Responsive image
博碩士論文 etd-0604115-175715 詳細資訊
Title page for etd-0604115-175715
論文名稱
Title
以初貝安弘的方法探討籠目晶格與星型晶格中的整數量子霍爾效應
Investigating Integer Quantum Hall effect in Kagomé and star lattice by Yasuhiro Hatsugai’s method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
42
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-01
繳交日期
Date of Submission
2015-07-04
關鍵字
Keywords
量子霍爾效應、籠目晶格、陳數、拓樸、格點場論、星型晶格
lattice field theory, Decorated honeycomb lattice, Topology, Star lattice, Kagomé lattice, Chern number, Quantum Hall effect
統計
Statistics
本論文已被瀏覽 5710 次,被下載 443
The thesis/dissertation has been browsed 5710 times, has been downloaded 443 times.
中文摘要
自從Andre Geim和Konstantin Novoselov成功作出單層石墨烯上後,科學家們對於這種特殊的二維結構便充滿了各種興趣,其異常量子霍爾效應更為其多種有趣特性之一,因為其霍爾平台並非出現在整數而只出現在奇數上。但在對於晶格之中的霍爾電導率仍有著許多問題存在於計算特殊晶格與減少計算時間之上,這也成為了我研究的動機。若能以簡單的方式找到晶格之中的霍爾電導率,我們也能推廣至不同晶格中探討其量子霍爾效應特性。而在初貝安弘發表了數篇利用拓樸的方式去探討量子霍爾效應的論文後,我決定嘗試以他的方式去計算各種晶格的霍爾電導率。而在籠目晶格與星型晶格之中,我發現了類似石墨烯的類迪拉克的霍爾電導率,其中星型晶格顯示出更為複雜的類電子-電洞性質區域結構。希望此星型晶格的量子霍爾特性能在未來被實驗所證實。
Abstract
Since the single layer graphene are observed by Andre Geim and Konstantin Novoselov, the quantum phenomena emerging from graphene as attracted many physicists’s attentions in the two dimensional lattice structure. One of the important quantum phenomena is the unconventional quantum Hall effect which the Hall plateau (Chern number pattern) does not show successive integers but only odd integers. However, there are some other problems to calculate the quantum Hall conductivity, such as the determination of the Chern number pattern from a specific lattice structure and the reduction of the computational time. Motivated by these issues, I use Yasuhiro Hatsugai’s topological approaches to investigate the quantum Hall effect of other lattices. I use Hatsugai’s method to calculate the quantum Hall conductivity in two different lattices: Kagomé and star lattices. I find that the Dirac-like regions of quantum Hall conductivity also exists in both Kagomé and star lattices, which is similar to graphene. Unlike the graphene, the star lattice shows complicated Chern number structure in the electron-hole like regions. Hopefully, the Chern number pattern of the star lattice predicted by us can be determined by experiments in the near future.
目次 Table of Contents
[中文摘要+i]
[英文摘要+ii]
[圖次+iv]
[第一章 序論]
[1.1 簡述量子霍爾效應+1]
[1.2 量子霍爾效應之發展與回顧+3]
[第二章 理論與方法]
[2.1 磁場下正方晶格的緊束縛模型+4]
[2.2 磁場下蜂巢晶格的緊束縛模型+7]
[2.3 霍爾電導率與拓樸陳數的計算+10]
[第三章 結果與討論]
[3.1 簡述籠目晶格+14]
[3.2 籠目晶格之霍爾電導率+16]
[3.3 討論+22]
[3.4 星型晶格之霍爾電導率+23]
[參考文獻+33]
參考文獻 References
[1] R. B. Laughlin, “Quantized Hall conductivity in two dimensions”, Phys. Rev. B 23 5632 (1981).
[2] B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential”, Phys. Rev. B 25 2185 (1982).
[3] Y. Hatsugai, “Topological aspects of the quantum Hall effect”, J. Phys. Condens. Matter 9 2507 (1997).
[4] Y. Hatsugai, T. Fukui, H. Aoki, “Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers”, Phys. Rev. B 74 205414 (2006).
[5] Yasuhiro Iye, Eiichi Kuramochi, Masahiro Hara, Akira Endo, Shingo Katsumoto, “Hofstadter butterflies in a modulated magnetic field: Superconducting wire network with magnetic decoration” Phys. Rev. B 70 144524 (2004).
[6] Katsunori Wakabayashi, Mitsutaka Fujita, Hiroshi Ajiki, Manfred Sigrist, “Electronic and magnetic properties of nanographite ribbons” Phys. Rev. B 59 271 (1999).
[7] Y. Hatsugai, T. Fukui, H. Suzuki, “Topological Description of (Spin) Hall Conductances on Brillouin Zone Lattices: Quantum Phase Transitions and Topological Changes”, Physica E 34, 336 (2006).
[8] T. Fukui, Y. Hatsugai, H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances” J. Phys. Soc. Jpn. 74, 1674 (2005)
[9] Kenya Ohgushi, Shuichi Murakami, and Naoto Nagaosa, “Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin state based on a ferromagnet”, Phys. Rev. B 62 R6065 (2000).
[10] Alexandru Petrescu, Andrew A. Houck, Karyn Le Hur, “Anomalous Hall Effects of Light and Chiral Edge Modes on the Kagome Lattice”, Phys. Rev. A 86 053804 (2012).
[11] Juan Li, Yi-Fei Wang, Chang-De Gong, “Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies”, J. Phys. Condens. Matter 23 156002 (2011).
[12] Zhi-Yong Zhang, “Quantum Hall effect in kagome lattices under staggered magnetic field”, J. Phys. Condens. Matter 23 425801 (2011).
[13] Andreas Rüegg, Jun Wen, Gregory A. Fiete, “Topological insulators on the decorated honeycomb lattice”, Phys. Rev. B 81 205115 (2010).
[14] Y. Hatsugai, M. Kohmoto, “Energy spectrum and the quantum Hall effect on the square lattice with next-nearest-neighbor hopping”, Phys. Rev. B 42 8282 (1990).
[15] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, Philip Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in grapheme”, Nature 438 201 (2005).
[16] Y. Hatsugai, “Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function”, Phys. Rev. B 48 11851 (1993).
[17] Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect”, Phys. Rev. Lett 71 3697 (1993).
[18] D. C. Tsui, H. L. Stormer, A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme Quantum Limit”, Phys. Rev. Lett. 48 1559 (1982).
[19] S. M. Girvin, A. H. MacDonald, “Off-Diagonal Long-Range Order, Oblique Confinement, and the Fractional Quantum Hall Fffect”, Phys. Rev. Lett. 58 1252 (1987).
[20] Mamoru Mekata, “Kagome: The story of the basketweave lattice”, Physics Today 56 12 (2003).
[21] H. Watanabe, Y. Hatsugai, and Hodeo Aoki, “Half-integer contributions to the quantum Hall conductivity from single Dirac cones”, Phys. Rev. B 82 241403 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code