Responsive image
博碩士論文 etd-0604116-161331 詳細資訊
Title page for etd-0604116-161331
論文名稱
Title
拉曼光譜儀結合雷射脫附大氣壓力化學游離質譜法介面之開發與其在聚合物之應用
Develop Raman Spectrometry coupled with Laser Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry Interface for the Application of Polymer Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-15
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
聚合物分析、大氣質譜法與光譜技術之結合、雷射脫附、拉曼光譜、大氣壓力質譜法
Raman spectroscopy, Raman spectroscopy combine with Ambient Mass Spectrometry, Ambient Mass Spectrometry, Polymer Analysis, Laser desorption
統計
Statistics
本論文已被瀏覽 5659 次,被下載 95
The thesis/dissertation has been browsed 5659 times, has been downloaded 95 times.
中文摘要
傳統檢測高分子聚合物的分析方法有:熱重分析法 (Thermogravimetric Analysis, TGA)、熱裂解氣相層析質譜儀 (Pyrolysis gas chromatography mass spectrometry, Py-GC/MS)、基質輔助雷射脫附游離飛行時間質譜儀 (Matrix-assisted laser desorption/ionization time of flight mass spectrometer, MALDI-TOF-MS)、傅里葉轉換紅外光譜 (Fourier transform infrared spectroscopy, FTIR)、拉曼光譜法 (Raman spectroscopy) 等,但受限於提供的資訊有限、靈敏度或選擇性不足等問題,往往需結合兩種以上之分析方法,才可達到鑑定高分子聚合物之目的,且複雜的樣品前處理、冗長的分析時間將使聚合物分析變得繁複且無法進行快速、即時且高通量之分析。
質譜儀具有高選擇性及高靈敏度,可用來鑑定分析物的結構組成,但由於傳統的質譜分析技術需繁複的樣品前處理因此無法進行快速的分析。大氣質譜法 (Ambient Mass Spectrometry, AMS) 是一種可以在大氣壓力環境下直接對樣品進行分析的質譜技術,具有分析時間短且不須樣品前處理等優點,近年來已有相當多的AMS技術被開發出來,使大氣質譜成為檢測高分子聚合物的一大利器。然而由於質譜分析中,不同分析物在不同游離模式具有不一樣的游離效率,當所分析的樣品中含有游離效率差異極大的兩分析物,往往會使得質譜在分析上產生極大的干擾並且造成分析結果無法真實反映樣品之組成。

第一部分、拉曼光譜儀結合雷射脫附大氣壓力化學游離質譜法介面之開發
本研究是將大氣質譜技術與拉曼光譜作結合,利用雷射脫附大氣壓力化學游離質譜法 (LD-APCI/MS) 和拉曼光譜具有多項相同的特性及優點,如:皆在大氣環境中進行分析、使用單一波長之連續式雷射、不須樣品前處理、可對樣品進行表面分析等,再加上拉曼光譜不具樣品的破壞性,故可輕易的將兩分析方法進行結合。
實驗流程是先以一單一波長之雷射光束照射樣品進而發生拉曼散射現象,產生與入射光頻率不同的散射光線並由拉曼偵檢器偵測以得到拉曼光譜,同時由於雷射的照射會使樣品載盤及樣品表面溫度升高並使分析物脫附,氣化的中性分子會在大氣壓力電漿游離區域內與帶電分子進行潘寧游離 (Penning Ionization) 而產生帶電荷之分析物離子,再藉由電場與質譜儀的高真空吸引進入離子阱質譜儀進行分析,可在一次分析中,藉由拉曼光譜得到其官能基資訊並由質譜圖中得到其分析物分子量及其質量分布範圍。

第二部分、拉曼光譜儀結合雷射脫附大氣壓力化學游離質譜法在聚合材料之應用
本研究主要應用於快速偵測高分子聚合材料的化學組成,利用拉曼光譜結合雷射脫附大氣壓力化學游離質譜法可快速偵測材料之化學組成,並藉由質譜圖及拉曼光譜鑑定其結構。研究中分別對於聚乙二醇 (PEG)、聚丙二醇 (PPG)、聚甲基丙烯酸甲酯 (PMMA) 等標準品進行分析以得到標準圖譜。最後應用此方法對市售常見之高分子聚合材料做快速分析,不僅可成功檢測到材料的化學組成也能偵測其所添加之塑化劑及添加劑。
Abstract
The most commonly used characterization techniques for the polymers are Raman spectroscopy, Thermalgravimetricanalysis (TGA), and Pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). As the analyses by TGA and Py-GC/MS are time consuming and Raman spectroscopy only provides the limited information of functional groups, with these limitations they all have limited efficiency and use. Thus, a technique which combines Raman spectroscopy and mass spectrometry can provide efficient polymer identification. In this study, we propose the integration of Raman spectroscopy with laser desorption atmospheric pressure chemical ionization/mass spectrometry (LD-APCI/MS) to rapidly characterize polymers in various samples.
The LD-APCI/MS has many advantages like, easy operation, short analysis time, rapid sample switching, and efficient desorption and ionization of polymers. Raman spectroscopy is a nondestructive technique and provides complementary information for further confirmation of the presences of polymeric materials. Experimental parameters including laser energy, materials of the sample plate, and thickness of the sample plate were studied to optimize the settings of Raman spectroscopy integrated with LD-APCI/MS. Since the sample stage and laser system of both techniques are integrated together, the system can be switched from Raman to LD-APCI/MS simply by increasing laser energy. Polymer standards of PEG, PPG and PMMA were successfully distinguished using Raman LD-APCI/MS. Various food packaging materials and containers (e.g. salad bowls, drink bottle and Cling film) were directly analyzed. The resultant polymers, in addition to additives of the samples, were rapidly characterized.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 v
英文摘要 vii
目錄 ix
圖目錄 xi
表目錄 xvi
第一章 緒論 1
一、前言 1
二、傳統用於聚合物之分析技術 2
1. 膠體滲透層析儀(Gel Permeation Chromatography, GPC) 2
2. 熱重分析儀 (Thermogravimetric Analyzer, TGA) 2
3. 熱裂解儀 (Pyrolyzer) 3
三、光譜法 (Spectroscopy) 在聚合物之分析 4
1. 紅外線光譜法 (Infrared spectroscopy) 4
2. 拉曼光譜法 (Raman spectroscopy) 6
四、質譜法 (Mass spectrometry) 8
五、傳統分析聚合物的質譜技術 11
1. 基質輔助雷射脫附游離法 (Matrix-assisted laser desorption/ionization, MALDI) 11
2. 電噴灑游離法 (Electrospray Ionization, ESI) 12
六、大氣質譜法 (Ambient mass spectrometry) 14
七、大氣質譜法於聚合物之應用 16
1、脫附電噴灑游離質譜法 (Desorption electrospray ionization Mass Spectrometry, DESI/MS) 16
2、即時直接分析游離法 (Direct Analysis in Real Time, DART) 17
3、大氣壓力固相分析探針 (Atmospheric Solid Analysis Probe, ASAP) 18
八、論文目標與研究動機 19
第二章 拉曼光譜儀結合雷射脫附大氣壓力化學游離質譜法介面之開發 20
一、儀器裝置 20
二、實驗試劑與藥品 24
三、藥品配製 25
四、結果與討論 26
第三章 拉曼光譜儀結合雷射脫附大氣壓力化學游離質譜法在聚合物之應用 41
一、偵測不同聚合物之標準品 41
二、偵測不同市售工程塑膠棒材 48
三、偵測市售常見塑膠產品之聚合物組成 52
第四章 結論 58
第五章 參考文獻 59
參考文獻 References
1. Kumar, R. V.; Koltypin, Y.; Cohen, Y. S.; Cohen, Y.; Aurbach, D.; Palchik, O.; Felner, I.; Gedanken, A., Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. Journal of Materials Chemistry 2000, 10 (5), 1125-1129.1129.
2. http://www.systematic.com.tw/FRONTIER LAB-PYROLYZER_big5.html
3. Skoog, D. A.; Holler, F. j.; Crouch, S. R., Principles of Instrumental Analysis. 6 ed.; Thomson United States, 2007.
4. Bunding Lee, K. A.; Johnson, S. C., Comparison of Mid-IR with NIR in Polymer Analysis. Applied Spectroscopy Reviews 1993, 28 (3), 231-284.
5. Castiglioni, C.; Del Zoppo, M.; Zerbi, G., Vibrational Raman spectroscopy of polyconjugated organic oligomers and polymers. Journal of Raman Spectroscopy 1993, 24 (8), 485-494.
6. Alberici, R. M.; Simas, R. C.; Sanvido, G. B.; Romao, W.; Lalli, P. M.; Benassi, M.; Cunha, I. B.; Eberlin, M. N., Ambient mass spectrometry: bringing MS into the "real world". Anal Bioanal Chem 2010, 398 (1), 265-94.
7. http://www.shimadzu.com/an/hplc/support/lib/lctalk/47/47intro.html
8. Hoogland, F. G.; Boon, J. J., Development of MALDI-MS and nano-ESI-MS methodology for the full identification of poly(ethylene glycol) additives in artists’ acrylic paints. International Journal of Mass Spectrometry 2009, 284 (1–3), 66-71.
9. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and Polymer Analyses up to m/z 100,000 By Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Common. Mass Sp. 1988, 2 (8), 151-153.
10. http://highscope.ch.ntu.edu.tw/wordpress/?p=63973
11. Bahr, U.; Deppe, A.; Karas, M.; Hillenkamp, F.; Giessmann, U., Mass spectrometry of synthetic polymers by UV-matrix-assisted laser desorption/ionization. Analytical Chemistry 1992, 64 (22), 2866-2869.
12. Burns, D. T.; Doolan, K. P., A comparison of pyrolysis-gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy for the analysis of a series of modified alkyd paint resins. Analytica Chimica Acta 2000, 422 (2), 217-230.
13. http://www.chromacademy.com/Electrospray-Ionization-ESI-for-LC-MS.html?tpm=1_1.
14. Hop, C. E. C. A.; Bakhtiar, R., Electrospray Ionization Mass Spectrometry: Part III: Applications in Inorganic Chemistry and Synthetic Polymer Chemistry. Journal of Chemical Education 1996, 73 (8), A162.
15. Huang, M. Z.; Cheng, S. C.; Cho, Y. T.; Shiea, J., Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta 2011, 702 (1), 1-15.
16. Venter, A.; Nefliu, M.; Graham Cooks, R., Ambient desorption ionization mass spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284-290.
17. http://www.shimadzu.com/an/hplc/support/lib/lctalk/47/47intro.html
18. Taka´ts, Z. n.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471-473.
19. Chen, H.; Venter, A.; Cooks, R. G., Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun (Camb) 2006, (19), 2042-4.
20. Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J., Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 2005, 19 (24), 3701-4.
21. Cody, R. B.; Larame´e, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 7, 2297-2302.
22. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z., Low-temperature plasma probe for ambient desorption ionization. Anal Chem 2008, 80 (23), 9097-104.
23. Jackson, A. T.; Williams, J. P.; Scrivens, J. H., Desorption electrospray ionisation mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers. Rapid Commun Mass Spectrom 2005, 19 (24), 3701-4.
24. Nagy, L.; Nagy, T.; Deák, G.; Kuki, Á.; Antal, B.; Zsuga, M., Kéki, S., Direct analysis in real time mass spectrometry (DART-MS) of highly non-polar low molecular weight polyisobutylenes. J. Mass Spectrom. 2015, 50, 1071–1078
25. McEwen, C. N.; McKay, R. G.; Larsen, B. S., Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826-7831.
26. Smith, M. J.; Cameron, N. R.; Mosely, J. A., Evaluating Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers. Analyst 2012, 137 (19), 4524-30.
27. Jebaseelan Samuel, E. J.; Mohan, S., FTIR and FT Raman spectra and analysis of poly(4-methyl-1-pentene). Spectrochim Acta A Mol Biomol Spectrosc 2004, 60 (1-2), 19-24.

28. Salter, T. L.; Gilmore, I. S.; Bowfield, A.; Olabanji, O. T.; Bradley, J. W., Ambient surface mass spectrometry using plasma-assisted desorption ionization: effects and optimization of analytical parameters for signal intensities of molecules and polymers. Anal Chem 2013, 85 (3), 1675-82.
29. Jayes, L.; Hard, A. P.; Sene, C.; Parker, S. F.; Jayasooriya, U. A., Vibrational spectroscopic analysis of silicones: a Fourier transform-Raman and inelastic neutron scattering investigation. Anal Chem 2003, 75 (4), 742-6.
30. Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X., Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 2007, 18 (10), 1859-62.
31. Ackerman, L. K.; Noonan, G. O.; Begley, T. H., Assessing Direct Analysis in Real-time-mass Spectrometry (DART-MS) for the Rapid Identification of Additive in Food Packaging. Food Addit. Contam. Part A. 2009, 26 (12), 1611-1618.
32. Hanton, S. D., Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101 (2), 527-570.
33. Robinson, M. E. R.; Bower, D. I.; Maddams, W. F., A study of the C-Cl stretching region of the Raman spectrum of PVC. Polymer 1978, 19 (7), 773-784.
34. Berg, R. W.; Otero, A. D., Analysis of adipate ester contents in poly(vinyl chloride) plastics by means of FT-Raman spectroscopy. Vibrational Spectroscopy 2006, 42 (2), 222-225.
35. Basile F.; Zhang S.; Shin Y. S.; Drolet B., Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores. Analyst. 2010, 135, 797–803.
36. Davies, M. C.; Binns, J. S.; Melia, C. D.; Hendra, P. J.; Bourgeois, D.; Church, S. P.; Stephenson, P. J., FT Raman spectroscopy of drugs in polymers. International Journal of Pharmaceutics 1990, 66 (1), 223-232.
37. Taddei, P.; Tinti, A.; Fini, G., Vibrational spectroscopy of polymeric biomaterials. Journal of Raman Spectroscopy 2001, 32 (8), 619-629.
38. Gilbert-Lopez, B.; Schilling, M.; Ahlmann, N.; Michels, A.; Hayen, H.; Molina-Diaz, A.; Garcia-Reyes, J. F.; Franzke, J., Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals. Anal Chem 2013, 85 (6), 3174-82.
39. Kazarian, S. G.; Martirosyan, G. G., Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR–IR and Raman study of impregnation of ibuprofen into PVP. International Journal of Pharmaceutics 2002, 232 (1–2), 81-90.
40. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F., The Atmospheric-Pressure Plasma Jet: a Review and Comparison to Other Plasma Sources. IEEE Tran. Plasma Sci. 1998, 26 (6), 1685-1694.
41. Kister, G.; Cassanas, G.; Vert, M.; Pauvert, B.; Térol, A., Vibrational analysis of poly(L-lactic acid). Journal of Raman Spectroscopy 1995, 26 (4), 307-311.
42. Laiko, V. V.; Baldwin, M. A.; Burlingame, A. L., Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2000, 72 (4), 652-657.
43. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Analytical Chemistry 2005, 77 (8), 2297-2302.
44. Harris, G. A.; Nyadong, L.; Fernandez, F. M., Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 2008, 133 (10), 1297-301.
45. Harris, G. A.; Nyadong, L.; Fernandez, F. M., Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 2008, 133 (10), 1297-301.
46. Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M., Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase. Anal. Chem. 2008, 80 (8), 2646-2653.
47. Wu, J.; Hughes, C. S.; Picard, P.; Letarte, S.; Gaudreault, M.; Le´vesque, J.-F. o.; Nicoll-Griffith, D. A.; Bateman, K. P., High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 4657-4665
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code