Responsive image
博碩士論文 etd-0604116-162031 詳細資訊
Title page for etd-0604116-162031
論文名稱
Title
(1) 對苯二硼酸誘導金奈米粒子聚集應用於偵測過氧化氫及肉眼辨識免疫分析系統;(2) 單磷酸腺苷增強鐵奈米粒子催化活性結合選擇性抑制效果偵測尿蛋白
(1) 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Naked-eye Readout Immunoassay; (2) Adenosine Monophosphate-Enhanced Peroxidase-like Activity of Magnetite Nanoparticles with Selective Inhibition for Human Urine Protein
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-01
繳交日期
Date of Submission
2017-05-03
關鍵字
Keywords
免疫分析法、肉眼辨識、前列腺特異抗原、鐵奈米粒子、仿生酵素活性、尿蛋白、磷酸腺苷類似物、對苯二硼酸、金奈米粒子
magnetite nanoparticles, peroxidase-like activity, adenosine phosphate analogs, urine protein, prostate-specific-antigen, immunoassay, 1,4-benzene diboronic acid, naked-eye readout, gold nanoparticles
統計
Statistics
本論文已被瀏覽 5691 次,被下載 48
The thesis/dissertation has been browsed 5691 times, has been downloaded 48 times.
中文摘要
第一章、對苯二硼酸誘導金奈米粒子聚集應用於偵測過氧化氫及肉眼辨識免疫分析系統
透過過氧化氫誘導金奈米粒子(AuNPs)成長開發之感測器與免疫分析方法常受到討論,但利用過氧化氫(H2O2)系統誘導金奈米密子聚集之方法相當少見。本篇方法證實對苯二硼酸(1,4-benzene diboronic acid, BDBA)能誘使檸檬酸保護之金奈米粒子(citrate-AuNPs)聚集,透過BDBA與AuNPs表面檸檬酸根之錯合反應,作為連接架橋誘導AuNPs聚集。而H2O2能將BDBA之硼酸結構水解為羥基,此時則無法誘導AuNPs聚集,因此H2O2可作為抑制citrate-AuNPs聚集之角色,對樣品溶液中H2O2之偵測極限為0.28 μM。將此感測器應用於葡萄糖-葡萄糖氧化酶酵素系統,將反應生成之H2O2應用於葡萄糖受質濃度偵測中,偵測極限達0.87 μM。而透過生物素連結抗體、目標抗原與親和素連結葡萄糖氧化酶之抗原抗體高親和力,可將前述酵素系統應用於免疫分析法之開發,本系統也成功用以偵測目標抗原免疫球蛋白(IgG)及前列腺特異抗原(PSA),除了具有高選擇性外,藉由AuNPs聚集程度造成之顏色變化能有效透過肉眼快速辨識,偵測IgG及PSA最低肉眼辨識極限為0.2及2 ng/ml。透過生物素-親和素系統之設計(biotin-avidin system),可於需要偵測不同目標抗原時方便進行替換,搭配目前多種市售化生物素或親和素連結抗體及酵素,展示此設計於偵測不同目標抗原時的廣泛應用便利性。而實際利用BDBA誘導AuNPs聚集系統,結合酵素及親和素-生物素系統應用於免疫分析法中,能成功偵測血漿樣品中1-10 ng/ml之間以2 ng/ml濃度間隔之PSA濃度微小差異。

第二章、單磷酸腺苷增強鐵奈米粒子催化活性結合選擇性抑制效果偵測尿蛋白
鐵奈米粒子(Fe3O4 NPs)常因蛋白質吸附造成催化活性之下降,但透過此方法直接偵測蛋白質並不具備選擇性,本篇發現磷酸腺苷類化合物能有效提升Fe3O4 NPs仿生酵素催化活性,並透過結構特異性改善偵測蛋白質選擇性。本研究主要透過觀察催化受質Amplex Ultrared螢光表現,了解Fe3O4 NPs催化活性之差異。透過磷酸腺苷結構中磷酸官能基與鐵離子錯合,使其有效附著於Fe3O4 NPs表面,讓腺苷結構能進一步輔助促進過氧化氫(H2O2)與Fe3O4 NPs反應生成活性氧化物之反應速率,在中性環境下達到增強催化活性之效果。比較具有不同磷酸根數量之磷酸腺苷分子,其中由於單磷酸腺苷(AMP)於Fe3O4 NPs表面具有較高吸附量,因而具有最佳催化增強幅度,進一步將將AMP增強Fe3O4 NPs活性效果,用於白蛋白偵測中可透過蛋白質等電點差異,搭配AMP負電荷性質,有效地選擇性抑制Fe3O4 NPs催化活性,達到偵測白蛋白之效果。當蛋白質等電點低於環境pH值時,Fe3O4 NPs整體為負電荷將不利於AMP吸附,因而使AMP增強Fe3O4 NPs催化活性效果受到抑制,藉由抑制程度不同能於偵測0.2-60 μM白蛋白具有良好線性範圍,並有效提升白蛋白偵測選擇性,將此方法與單純透過白蛋白吸附造成Fe3O4 NPs催化活性下降之方法比較,結合AMP增強效果除了能改善選擇性外,偵測靈敏度與線性範圍皆有大幅改善,將此系統應用於尿蛋白偵測,搭配Fe3O4 NPs磁力性質,能達到快速萃取尿液樣品及分離效果,且該偵測結果能與目前現行檢驗方法具有一致性,證實此方法於偵測尿液白蛋白之可靠性。
Abstract
I. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Naked-eye Readout Immunoassay
Based on H2O2-induced growth strategy, gold nanoparticles (AuNPs) is often implemented for hydrogen peroxide (H2O2) sensing and immunoassay. This study find out that 1,4-benenediboronic acid (BDBA) was effective to induce the aggregation of AuNPs. The driving force was relied on the complexation of boronic acid and citrate-capped reagent on AuNPs. Besides, H2O2 is able to mediate the boronate hydrolysis into phenol which wouldn’t trigger the aggregation of AuNPs. AuNPs aggregation would be inhibit depends on the H2O2 concentration. As the concentration of H2O2 increase, the relative degree of AuNPs aggregation would decrease. BDBA-induced aggregation of citrate-capped AuNPs enabled H2O2 sensing with detection limit of 300 nM and could apply to glucose oxidase-glucose system for a glucose colorimetric probe. Combine H¬2O2 sensing strategy, glucose oxidase-glucose system and biotin-avidin-mediated immunoassay, the H2O2∙BDBA∙AuNPs probe could well accommodate to naked-eye readout immunoassay. The lowest detectable concentration of rabbit IgG and prostate-specific-antigen were down to 0.2 ng/ml and 2 ng/ml, respectively. More importantly, the developing plasmonic immunoassay allowed the PSA naked-eye detection in 0-10 ng/ml with 2 ng/ml intervals of human serum samples.

II. Adenosine Monophosphate-Enhanced Peroxidase-like Activity of Magnetite Nanoparticles with Selective Inhibition for Human Urine Protein
Magnetite nanoparticles (Fe3O4 NPs) peroxidase-like activity could be inhibited by proteins with low selectivity. This study discloses the adenosine phosphates (APs)-enhancement of Fe3O4 NPs peroxidase-like activity with improved selectivity for sensing human serum albumin (HSA). Based on metal ion chelation, APs with phosphate structure could be functionalized on Fe3O4 NPs surface without further modification. The adenosine structure of APs with nitrogen functional group on Fe3O4 NPs surface is abled to promote the catalysis reaction between H2O2 and Fe3O4 NPs with higher reactive oxygen species (ROS) formation. The phenomena represent a remarkable enhancement of Fe3O4 NPs peroxidase-like activity which could be realized by fluorescent substrate, amplex ultrared. Among three different phosphate groups of APs, adenosine monophosphate (AMP) with higher adsorb proportion shows the largest peroxidase-like acitivity enhancement.
Compare to the system directly used Fe3O4 NPs for HSA sensing, the AMP-assisted Fe3O4 NPs peroxidase-like activity shows a broader linear range (0.2-60 μM) and higher selectivity. Once HSA adsorb on Fe3O4 NPs surface, HSA with an isoelectric point of 5.3 changes Fe3O4 NPs surface into negative charge under pH 7 condition. This properties could highly improve HSA selectivity through the electrostatic repulsion between AMP and HSA-adsorbed Fe3O4. Rely on AMP functional structure, AMP-enhanced Fe3O4 NPs peroxidase-like activity with high sensitivity and selectivity shows comparable result to probe urine protein in clinical test.
目次 Table of Contents
論文審定書+i
謝誌+ii
中文摘要+iii
英文摘要+v
圖目錄+x
第一章 對苯二硼酸誘導金奈米粒子聚集結合肉眼辨識效果應用於偵測過氧化氫及肉眼辨識免疫分析系統+1
一、 前言+1
1.1 金奈米粒子感測器+1
1.2 酵素免疫分析法+2
1.3 表面電漿共振免疫分析法+3
1.4 實驗動機及設計+4
二、 實驗方法+6
2.1 實驗藥品及配置+6
2.2 儀器設備+6
2.3 金奈米粒子合成+7
2.4 金奈米粒子應用比色法偵測過氧化氫與葡萄糖+8
2.4.1 偵測過氧化氫+8
2.4.2 偵測葡萄糖+8
2.5 金奈米粒子結合酵素免疫分析偵測兔免疫球蛋白+9
2.6 金奈米粒子結合酵素免疫分析偵測前列腺特異抗原+10
2.7 真實樣品前處理+11
三、 結果與討論+12
3.1 實驗設計驗證+12
3.2 金奈米粒子比色法探針偵測過氧化氫+22
3.2.1 偵測H2O2最適化探討+22
3.2.2 過氧化氫定量分析及選擇性探討+26
3.3 金奈米粒子比色法探針應用於酵素系統偵測葡萄糖+28
3.4 金奈米粒子結合酵素免疫分析法偵測目標抗原+31
3.5 金奈米粒子結合酵素免疫分析法偵測血漿樣品中前列腺特異抗原+34
四、 結論+37
五、 參考文獻+38
第二章 單磷酸腺苷增強鐵奈米粒子催化活性結合選擇性抑制效果偵測尿蛋白+44
一、前言+44
1.1 仿生酵素+44
1.2 Fe3O4 NPs仿生過氧化酶催化特性+45
1.3 實驗動機及設計+46
二、實驗方法+48
2.1 實驗藥品及配置+48
2.2 儀器裝置+48
2.3 合成Fe3O4 NPs+49
2.4 磷酸腺苷分子增強Fe3O4 NPs催化活性+50
2.5 Fe3O4 NPs偵測HSA+50
2.6 模擬偵測尿蛋白+50
三、結果與討論+52
3.1磷酸腺苷增強Fe3O4 NPs催化活性+52
3.2 增強催化活性機制探討+57
3.2.1界面電位探討+57
3.2.2高效能液相層析儀分析+59
3.2.3 紫外光/可見光吸收光譜分析+67
3.3 AMP增強Fe3O4 NPs催化活性最適化探討+73
3.3.1 緩衝溶液酸鹼值及濃度最適化+73
3.3.2 Fe3O4 / AMP濃度最適化+76
3.3.3 受質濃度及催化反應時間最適化+78
3.4 催化動力學探討+81
3.5 利用Fe3O4 NPs活性增強效果偵測AMP+83
3.6 藉由活性抑制效果偵測血清白蛋白+86
3.6.1 HSA抑制Fe3O4 NPs催化活性機制探討+88
3.6.2 Fe3O4 NPs催化活性抑制效果偵測HSA+93
3.7 尿液樣品模擬偵測HSA含量+97
四、結論+99
五、參考文獻+100
參考文獻 References
(1) Lee, P. C.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Chem. Phys., 1982, 86, 3391-3395.
(2) Woehrle, G. H.; Brown, L. O.; Hutchison, J. E., Thiol-Functionalized, 1.5-nm Gold Nanoparticles through Ligand Exchange Reactions:  Scope and Mechanism of Ligand Exchange, J. Am. Chem. Soc. , 2005, 127, 2172-2183.
(3) Tiwari, P.; Vig, K.; Dennis, V.; Singh, S., Functionalized Gold Nanoparticles and Their Biomedical Applications, Nanomaterials, 2011, 1, 31-63.
(4) Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M., Gold Nanoparticles in Chemical and Biological Sensing, Chem. Rev. , 2012, 112, 2739-2779.
(5) Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P., Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease, Mol. Pharmaceutics, 2013, 10, 831-847.
(6) Wang, F.; Liu, X.; Lu, C.-H.; Willner, I., Cysteine-Mediated Aggregation of Au Nanoparticles: The Development of a H2O2 Sensor and Oxidase-Based Biosensors, ACS Nano, 2013, 7, 7278-7286.
(7) Zhao, W.; Chiuman, W.; Lam, J. C. F.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y., DNA Aptamer Folding on Gold Nanoparticles:  From Colloid Chemistry to Biosensors, J. Am. Chem. Soc. , 2008, 130, 3610-3618.
(8) Ai, K.; Liu, Y.; Lu, L., Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula, J. Am. Chem. Soc. , 2009, 131, 9496-9497.
(9) Xue, X.; Wang, F.; Liu, X., One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates, J. Am. Chem. Soc. , 2008, 130, 3244-3245.
(10) Du, J.; Shao, Q.; Yin, S.; Jiang, L.; Ma, J.; Chen, X., Colorimetric Chemodosimeter Based on Diazonium–Gold-Nanoparticle Complexes for Sulfite Ion Detection in Solution, Small, 2012, 8, 3412-3416.
(11) Liu, X.; Xu, H.; Xia, H.; Wang, D., Rapid Seeded Growth of Monodisperse, Quasi-Spherical, Citrate-Stabilized Gold Nanoparticles via H2O2 Reduction, Langmuir, 2012, 28, 13720-13726.
(12) Zheng, L.-Q.; Yu, X.-D.; Xu, J.-J.; Chen, H.-Y., Colorimetric detection of quaternary ammonium surfactants using citrate-stabilized gold nanoparticles (Au NPs), Anal. Methods, 2014, 6, 2031-2033.
(13) Cao, R.; Li, B.; Zhang, Y.; Zhang, Z., Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes, Chem. Commun., 2011, 47, 12301-12303.
(14) Chen, Z.; Luo, S.; Liu, C.; Cai, Q., Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles, Anal. Bioanal. Chem., 2009, 395, 489-494.
(15) Wu, H.-P.; Huang, C.-C.; Cheng, T.-L.; Tseng, W.-L., Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta, 2008, 76, 347-352.
(16) Wei, X.; Qi, L.; Tan, J.; Liu, R.; Wang, F., A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles, Anal. Chim. Acta, 2010, 671, 80-84.
(17) Liu, C.-Y.; Tseng, W.-L., Using polysorbate 40-stabilized gold nanoparticles in colorimetric assays of hydrogen cyanide in cyanogenic glycoside-containing plants, Anal. Methods, 2012, 4, 2537-2542.
(18) Xiong, Y.; Zhang, Y.; Rong, P.; Yang, J.; Wang, W.; Liu, D., A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles, Nanoscale, 2015, 7, 15584-15588.
(19) Lin, J.-H.; Chang, C.-W.; Wu, Z.-H.; Tseng, W.-L., Colorimetric Assay for S-Adenosylhomocysteine Hydrolase Activity and Inhibition Using Fluorosurfactant-Capped Gold Nanoparticles, Anal. Chem., 2010, 82, 8775-8779.
(20) Baron, R.; Zayats, M.; Willner, I., Dopamine-, l-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles:  Assays for the Detection of Neurotransmitters and of Tyrosinase Activity, Anal. Chem., 2005, 77, 1566-1571.
(21) Xin, J.-y.; Cheng, D.-d.; Zhang, L.-x.; Lin, K.; Fan, H.-c.; Wang, Y.; Xia, C.-g., Methanobactin-Mediated One-Step Synthesis of Gold Nanoparticles, Int. J. Mol. Sci., 2013, 14, 21676-21688.
(22) Gao, Z.; Hou, L.; Xu, M.; Tang, D., Enhanced Colorimetric Immunoassay Accompanying with Enzyme Cascade Amplification Strategy for Ultrasensitive Detection of Low-Abundance Protein, Sci. Rep., 2014, 4, 3966-3973.
(23) Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules, Anal. Chem., 2013, 85, 6945-6952.
(24) Voller, A.; Bartlett, A.; Bidwell, D. E., Enzyme immunoassays with special reference to ELISA techniques, J. Clin. Pathol., 1978, 31, 507-520.
(25) Nielsen, U. B.; Geierstanger, B. H., Multiplexed sandwich assays in microarray format, J. Immunol. Methods 2004, 290, 107-120.
(26) Lai, W.; Zhuang, J.; Tang, D., Novel Colorimetric Immunoassay for Ultrasensitive Monitoring of Brevetoxin B Based on Enzyme-Controlled Chemical Conversion of Sulfite to Sulfate, J. Agric. Food. Chem. , 2015, 63, 1982-1989.
(27) Liu, D.; Huang, X.; Wang, Z.; Jin, A.; Sun, X.; Zhu, L.; Wang, F.; Ma, Y.; Niu, G.; Hight Walker, A. R.; Chen, X., Gold Nanoparticle-Based Activatable Probe for Sensing Ultralow Levels of Prostate-Specific Antigen, ACS Nano, 2013, 7, 5568-5576.
(28) Peng, M.-P.; Ma, W.; Long, Y.-T., Alcohol Dehydrogenase-Catalyzed Gold Nanoparticle Seed-Mediated Growth Allows Reliable Detection of Disease Biomarkers with the Naked Eye, Anal. Chem., 2015, 87, 5891-5896.
(29) Liu, D.; Wang, Z.; Jin, A.; Huang, X.; Sun, X.; Wang, F.; Yan, Q.; Ge, S.; Xia, N.; Niu, G.; Liu, G.; Hight Walker, A. R.; Chen, X., Acetylcholinesterase-Catalyzed Hydrolysis Allows Ultrasensitive Detection of Pathogens with the Naked Eye, Angew. Chem. Int. Ed. , 2013, 52, 14065-14069.
(30) Xianyu, Y.; Wang, Z.; Jiang, X., A Plasmonic Nanosensor for Immunoassay via Enzyme-Triggered Click Chemistry, ACS Nano, 2014, 8, 12741-12747.
(31) de la Rica, R.; Stevens, M. M., Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye, Nat. Nano., 2012, 7, 821-824.
(32) Liu, D.; Yang, J.; Wang, H.-F.; Wang, Z.; Huang, X.; Wang, Z.; Niu, G.; Hight Walker, A. R.; Chen, X., Glucose Oxidase-Catalyzed Growth of Gold Nanoparticles Enables Quantitative Detection of Attomolar Cancer Biomarkers, Anal. Chem., 2014, 86, 5800-5806.
(33) Yang, X.-Y.; Guo, Y.-S.; Bi, S.; Zhang, S.-S., Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of α-fetoprotein amplified by double-codified gold nanoparticles labels, Biosens. Bioelectron., 2009, 24, 2707-2711.
(34) Thompson, I. M.; Pauler, D. K.; Goodman, P. J.; Tangen, C. M.; Lucia, M. S.; Parnes, H. L.; Minasian, L. M.; Ford, L. G.; Lippman, S. M.; Crawford, E. D.; Crowley, J. J.; Coltman, C. A., Prevalence of Prostate Cancer among Men with a Prostate-Specific Antigen Level ≤4.0 ng per Milliliter, N. Engl. J. Med., 2004, 350, 2239-2246.
(35) Etzioni, R.; Penson, D. F.; Legler, J. M.; di Tommaso, D.; Boer, R.; Gann, P. H.; Feuer, E. J., Overdiagnosis Due to Prostate-Specific Antigen Screening: Lessons From U.S. Prostate Cancer Incidence Trends, J. Natl. Cancer Inst., 2002, 94, 981-990.
(36) Wang, M.; Ma, J.; Chen, C.; Lu, F.; Du, Z.; Cai, J.; Xu, J., Gold nanoparticles confined in the interconnected carbon foams with high temperature stability, Chem. Commun., 2012, 48, 10404-10406.
(37) Zarabi, M. F.; Farhangi, A.; Mazdeh, S. K.; Ansarian, Z.; Zare, D.; Mehrabi, M. R.; Akbarzadeh, A., Synthesis of Gold Nanoparticles Coated with Aspartic Acid and Their Conjugation with FVIII Protein and FVIII Antibody, Indian J Clin Biochem., 2014, 29, 154-160.
(38) Wangoo, N.; Bhasin, K. K.; Mehta, S. K.; Suri, C. R., Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies, J. Colloid Interface Sci., 2008, 323, 247-254.
(39) Zhao, J.; Fyles, T. M.; James, T. D., Chiral Binol–Bisboronic Acid as Fluorescence Sensor for Sugar Acids, Angew. Chem. Int. Ed. , 2004, 43, 3461-3464.
(40) Wiskur, S. L.; Lavigne, J. J.; Metzger, A.; Tobey, S. L.; Lynch, V.; Anslyn, E. V., Thermodynamic Analysis of Receptors Based on Guanidinium/Boronic Acid Groups for the Complexation of Carboxylates, α-Hydroxycarboxylates, and Diols: Driving Force for Binding and Cooperativity, Chem. Eur. J., 2004, 10, 3792-3804.
(41) Bromba, C.; Carrie, P.; Chui, J. K.; Fyles, T. M., Phenyl boronic acid complexes of diols and hydroxyacids, Supramol. Chem., 2009, 21, 81-88.
(42) Dickinson, B. C.; Huynh, C.; Chang, C. J., A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells, J. Am. Chem. Soc. , 2010, 132, 5906-5915.
(43) Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide, J. Am. Chem. Soc. , 2005, 127, 16652-16659.
(44) de la Rica, R.; Stevens, M. M., Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye, Nat. Protocols, 2013, 8, 1759-1764.
(45) Xianyu, Y.; Chen, Y.; Jiang, X., Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays, Anal. Chem., 2015, 87, 10688-10692.

(1) Ran, N.; Zhao, L.; Chen, Z.; Tao, J., Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale, Green Chemistry, 2008, 10, 361-372.
(2) Torres, E.; Bustos-Jaimes, I.; Le Borgne, S., Potential use of oxidative enzymes for the detoxification of organic pollutants, Appl. Catal., B, 2003, 46, 1-15.
(3) Wang, H.; Li, S.; Si, Y.; Sun, Z.; Li, S.; Lin, Y., Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis, J. Mater. Chem. B, 2014, 2, 4442-4448.
(4) Song, Y.; Wang, X.; Zhao, C.; Qu, K.; Ren, J.; Qu, X., Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity, Chem. Eur. J., 2010, 16, 3617-3621.
(5) Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nano., 2007, 2, 577-583.
(6) Ragg, R.; Natalio, F.; Tahir, M. N.; Janssen, H.; Kashyap, A.; Strand, D.; Strand, S.; Tremel, W., Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity, ACS Nano, 2014, 8, 5182-5189.
(7) Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M., Oxidase Activity of Polymer-Coated Cerium Oxide Nanoparticles, Angew. Chem. Int. Ed., 2009, 48, 2308-2312.
(8) Fu, Y.; Zhao, X.; Zhang, J.; Li, W., DNA-Based Platinum Nanozymes for Peroxidase Mimetics, J. Phys. Chem. C, 2014, 118, 18116-18125.
(9) Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C., Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles, ACS Nano, 2010, 4, 7451-7458.
(10) Xu, C.; Liu, Z.; Wu, L.; Ren, J.; Qu, X., Nucleoside Triphosphates as Promoters to Enhance Nanoceria Enzyme-like Activity and for Single-Nucleotide Polymorphism Typing, Adv. Funct. Mater., 2014, 24, 1624-1630.
(11) Pan, Y.; Li, N.; Mu, J.; Zhou, R.; Xu, Y.; Cui, D.; Wang, Y.; Zhao, M., Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications, Appl. Microbiol. Biotechnol., 2015, 99, 703-715.
(12) Liu, C.-H.; Yu, C.-J.; Tseng, W.-L., Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles, Anal. Chim. Acta., 2012, 745, 143-148.
(13) Chen, C.; Lu, L.; Zheng, Y.; Zhao, D.; Yang, F.; Yang, X., A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles, Anal. Methods, 2015, 7, 161-167.
(14) Ma, Y.; Zhang, Z.; Ren, C.; Liu, G.; Chen, X., A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics, Analyst, 2012, 137, 485-489.
(15) Li, X.; Wen, F.; Creran, B.; Jeong, Y.; Zhang, X.; Rotello, V. M., Colorimetric Protein Sensing Using Catalytically Amplified Sensor Arrays, Small, 2012, 8, 3589-3592.
(16) Zhang, X.-Q.; Gong, S.-W.; Zhang, Y.; Yang, T.; Wang, C.-Y.; Gu, N., Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity, J. Mater. Chem. , 2010, 20, 5110-5116.
(17) Wang, C.; Liu, H.; Sun, Z., Heterogeneous Photo-Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment, Int. J. Photoenergy, 2012, 2012, 10.
(18) Rodríguez-López, J. N.; Lowe, D. J.; Hernández-Ruiz, J.; Hiner, A. N. P.; García-Cánovas, F.; Thorneley, R. N. F., Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase:  Identification of Intermediates in the Catalytic Cycle, J. Am. Chem. Soc., 2001, 123, 11838-11847.
(19) Corgié, S. C.; Kahawong, P.; Duan, X.; Bowser, D.; Edward, J. B.; Walker, L. P.; Giannelis, E. P., Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity, Adv. Funct. Mater., 2012, 22, 1940-1951.
(20) Stefan, L.; Denat, F.; Monchaud, D., Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system, Nucleic Acids Res., 2012, 40, 8759-8772.
(21) Liu, Q.; Li, H.; Zhao, Q.; Zhu, R.; Yang, Y.; Jia, Q.; Bian, B.; Zhuo, L., Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe3O4 nanocomposites, Mater. Sci. Eng. C 2014, 41, 142-151.
(22) Liu, B.; Liu, J., Accelerating peroxidase mimicking nanozymes using DNA, Nanoscale, 2015, 7, 13831-13835.
(23) Wei, H.; Wang, E., Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection, Anal. Chem., 2008, 80, 2250-2254.
(24) Yu, C.-J.; Wu, S.-M.; Tseng, W.-L., Magnetite Nanoparticle-Induced Fluorescence Quenching of Adenosine Triphosphate–BODIPY Conjugates: Application to Adenosine Triphosphate and Pyrophosphate Sensing, Anal. Chem
2013, 85, 8559-8565.
(25) Gyure, W. L., Comparison of several methods for semiquantitative determination of urinary protein, Clin. Chem., 1977, 23, 876-879.
(26) Ross, J., Energy Transfer from Adenosine Triphosphate, J. Phys. Chem. B, 2006, 110, 6987-6990.
(27) Ouameur, A. A.; Arakawa, H.; Ahmad, R.; Naoui, M.; Tajmir-Riahi, H. A., A Comparative study of Fe(II) and Fe(III) interactions with DNA duplex: major and minor grooves bindings, DNA Cell Biol., 2005, 24, 394-401.
(28) Liu, Y.; Purich, D. L.; Wu, C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L.; Cansiz, S.; Hou, W.; Wang, Y.; Yang, S.; Tan, W., Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties, J. Am. Chem. Soc., 2015, 137, 14952-14958.
(29) Ding, F.; Li, N.; Han, B.; Liu, F.; Zhang, L.; Sun, Y., The binding of C.I. Acid Red 2 to human serum albumin: Determination of binding mechanism and binding site using fluorescence spectroscopy, Dyes Pigm., 2009, 83, 249-257.
(30) Anees, P.; Sreejith, S.; Ajayaghosh, A., Self-Assembled Near-Infrared Dye Nanoparticles as a Selective Protein Sensor by Activation of a Dormant Fluorophore, J. Am. Chem. Soc., 2014, 136, 13233-13239.
(31) Martin, H., Laboratory Measurement of Urine Albumin and Urine Total Protein in Screening for Proteinuria in Chronic Kidney Disease, Clin Biochem Rev., 2011, 32, 97-102.
(32) Mogensen, C. E.; Chachati, A.; Christensen, C. K.; Close, C. F.; Deckert, T.; Hommel, E.; Kastrup, J.; Lefebvre, P.; Mathiesen, E. R.; Feldt-Rasmussen, B.; et al., Microalbuminuria: an early marker of renal involvement in diabetes, Uremia investigation, 1985, 9, 85-95.
(33) Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D., Optimization of the preparation process for human serum albumin (HSA) nanoparticles, Int. J. Pharm., 2003, 257, 169-180.
(34) Peng, Z. G.; Hidajat, K.; Uddin, M. S., Selective and sequential adsorption of bovine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles, J. Colloid Interface Sci., 2005, 281, 11-17.
(35) Hovanessian, A. G.; Awdeh, Z. L., Gel Isoelectric Focusing of Human-Serum Transferrin, Eur. J. Biochem., 1976, 68, 333-338.
(36) Abeyrathne, E. D. N. S.; Lee, H. Y.; Ahn, D. U., Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white, Poult Sci., 2014, 93, 1001-1009.
(37) Yao, Z.; Ma, W.; Yang, Y.; Chen, X.; Zhang, L.; Lin, C.; Wu, H.-C., Colorimetric and fluorescent detection of protamines with an anionic polythiophene derivative, Org. Biomol. Chem., 2013, 11, 6466-6469.
(38) De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M., Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein, Nat. Chem., 2009, 1, 461-465.
(39) Long, L.; Jin, J. Y.; Zhang, Y.; Yang, R.; Wang, K., Interactions between protein and porphyrin-containing cyclodextrin supramolecular system: a fluorescent sensing approach for albumin, Analyst, 2008, 133, 1201-1208.
(40) Smith, S. E.; Williams, J. M.; Ando, S.; Koide, K., Time-Insensitive Fluorescent Sensor for Human Serum Albumin and Its Unusual Red Shift, Anal. Chem, 2014, 86, 2332-2336.
(41) Volkova, K. D.; Kovalska, V. B.; Losytskyy, M. Y.; Reis, L. V.; Santos, P. F.; Almeida, P.; Lynch, D. E.; Yarmoluk, S. M., Aza-substituted squaraines for the fluorescent detection of albumins, Dyes Pigm., 2011, 90, 41-47.
(42) Wang, X.; Wang, X.; Wang, Y.; Guo, Z., Terbium(iii) complex as a luminescent sensor for human serum albumin in aqueous solution, Chem. Commun., 2011, 47, 8127-8129.
(43) Fan, X.; He, Q.; Sun, S.; Li, H.; Pei, Y.; Xu, Y., Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging, Chem. Commun., 2016, 52, 1178-1181.
(44) Min, J.; Lee, J. W.; Ahn, Y.-H.; Chang, Y.-T., Combinatorial Dapoxyl Dye Library and its Application to Site Selective Probe for Human Serum Albumin, J. Comb. Chem., 2007, 9, 1079-1083.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code