Responsive image
博碩士論文 etd-0604116-132259 詳細資訊
Title page for etd-0604116-132259
論文名稱
Title
震波治療降低四氯化碳在大鼠肝臟中誘導的纖維化
Extracorporeal Shock Wave Therapy Attenuates CCl4 induced Liver Fibrosis in Rat
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-23
繳交日期
Date of Submission
2016-07-04
關鍵字
Keywords
抗氧化壓力、發炎反應、體外震波、肝臟纖維化、增生
ECSW, Anti-oxidative stress, Liver fibrosis, Proliferation, Inflammatory
統計
Statistics
本論文已被瀏覽 5707 次,被下載 20
The thesis/dissertation has been browsed 5707 times, has been downloaded 20 times.
中文摘要
肝臟纖維化是細胞外基質蛋白質過度累積,包括膠原蛋白等發生在大部分慢性肝臟疾病。許多研究指出肝臟纖維化是因為肝臟受到壓力造成了細胞的壞死或凋亡,而在肝臟中肝星狀細胞是被活化,進一步的誘導發炎的反應促使細胞進行再生或修復的一個急性期。當肝臟損傷持續太久的時間將造成肝臟纖維化,緊接著肝硬化,最後形成肝臟細胞惡性腫瘤。因此,我們設計一個實驗,使用體外震波治療能否降低在大鼠中利用四氯化碳誘導的纖維化是否被抑制。實驗方法;利用三十二隻雄性成年的Sprague-Dawley大鼠在實驗中分為三組,控制組;四氯化碳誘導組(四氯化碳和橄欖油以一比一的比率混合,而每公斤體重一毫升每週注射兩次維持十二週);治療組(在注射6週四氯化碳後,進行體外震波持續五週的治療)。實驗結果證明體外震波明顯降低血液中所分離出的血清檢測的肝功能指數(AST ,ALT ,Albumin),並且減弱細胞凋亡(Bax ,TUNEL),星狀細胞的活化(α-SMA)和促纖維化因子的表現(TGF-β,Galectin-3),增加抗凋亡(Bcl-2)能力,並且促使M1 inflammatory macrophage(CD68,F4/80)轉為M2 anti-inflammatory macrophage(CD206),進而降低發炎因子的表現(NF-κB,IL-1β, TNF-α),增加抗發炎因子(IL-10)的表現,也調控了(CD44,SDF-1,CXCR4) 去徵招MSC進而促進細胞修復、增生、存活(HGF,PCNA,Liver weight,p-AKT),也透過具有降解能力的細胞激素(MMP9)減少膠原蛋白的堆積(Collagen,Masson-trichrome),並且增加抗氧化的壓力 (HO-1,NQO-1)
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Several studies indicated liver fibrosis associated with damage of liver, then causes liver cell necrosis or apoptosis and activation of hepatic stellate cell. Further, an inflammatory response is induced, which leads either to tissue regeneration and repair in acute phase or to fibrogenesis, cirrhosis, and hepatocellular carcinoma, when the injury is prolonged. Therefore, we investigated whether extracorporeal shock wave (ECSW) therapy can attenuate carbon-tetrachloride-induced liver fibrosis in rat. Methods: thirty-two male-adult Sprague-Dawley Rats were sub-grouped into in experiment. Group I (Control), Group II (CCl4) injected intraperitoneal with 1 ml/kg of body weight CCl4 in a ratio of 1:1 with olive oil twice weekly for a total of 12 weeks. Group III (CCl4 + ECSW) at the beginning of injection of CCl4, add ECSW. Our results demonstrated that ECSW markedly suppressed liver function index in serum (AST, ALT, Albumin) apoptosis (Bax, Bcl-2, TUNEL)activation of stellate cells (α-SMA) pro-fibrotic factory (TGF-β, Galatin-3) M1 (CD68,F4/80) inflammatory factory (NF-κB, IL-1β, TNF-α, IL-10) protein deposition (MMP9, Collagen, Masson’s trichrome) and promoted cell proliferation (HGF, PCNA, p-AKT) anti-oxidative stress (HO-1,NQO-1) in rat.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
Abbreviations iv
Contents v
Figures and Legends vi
Introduction 1
Liver 1
Liver fibrosis 2
Hepatic stellate cells 2
Extracellular matrix 3
Animal 5
Induction of liver fibrosis and extra-corporeal shock wave treatment 5
Analysis of liver function 6
Perfusion 7
Masson’s trichrome stain 7
Immunohistochemistry stain 8
Western Blot 9
TUNEL Assay for apoptotic nuclei 10
Real-Time Quantitative PCR analysis 10
Immunofluorescen stain 11
Statistical analysis 12
Results 13
ECSW ameliorates CCl4-induced liver function in rats 13
ECSW inhibits CCl4-induced on liver apoptosis and enhance anti-apoptosis 13
HSCs activation by CCl4-induced was inhibited in rats 13
Liver inflammation was attenuated in rats after CCl4-induced liver fibrosis 14
ECSW was facilitated SDF-1 of expression which recruit mesenchymal stem cells to liver injury tissue 15
ECSW was facilitated CD44 of expression and cell proliferation in liver fibrosis. 15
Pro-fibrotic factor was suppressed through ECSW therapy after CCl4-induced 16
ECSW therapy ameliorates Collagen deposition induced by CCl4 16
ECSW promoted effectively anti-oxidative stress in CCl4-induced. 17
Discussion 18
Attachments 63
Future work 80
參考文獻 References
1. Dimitrios P. Bogdanosa BG, and M. Eric Gershwinc. Liver Immunology. Comprehensive Physiology 2013;3:567–598.
2. Ramón Bataller DAB. Liver fibrosis. The Journal of Clinical Investigation 2005;115:209–218.
3. ROCKEY DC. Antifibrotic Therapy in Chronic Liver Disease. Clinical gastroenterology and hepatology 2005;3:95-107.
4. Ramón Bataller DAB. Liver fibrosis. The Journal of Clinical Investigation 2005;115:209–218.
5. Yi-Shu Chiu C-CW, Yih-Jyh Lin,Yu-Hsiang Hsu,and Ming-Shi Chang. IL-20 and IL-20R1 Antibodies Protect Against Liver Fibrosis. Hepatology 2014;60:1003-1014.
6. Friedman SL. Mechanisms of Hepatic Fibrogenesis. Gastroenterology
2008;134:1655-1669.
7. Antonella Pellicoro PR, John P. Iredale and Jonathan A. Fallowfield. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology 2014;14(3):181-94.
8. Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World Journal of Gastroenterol 2014;20(23): 7260-7276.
9. Chunyue Yin KJE, Kinji Asahina, and Didier Y.R. Stainier. Hepatic stellate cells in liver development, regeneration, and cancer. The Journal of Clinical Investigation 2013;123(5):1902–1910.
10. Friedman SL. Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiological Reviews 2008; 88(1): 125–172.
11. Safadi R, Friedman S. Hepatic fibrosis--role of hepatic stellate cell activation. MedGenMed: Medscape general medicine 2002;4:27.
12. Bernhard Saile TK, Nina Matthes, Peter Schott, and Giuliano Ramadori. CD95/CD95L-Mediated Apoptosis of the Hepatic Stellate CellA Mechanism Terminating Uncontrolled Hepatic Stellate Cell Proliferation during Hepatic Tissue Repair. American Joumnal ofPathology 1997;151:1265-1272.
13. Florent Duval JEM-C, María Teresa González-Garza, Carlos Rodríguez-Montalvo and Delia Elva Cruz-Vega. Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis. Chinese Medicine 2014;9:27.
14. Timoneda TBGE-PMPMaJ. Vitamin A Deficiency and Alterations in the Extracellular Matrix. Nutrients 2014;6, 4984-5017.
15. HANNU JARVELAINEN AS, MARKKU KOULU, THOMAS N. WIGHT, AND RISTO PENTTINEN. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009;61:198–223.
16. Hynes RO. Extracellular matrix: not just pretty fibrils. Science 2009;326(5957): 1216–1219.
17. Tania Rozario DWD. The Extracellular Matrix In Development and Morphogenesis: A Dynamic View. Developmental Biology 2010;341(1): 126–140.
18. Elena Arriazu MRdG, Francisco Javier Cubero,Marta Varela-Rey,Marı´a Pilar Pe´rez de Obanos, Tung Ming Leung, Aritz Lopategi,Aitor Benedicto, Ioana Abraham-Enachescu, and Natalia Nieto. Extracellular Matrix and Liver Disease. ANTIOXIDANTS & REDOX SIGNALING 2014;21.
19. Nabi G DP, Keeley F,Watson G,McClinton S. Extra-corporeal shock wave lithotripsy (ESWL) versus ureteroscopicmanagement for ureteric calculi (Review). The Cochrane Collaboration 2007.
20. Pemberton J. Extra-corporeal shock wave lithotripsy. Postgraduate Medical Journal 1987;63,1025-1031.
21. Anthony HEARNDEN AD, Anand KARMEGAM, Mark FLANNERY. Extracorporeal shock wave therapy in chronic calcific tendonitis of the shoulder – Is it effective ? Acta Orthopædica Belgica 2009;75, 25-31.
22. George H. Theodore MB, Annunziato Amendola,Christine Bachmann,Lamar L. Fleming,Christopher Zingas. Extracorporeal ShockWaveTherapy for the Treatment of Plantar Fasciitis. Foot & Ankle International 2004;25.
23. Lin Wang LQ, Hong-bin Lu, Wing-hoi Cheung,Hu Yang, Wan-nar Wong,Kai-ming Chan and Kwok-sui Leung,. Extracorporeal Shock Wave Therapy in Treatment of Delayed Bone-Tendon Healing. The American Journal of Sports Medicine 2008;36.
24. Jan D. Rompe AM, Bernhard Nafe , Alexander Hofmann ,Ludger Gerdesmeyer. Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. Journal of Orthopaedic Research 2005;23;931-941.
25. Alexandra Aicher CH, Ken-ichiro Sasaki,Carmen Urbich,Andreas M. Zeiher,Stefanie Dimmeler. Low-Energy Shock Wave for Enhancing Recruitment of Endothelial Progenitor Cells : A New Modality to Increase Efficacy of Cell Therapy in Chronic Hind Limb Ischemia. Circulation 2013;114:2823-2830.
26. Cheuk-Kwan Sun P-LS, Ching-Jen Wang, Hon-Kan Yip. Study of vascular injuries using endothelial denudation model and the therapeutic application of shock wave: a review. American Journal of Translational Research 2011;3(3):259-268.
27. Mantovani ASaA. Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation 2012;122.
28. Edwards DMMaJP. Exploring the full spectrum of macrophage activation. Nature Review Immunol 2008;8(12): 958–969.
29. Mosser DM. The many faces of macrophage activation. Journal of Leukocyte Biology 2003;73.
30. J.P. Iredale RCB, J. Pickering, M. McCullen, M. Northrop, S. Pawley, C. Hovell, and M.J.P. Arthur. Mechanisms of Spontaneous Resolution of Rat Liver Fibrosis
Hepatic Stellate Cell Apoptosis and Reduced Hepatic Expression of Metalloproteinase Inhibitors. Journal of Clinical Investigation 1998;102.
31. Christian Liedtke TL, Tilman Sauerbruch, David Scholten, Konrad Streetz, Frank Tacke,René Tolba, Christian Trautwein, Jonel Trebicka and Ralf Weiskirchen. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Liedtke et al. Fibrogenesis & Tissue Repair 2013;6:19.
32. A. Woodhoo MI-L, N. Beraza, J.L. García-Rodríguez, N. Embade,D. Fernández-Ramos, N. Matinez-Lopez, Virginia Gutiérrez, B. Arteta, J. Caballeria,S.C. Lu, J.M. Mato, M. Varela-Rey and M.L. Martinez-Chantar. HuR contributes to Hepatic Stellate Cell activation and liver fibrosis. Hepatology 2012;56(5): 1870–1882.
33. Shuang Liang TK, DavidA.Brenner. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblast. Frontiers in Physiology 2016;7.
34. Melissa D. Yang Y-MC, Reiichi Higashiyama, Kinji Asahina, Derek A. Mann,Jelena Mann, Clay Wang, and Hidekazu Tsukamoto. Rosmarinic acid and baicalin epigenetically de-repress Pparγ in hepatic stellate cells for their anti-fibrotic effect. Hepatology 2012;55(4): 1271–1281.
35. Tian Lan TK, David A. Brenner. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLOS ONE 2015.
36. Jason W. Ashley ZS, Haibo Zhao, Xingsheng Li, Robert A. Kesterson, Xu Feng. Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts. PLoS ONE 2011;6.
37. Schwabe ESaRF. Hepatic Inflammation and Fibrosis:Functional Links and Key Pathways. HEPATOLOGY 2015;61.
38. W. Z. Mehal DS. Antifibrotic Therapies in the Liver. Liver Fibrosis 2015;35.
39. Jun Li C-HL, Dao-Liang Xu, Bo Gao. Clinicopathological significance of CD206-positive macrophages in patients with acute tubulointerstitial disease. Int J Clin Exp Pathol 2015;8(9):11386-11392.
40. Kyoung Moo Choi PCK, Nirjhar Dutta, Gary J. Stoltz, Tamas Ordog, Terez Shea Donohue, Anthony J. Bauer, David R. Linden, Joseph H. Szurszewski, Simon J.Gibbons, and Gianrico Farrugia. CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology. 2010;138(7): 2399–2409.
41. Yan Liu XY, Yingying Jing, Shanshan Zhang, Chen Zong, Jinghua Jiang,Kai Sun, Rong Li, Lu Gao, Xue Zhao, Dong Wu, Yufang Shi , Zhipeng Han & Lixin Wei. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis. SCIENTIFIC REPORTS 2015;5:17762 |.
42. Orit Kollet SS, Yuan-Qing Chen, Jenny Suriawinata, Swan N. Thung,Mariana D. Dabeva, Joy Kahn, Asaf Spiegel, Ayelet Dar, Sarit Samira,Polina Goichberg, Alexander Kalinkovich, Fernando Arenzana-Seisdedos,Arnon Nagler, Izhar Hardan, Michel Revel, David A. Shafritz, and Tsvee Lapidot. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. The Journal of Clinical Investigation 2003;112:160–169.
43. Morgan Fu C-KS, Yu-Chun Lin, Ching-Jen Wang, Chiung-Jen Wu, Sheung-Fat Ko,Sarah Chua, Jiunn-Jye Sheu, Chiang-Hua Chiang, Pei-Lin Shao, Steve Leu, Hon-Kan Yip. Extracorporeal Shock Wave Therapy Reverses Ischemia-Related Left Ventricular Dysfunction and Remodeling:Molecular-Cellular and Functional Assessment. PLoS ONE 2011;6.
44. R.P. Hulse NB-L, J. Hua , H. Kennedy ,J. Prager ,H.Bevan ,Y.Qiu a,E.S. Fernandes ,M.V. Gammons ,K. Ballmer-Hofer , A.C. Gittenberger de Groot ,A.J.Churchill , S.J. Harper ,S.D.Brain ,D.O. Bates ,,L.F.Donaldson. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiology of Disease 2014;245–259.
45. Kenneth Cheung LM, Guosu Wang, David Coe, Riccardo Ferrob, Marco Falascab, Christopher . Buckleyd,Claudio Mauro, and Federic M. Marelli-Berg,. CD31 signals confer immune privilege to the vascular endothelium. PNAS 2015.
46. Hyongbum Kim H-JC, Sung-Whan Kim,Bianling Liu,Yong Jin Choi,JiYoon Lee,Young-Doug Sohn,Min-Young Lee,,Mackenzie A. Houge,and Young-sup Yoon,. CD31+cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of non-endothelial CD31+cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 2010;(5): 602–614.
47. Li Li DKB, Christi M. Terry, Yuxia He, Mary L. Carlson, and Alfred K.Cheung. PDGF-Induced Proliferation in Human Arterial and Venous Smooth Muscle Cells: Molecular Basis for Differential Effects of PDGF Isoforms. J Cell Biochem 2015;112(1): 289–298.
48. Tung-Han Tsai S-CS, Tsung-Chuan Ho, Hsin-I Ma1, Ming-Ying Liu, Show-Li Chen,Yeou-Ping Tsao. Pigment Epithelium-Derived Factor 34-mer Peptide Prevents Liver Fibrosis and Hepatic Stellate Cell Activation through Down-Regulation of the PDGF Receptor. PLOS ONE 2014;9.
49. Karina Reyes-Gordillo RS, Anastas Popratiloff,Sidney Fu, Anna Hindle,Frederick Brody, and Marcos Rojkind. Thymosin- 4(T 4) Blunts PDGF-Dependent Phosphorylation and Binding of AKT to Actin in Hepatic Stellate Cells Karina Reyes-Gordillo,Ruchi Shah,Anastas Popratiloff. The American Journal of Pathology 2011;178:2100–2108.
50. Christopher M. Depner KAP, andDonaldB.Jump. Docosahexaenoic Acid Attenuates Hepatic Inflammation, Oxidative Stress, and Fibrosis without Decreasing Hepatosteatosis in a Ldlr2/2 Mouse Model of Western Diet-Induced Nonalcoholic Steatohepatitis. The Journal of Nutrition Nutrition and Disease 2013.
51. Mei-Na Shi W-DZ, Li-Juan Zhang, Zhi-Xin Chen, Xiao-Zhong Wang. Effect of IL-10 on the expression of HSC growth factors in hepatic fibrosis rat. World J Gastroenterol 2005;11(31):4788-4793.
52. Cheng SSIaG. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit Rev Immunol 2013;32(1): 23–63.
53. Horace M. DeLisser MC-S, Robert M. Strieter,t Marie D. Burdick,tCandy S. Robinson,t Roseanne S. Wexler,Janet S. Kerr,Cecilia Garlanda,June R. Merwin, Joseph A. Madri,'w and Steven M. Albelda. Involvement of Endothelial PECAM-1/CD31 in Angiogenesis. American Journal ofPathology, 1997;151.
54. Federico Iovino GM, Jetta J. E. Bijlsma. Platelet Endothelial Cell Adhesion Molecule-1, a Putative Receptor for the Adhesion of Streptococcus pneumoniae to the Vascular Endothelium of the Blood-Brain Barrier. Infection and Immunity 2014;3555–3566.
55. Yeung-Jen Chen TW, Ching-Jen Wang , Yur-Ren Kuo Kuender D. Yang , Hue-Chen Huang , Feng-Sheng Wang. Recruitment of mesenchymal stem cells and expression of TGF-beta 1and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. Journal of Orthopaedic Research 2004;526-534.
56. Zöller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Frontiers in Immunology 2015;6.
57. YONGMIN YAN XZ, DAOYANWEI. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. STEMCELLS TRANSLATIONALMEDICINE 2015;4:1033–1043.
58. Neil C. Henderson ACM, Sarah L. Farnworth, Francoise Poirier, Francesco P. Russo,John P. Iredale, Christopher Haslett, Kenneth J. Simpson, and Tariq Sethi. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. PNAS 2005;5060–5065.
59. Joy X. Jiang XC, Daniel K. Hsu, Kornelia Baghy,Nobuko Serizawa, Fiona Scott,Yoshikazu Takada, Yoko Takada, Hiroo Fukada, Jenny Chen, Sridevi Devaraj, Roger Adamson,Fu-Tong Liu, and Natalie J. Török. Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 2012;302: G439–G446.
60. Hon-Kan Yip Y-CCCGW, Li-Teh Chang, Tzu-Hsien Tsai,Yung-Lung Chen1, Hsueh-Wen Chang, Steve Leu, Yen-Yi Zhen, Ching-Yen Tsai, Kuo-Ho Yeh, Cheuk-Kwan Sun and Chia-Hung Yen. Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia–reperfusion injury. Journal of Pineal Research 2013:54:207–221.
61. Hon-Kan Yip C-C, Kuan-Hung Chen, Tien-Hung Huang, Yi-Ling Chen, Yen-Yi Zhen, Pei-Hsun Sung, Hsin-Ju Chiang, Jiunn-Jye Sheu, Chia-LoChang, Chih-Hung Chen10, Hsueh-Wen Chang and Yen-Ta Chen Combined melatonin and exendin-4 therapy preserves renal ultrastructural integrity after ischemia–reperfusion injury in the
male rat. Journal of Pineal Research 2015;59:434–447.
62. Chen HH LK, Wallace CG, Chen YT, Yang CC, Leu S, Chen YC, Sun CK, Tsai TH, Chen YL, Chung SY, Chang CL, Yip HK. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced Journal of Pineal Research 2014:16-32.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code