 15
第三節 肺C 纖維背景活性對於頸部脊髓損傷動物呼吸型態的影響
.............................................................................................................. 16
第四章 討論 ............................................................................................... 18
第一節 方法討論 ..................................................................................... 18
第二節 慢性頸部脊髓損傷後肺化學反射的改變 ............................ 19
第三節 頸部脊髓損傷程度對呼吸型態與肺化學反射恢復的影響 22
第四節 迷走C 纖維背景活性對於慢性頸部脊髓損傷後呼吸型態的
影響 ...................................................................................................... 23
第五節 結論 ........................................................................................ 25
第五章 圖與說明 ....................................................................................... 26
第六章 表與說明 ....................................................................................... 43
第七章 參考文獻 ....................................................................................... 44
第八章 附錄 ............................................................................................... 53
第一節 補充數據 ..................................................................................... 53
辣椒素溶劑對於肺化學反射之影響 .............................................................. 53
辣椒素誘發肺化學反射的主要途徑 .............................................................. 58
肺C 纖維背景活性對於頸部脊髓損傷後兩週動物呼吸型態的影響 ...... 67
以辣椒素溶劑包住迷走神經對於肺C 纖維的影響 .............................. 73
以辣椒素包住迷走神經對於肺脹大反射的影響 .................................. 81
第二節 發表 ............................................................................................. 91
參考文獻 References
1. Alilain WJ, and Goshgarian HG. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury. Exp Neurol 212: 348-357, 2008.
2. Basser PJ, McMahon TA, and Griffith P. The mechanism of mucus clearance in cough. J Biomech Eng 111: 288-297, 1989.
3. Ben-Dov I, Zlobinski R, Segel MJ, Gaides M, Shulimzon T, and Zeilig G. Ventilatory response to hypercapnia in C(5-8) chronic tetraplegia: the effect of posture. Arch Phys Med Rehabil 90: 1414-1417, 2009.
4. Berlowitz DJ, and O'Donoghue FJ. Editorial note on: Respiratory CO2 response in acute cervical spinal cord injury (CO2 response in spinal cord injury). Spinal Cord 52: 174, 2014.
5. Bolser DC, Jefferson SC, Rose MJ, Tester NJ, Reier PJ, Fuller DD, Davenport PW, and Howland DR. Recovery of airway protective behaviors after spinal cord injury. Respir Physiol Neurobiol 169: 150-156, 2009.
6. Bolser DC, Reier PJ, and Davenport PW. Responses of the anterolateral abdominal muscles during cough and expiratory threshold loading in the cat. J Appl Physiol (1985) 88: 1207-1214, 2000.
7. Browning KN, Babic T, Holmes GM, Swartz E, and Travagli RA. A critical re-evaluation of the specificity of action of perivagal capsaicin. J Physiol 591: 1563-1580, 2013.
8. Carr MJ, and Undem BJ. Bronchopulmonary afferent nerves. Respirology 8: 291-301, 2003.
9. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, and Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Natur 389: 816-824, 1997.
10. Chen CY, Bonham AC, Plopper CG, and Joad JP. Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates. J Appl Physiol (1985) 94: 819-827, 2003.
11. Chuaychoo B, Lee MG, Kollarik M, and Undem BJ. Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther 18: 269-276, 2005.
12. Coleridge JC, and Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99: 1-110, 1984.
13. Davies A, Dixon M, Callanan D, Huszczuk A, Widdicombe JG, and Wise JC. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide. Respir Physiol 34: 83-101, 1978.
14. Davies A, and Roumy M. The effect of transient stimulation of lung irritant receptors on the pattern of breathing in rabbits. J Physiol 324: 389-401, 1982.
15. Delpierre S, Grimaud C, Jammes Y, and Mei N. Changes in activity of vagal bronchopulmonary C fibres by chemical and physical stimuli in the cat. J Physiol 316: 61-74, 1981.
16. Du XJ, Cox HS, Dart AM, and Esler MD. Depression of efferent parasympathetic control of heart rate in rats with myocardial infarction: effect of losartan. J Cardiovasc Pharmacol 31: 937-944, 1998.
17. Dunham KA, Siriphorn A, Chompoopong S, and Floyd CL. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats. J Neurotrauma 27: 2091-2106, 2010.
18. Ellenberger HH, and Feldman JL. Monosynaptic transmission of respiratory drive to phrenic motoneurons from brainstem bulbospinal neurons in rats. J Comp Neurol 269: 47-57, 1988.
19. Estenne M, and De Troyer A. Cough in tetraplegic subjects: an active process. Ann Intern Med 112: 22-28, 1990.
20. Fastier FN, Mc DM, and Waal H. Pharmacological properties of phenyldiguanide and other amidine derivatives in relation to those of 5-hydroxytryptamine. Br J Pharmacol Chemother 14: 527-535, 1959.
21. Frankel HL, Coll JR, Charlifue SW, Whiteneck GG, Gardner BP, Jamous MA, Krishnan KR, Nuseibeh I, Savic G, and Sett P. Long-term survival in spinal cord injury: a fifty year investigation. Spinal Cord 36: 266-274, 1998.
22. Fuller DD, Doperalski NJ, Dougherty BJ, Sandhu MS, Bolser DC, and Reier PJ. Modest spontaneous recovery of ventilation following chronic high cervical hemisection in rats. Exp Neurol 211: 97-106, 2008.
23. Fuller DD, Johnson SM, Olson EB, Jr., and Mitchell GS. Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury. J Neurosci 23: 2993-3000, 2003.
24. Golder FJ, Fuller DD, Davenport PW, Johnson RD, Reier PJ, and Bolser DC. Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output. J Neurosci 23: 2494-2501, 2003.
25. Golder FJ, Fuller DD, Lovett-Barr MR, Vinit S, Resnick DK, and Mitchell GS. Breathing patterns after mid-cervical spinal contusion in rats. Exp Neurol 231: 97-103, 2011.
26. Golder FJ, Reier PJ, Davenport PW, and Bolser DC. Cervical spinal cord injury alters the pattern of breathing in anesthetized rats. J Appl Physiol (1985) 91: 2451-2458, 2001.
27. Goshgarian HG. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir Physiol Neurobiol 169: 85-93, 2009.
28. Goshgarian HG. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol (1985) 94: 795-810, 2003.
29. Goshgarian HG, Moran MF, and Prcevski P. Effect of cervical spinal cord hemisection and hemidiaphragm paralysis on arterial blood gases, pH, and respiratory rate in the adult rat. Exp Neurol 93: 440-445, 1986.
30. Green JF, Schmidt ND, Schultz HD, Roberts AM, Coleridge HM, and Coleridge JC. Pulmonary C-fibers evoke both apnea and tachypnea of pulmonary chemoreflex. Journal of applied physiology: respiratory, environmental and exercise physiology 57: 562-567, 1984.
31. Grossman SD, Wolfe BB, Yasuda RP, and Wrathall JR. Changes in NMDA receptor subunit expression in response to contusive spinal cord injury. J Neurochem 75: 174-184, 2000.
32. Ho CY, Gu Q, Lin YS, and Lee LY. Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127: 113-124, 2001.
33. Hong JL, Kwong K, and Lee LY. Stimulation of pulmonary C fibres by lactic acid in rats: contributions of H+ and lactate ions. J Physiol 500 ( Pt 2): 319-329, 1997.
34. Horn JP, and McAfee DA. Modulation of cyclic nucleotide levels in peripheral nerve without effect on resting or compound action potentials. J Physiol 269: 753-766, 1977.
35. Huang Y, and Goshgarian HG. Postnatal conversion of cross phrenic activity from an active to latent state. Exp Neurol 219: 66-73, 2009.
36. Jammes Y, Fornaris E, Mei N, and Barrat E. Afferent and efferent components of the bronchial vagal branches in cats. J Auton Nerv Syst 5: 165-176, 1982.
37. Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, and Roder J. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17: 945-956, 1996.
38. Joad JP, Munch PA, Bric JM, Evans SJ, Pinkerton KE, Chen CY, and Bonham AC. Passive smoke effects on cough and airways in young guinea pigs: role of brainstem substance P. Am J Respir Crit Care Med 169: 499-504, 2004.
39. Jones JF, Wang Y, and Jordan D. Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats and rabbits. J Physiol 489 ( Pt 1): 203-214, 1995.
40. Kajana S, and Goshgarian HG. Spinal activation of the cAMP-PKA pathway induces respiratory motor recovery following high cervical spinal cord injury. Brain Res 1232: 206-213, 2008.
41. Kalia M, and Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol 193: 435-465, 1980.
42. Kostreva DR, Hopp FA, Zuperku EJ, Igler FO, Coon RL, and Kampine JP. Respiratory inhibition with sympathetic afferent stimulation in the canine and primate. Journal of applied physiology: respiratory, environmental and exercise physiology 44: 718-724, 1978.
43. Kou YR, Wang CY, and Lai CJ. Role of vagal afferents in the acute ventilatory responses to inhaled wood smoke in rats. J Appl Physiol (1985) 78: 2070-2078, 1995.
44. Lee BP, Morton RF, and Lee LY. Acute effects of acrolein on breathing: role of vagal bronchopulmonary afferents. J Appl Physiol (1985) 72: 1050-1056, 1992.
45. Lee KZ, Lu IJ, Ku LC, Lin JT, and Hwang JC. Response of respiratory-related hypoglossal nerve activity to capsaicin-induced pulmonary C-fiber activation in rats. J Biomed Sci 10: 706-717, 2003.
46. Lee KZ, Sandhu MS, Dougherty BJ, Reier PJ, and Fuller DD. Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats. J Appl Physiol (1985) 109: 377-387, 2010.
47. Lee LY, Gerhardstein DC, Wang AL, and Burki NK. Nicotine is responsible for airway irritation evoked by cigarette smoke inhalation in men. J Appl Physiol (1985) 75: 1955-1961, 1993.
48. Lee LY, and Morton RF. Pulmonary chemoreflex sensitivity is enhanced by prostaglandin E2 in anesthetized rats. J Appl Physiol (1985) 79: 1679-1686, 1995.
49. Lee LY, Morton RF, and Lundberg JM. Pulmonary chemoreflexes elicited by intravenous injection of lactic acid in anesthetized rats. J Appl Physiol (1985) 81: 2349-2357, 1996.
50. Lin YS, Ho CY, Chang SY, and Kou YR. Laryngeal C-fiber afferents are not involved in the apneic response to laryngeal wood smoke in anesthetized rats. Life Sci 66: 1695-1704, 2000.
51. Lin YS, and Lee LY. Stimulation of pulmonary vagal C-fibres by anandamide in anaesthetized rats: role of vanilloid type 1 receptors. J Physiol 539: 947-955, 2002.
52. Lipski J, Zhang X, Kruszewska B, and Kanjhan R. Morphological study of long axonal projections of ventral medullary inspiratory neurons in the rat. Brain Res 640: 171-184, 1994.
53. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, and Wang YT. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Sci 304: 1021-1024, 2004.
54. Loveridge B, Sanii R, and Dubo HI. Breathing pattern adjustments during the first year following cervical spinal cord injury. Paraplegia 30: 479-488, 1992.
55. Mansoor JK, Hyde DM, and Schelegle ES. Contribution of vagal afferents to breathing pattern in rats with lung fibrosis. Respir Physiol 108: 45-61, 1997.
56. Nantwi KD, Basura GJ, and Goshgarian HG. Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats. Exp Neurol 182: 232-239, 2003.
57. Nikulina E, Tidwell JL, Dai HN, Bregman BS, and Filbin MT. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 101: 8786-8790, 2004.
58. Onimaru H, and Homma I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478-1486, 2003.
59. Oo T, Watt JW, Soni BM, and Sett PK. Delayed diaphragm recovery in 12 patients after high cervical spinal cord injury. A retrospective review of the diaphragm status of 107 patients ventilated after acute spinal cord injury. Spinal Cord 37: 117-122, 1999.
60. Paintal BA. Impulses in vagal afferent fibres from specific pulmonary deflation receptors: the response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q J Exp Physiol Cogn Med Sci 40: 89-111, 1955.
61. Palecek F, Sant'Ambrogio G, Sant'Ambrogio FB, and Mathew OP. Reflex responses to capsaicin: intravenous, aerosol, and intratracheal administration. J Appl Physiol (1985) 67: 1428-1437, 1989.
62. Pelleg A, and Hurt CM. Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals. J Physiol 490 ( Pt 1): 265-275, 1996.
63. Pisarri TE, Jonzon A, Coleridge JC, and Coleridge HM. Rapidly adapting receptors monitor lung compliance in spontaneously breathing dogs. J Appl Physiol (1985) 68: 1997-2005, 1990.
64. Porter WT. The Path of the Respiratory Impulse from the Bulb to the Phrenic Nuclei. J Physiol 17: 455-485, 1895.
65. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, and Filbin MT. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34: 895-903, 2002.
66. Ravi K, and Singh M. Role of vagal lung C-fibres in the cardiorespiratory effects of capsaicin in monkeys. Respir Physiol 106: 137-151, 1996.
67. Reynolds LB, Jr. Characteristics of an inspiration-augmenting reflex in anesthetized cats. J Appl Physiol 17: 683-688, 1962.
68. Robinson D, and Ellenberger H. Distribution of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptor subunits on respiratory motor and premotor neurons in the rat. J Comp Neurol 389: 94-116, 1997.
69. Ruan T, Ho CY, and Kou YR. Afferent vagal pathways mediating respiratory reflexes evoked by ROS in the lungs of anesthetized rats. J Appl Physiol (1985) 94: 1987-1998, 2003.
70. Sant'Ambrogio G, Tsubone H, and Sant'Ambrogio FB. Sensory information from the upper airway: role in the control of breathing. Respir Physiol 102: 1-16, 1995.
71. Schelegle ES, Alfaro MF, Putney L, Stovall M, Tyler N, and Hyde DM. Effect of C-fiber-mediated, ozone-induced rapid shallow breathing on airway epithelial injury in rats. J Appl Physiol (1985) 91: 1611-1618, 2001.
72. Schelegle ES, Mansoor JK, and Green JF. Influence of background vagal C-fiber activity on eupneic breathing pattern in anesthetized dogs. J Appl Physiol (1985) 79: 600-606, 1995.
73. Schultz HD. Cardiac vagal chemosensory afferents. Function in pathophysiological states. Ann N Y Acad Sci 940: 59-73, 2001.
74. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, and Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Sci 254: 726-729, 1991.
75. Szallasi A, Cortright DN, Blum CA, and Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6: 357-372, 2007.
76. Tsai IL, and Lee KZ. Attenuation of the pulmonary chemoreflex following acute cervical spinal cord injury. J Appl Physiol (1985) 116: 757-766, 2014.
77. Vinit S, Stamegna JC, Boulenguez P, Gauthier P, and Kastner A. Restorative respiratory pathways after partial cervical spinal cord injury: role of ipsilateral phrenic afferents. Eur J Neurosci 25: 3551-3560, 2007.
78. Vizek M, Frydrychova M, Houstek S, and Palecek F. Effect of vagal cooling on lung functional residual capacity in rats with pneumonia. Bull Eur Physiopathol Respir 19: 23-26, 1983.
79. Widdicombe J. Airway receptors. Respir Physiol 125: 3-15, 2001.
80. Widdicombe J. Functional morphology and physiology of pulmonary rapidly adapting receptors (RARs). Anat Rec A Discov Mol Cell Evol Biol 270: 2-10, 2003.
81. Widdicombe JG. Receptors in the trachea and bronchi of the cat. J Physiol 123: 71-104, 1954.
82. Zhang G, Lin RL, Wiggers M, Snow DM, and Lee LY. Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol 586: 5771-5786, 2008.
83. Zimmer MB, and Goshgarian HG. Spinal cord injury in neonates alters respiratory motor output via supraspinal mechanisms. Exp Neurol 206: 137-145, 2007.
84. Zimmer MB, and Goshgarian HG. Spontaneous crossed phrenic activity in the neonatal respiratory network. Exp Neurol 194: 530-540, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code