Responsive image
博碩士論文 etd-0604117-124340 詳細資訊
Title page for etd-0604117-124340
論文名稱
Title
摻雜效應對α-Cu2V2O7的磁性與介電性質研究
Effects of magnetic and nonmagnetic elements doping on the magnetic and dielectric properties of α-Cu2V2O7
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-19
繳交日期
Date of Submission
2017-07-04
關鍵字
Keywords
釩酸鹽氧化物、多鐵性、Cu2V2O7、摻雜效應、DM交互作用
Cu2V2O7, doping effect, Dzyaloshinskii-Moriya (DM) interaction, vanadates oxide materials, multiferroic
統計
Statistics
本論文已被瀏覽 5708 次,被下載 521
The thesis/dissertation has been browsed 5708 times, has been downloaded 521 times.
中文摘要
釩酸鹽氧化物因其幾何結構與電子特性之特殊性引起部分學者關注,近期也有研究指出多鐵性材料TM2V2O7(TM =Cu, Co and Ni)由於晶體結構和磁特性所造成的磁驅動電的現象。材料Co2V2O7晶體結構為單斜晶對稱結構,在Co2V2O7中,兩個Co2+O6陽離子八面體共邊連接,且沿c軸排列成鋸齒鏈,鏈與鏈之間又被非磁性的(V2O7)4-離子分開,導致一維不穩態反鐵磁序。而Cu2V2O7有三種不同的多晶型態,較穩定的兩種為: (I) α- Cu2V2O7結構,為斜方與非中心對稱;與(II) - Cu2V2O7結構,為單斜與中心對稱。α-Cu2V2O7中,Cu2+O5多面體形成交聯鏈網絡,與Co2V2O7一樣,Cu2+O5排成的一條條長鏈被不具磁性的(V2O7)4-陰離子分開,使系統發生Dzyaloshinskii-Moriya (DM)交互作用,並引起弱鐵磁性。本研究摻雜了低濃度(5%)的磁性元素(Co)和非磁性元素(Zn和Ga),以了解摻雜效應對α-Cu2V2O7在結構、磁性和介電性質方面的影響。我們的磁化數據清楚的表示不同元素的摻雜確實影響α-Cu2V2O7的磁特性。特別在α-Cu2V2O7中摻雜磁性元素Co對磁特性有顯著的影響,而非磁性元素的摻雜並未改變結構中的DM交互作用。
Abstract
Vanadates oxide materials exhibit a variety of functional properties whose origin is closely related to the structural and electronic peculiarities of the compounds. Recently, in the vanadatesTM2V2O7 (TM = Cu, Co and Ni), a magnetically driven ferroelectric phenomena has been reported. The multiferroic ordering of these system closely connected with the crystal structure and their magnetic properties. The crystallographic structure for Co2V2O7 exhibits a dichromate structure with crystallizes in a monoclinic symmetry, whereas Cu2V2O7 crystallizes in two different polymorphs (I) α-structure, that is orthorhombic and noncentrosymmetric, and the (II) -phase that is monoclinic and centrosymmetric. In Co2V2O7, two Co2+O6 cations octahedral connected via edge sharing and forms the zigzag chains along c-axis and chains are separated by nonmagnetic (V2O7)4- groups that lead to frustrated one dimensional antiferromagnetic ordering. On the other hand, in α-Cu2V2O7, Cu2+O5 polyhedral form the cross-linking chain network which are separated by (V2O7)4- anion units makes system a weak ferromagnet ground state induced by Dzyaloshinskii-Moriya (DM) interaction. In these present study, we are doping the small concentration (5%) of magnetic (Co) and nonmagnetic (Zn and Ga) elements to understand the effect of doping on the structural magnetic and dielectric properties of α-Cu2V2O7. Our magnetization data clearly indicates that the Co doping significantly modifies the ground state magnetic property by invoking the frustration. However nonmagnetic elements does not show much influence on the strength of DM interaction of α-Cu2V2O7. We believe local structural modulation by chemical doping with different doping element might alters the magnetic ground state of α-Cu2V2O7.
目次 Table of Contents
論文審定書+i
誌謝+iii
論文摘要+iv
Abstract+v
目錄+vii
圖目錄+ix
表目錄+xi
第一章 簡介+1
1-1 多鐵性材料介紹與磁性簡介+1
1-2 超交換作用+6
1-3 材料介紹+8
1-3-1 Cu2V2O7簡介+8
1-3-2 Co2V2O7簡介+19
1-4 研究動機+22
第二章 實驗儀器與方法+23
2-1 X光繞射分析儀+23
2-2磁性量測儀器及量測方法+25
2-3 CLOSE CYCLE REFRIGERATOR (CCR) SYSTEM+30
2-4 X光吸收近邊緣結構光譜+31
第三章 實驗結果與討論+33
3-1 樣品製備+33
3-2 X-RAY結構分析+36
3-3 磁性與電性實驗結果與討論+42
3-3-1 磁性實驗量測結果+42
3-3-2 電性實驗量測結果+49
3-4 XANES實驗結果+52
結論+55
參考文獻+56
參考文獻 References
[1] Hill, N.A., Density functional studies of multiferroic magnetoelectrics. Annual Review of Materials Research, 2002. 32: p. 1-37.
[2] Khomskii, D., Classifying multiferroics: Mechanisms and effects. Physics, 2009. 2.
[3] Hur, N., et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004. 429(6990): p. 392-395.
[4] Cheong, S.-W. and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007. 6(1): p. 13-20.
[5] Spaldin, N.A. and M. Fiebig, The renaissance of magnetoelectric multiferroics. Science, 2005. 309(5733): p. 391-392.
[6] van den Brink, J. and D.I. Khomskii, Multiferroicity due to charge ordering. Journal of Physics-Condensed Matter, 2008. 20(43).
[7] Schmid, H., Multi-ferroic magnetoelectrics. Ferroelectrics, 1994. 162(1): p. 317-338.
[8] Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics D-Applied Physics, 2005. 38(8): p. R123-R152.
[9] Gao, J.S. and N. Zhang, Acoustic wave coupled magnetoelectric effect. Journal of Magnetism and Magnetic Materials, 2016. 410: p. 23-26.
[10] Nan, C.W., Y.H. Lin, and J.H. Huang, Magnetoelectricity of multiferroic composites. Ferroelectrics, 2002. 280: p. 319-329.
[11] Kanamori, J., SUPEREXCHANGE INTERACTION AND SYMMETRY PROPERTIES OF ELECTRON ORBITALS. Journal of Physics and Chemistry of Solids, 1959. 10(2-3): p. 87-98.
[12] Kramers, H.A., L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique. Physica, 1934. 1(1-6): p. 182-192.
[13] Anderson, P.W., Antiferromagnetism. Theory of Superexchange Interaction. Physical Review, 1950. 79(2): p. 350-356.
[14] Pommer, J., et al., Interplay between structure and magnetism in the spin-chain compound(Cu,Zn)2V2O7. Physical Review B, 2003. 67(21).
[15] Fleury, P. C. R. C. R. Acad. Sci., Ser. C 1966, 263, 1375.
[16] Krivovichev, S.V., et al., Crystal structure of gamma-cu(2)v(2)o(7) and its comparison to blossite (alpha-cu(2)v(2)o(7)) and ziesite (beta-cu(2)v(2)o(7)). Canadian Mineralogist, 2005. 43: p. 671-677.
[17] CALVO, C. and R. FAGGIANI, alpha Cupric Divanadate SHORT STRUCTURAL PAPERS 1974.
[18] Sannigrahi, J., et al., Exchange-striction induced giant ferroelectric polarization in copper-based multiferroic materialα−Cu2V2O7. Physical Review B, 2015. 91(22).
[19] Sotojima, K., et al., Thermoelectric Properties and Phase Transition of (ZnxCu2−x)V2O7. Materials Transactions, 2007. 48(8): p. 2094-2099.
[20] Gitgeatpong, G., et al., Magnetic structure and Dzyaloshinskii-Moriya interaction in theS=1/2 helical-honeycomb antiferromagnetα−Cu2V2O7. Physical Review B, 2015. 92(2).
[21] Ponomarenko, L.A., et al., Magnetic properties of Cu2V2O7. Physica B, 2000. 284: p. 1459-1460.
[22] Touaiher, M., et al., Crystal structures and magnetic properties of M2V2O7 (M=Co, Ni and Cu) compounds. Materials Chemistry and Physics, 2004. 85(1): p. 41-46.
[23] Moriya, T., NEW MECHANISM OF ANISOTROPIC SUPEREXCHANGE INTERACTION. Physical Review Letters, 1960. 4(5): p. 228-230.
[24] S.V. Vonsovskii, in: R. Hardin (Ed.), Magnetism, Wiley, New York, 1974.
[25] Lee, Y.W., et al., Magnetism and magnetoelectricity in the polar oxide alpha-Cu2V2O7. Epl, 2016. 113(2).
[26] Yu, W.L. and M.G. Zhao, SPIN-HAMILTONIAN PARAMETERS OF S-6-STATE IONS. Physical Review B, 1988. 37(16): p. 9254-9267.
[27] Degl'Innocenti, E.L., ON THE EFFECTIVE LANDE FACTOR OF MAGNETIC LINES. Solar Physics, 1982. 77(1-2): p. 285-289.
[28] Kim, P. and J.H. Han, Orbital Dzyaloshinskii-Moriya exchange interaction. Physical Review B, 2013. 87(20).
[29] Hu, C.D., The Dzyaloshinskii-Moriya interaction in metals. Journal of Physics-Condensed Matter, 2012. 24(8).
[30] Yashima, M. and R.O. Suzuki, Electronic structure and magnetic properties of monoclinicβ-Cu2V2O7: AGGA+Ustudy. Physical Review B, 2009. 79(12).
[31] He, Z. and Y. Ueda, Flux Growth of β-Cu2V2O7Single Crystals in a Closed Crucible. Crystal Growth & Design, 2008. 8(7): p. 2223-2226.
[32] Sánchez-Andújar, M., et al., Role of the magnetic ordering on the dielectric response of M2V2O7 (M = Co and Cu) divanadates. Journal of Applied Physics, 2011. 109(5): p. 054106.
[33] C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry (Cambridge University Press, Cambridge, 1997).
[34] A. S. Tracey, G. R. Willsky, and E. S. Takeuchi, Vanadium Chemistry, Biochemistry, Pharmacology and Applications, (CRC press, Boca Raton, 2007).
[35] Reddy, C.V.S., et al., Cathodic performance of (V2O5+PEG) nanobelts for Li ion rechargeable battery. Journal of Power Sources, 2007. 166(1): p. 244-249.
[36] User`s Manual of the 6m-HSGM Beamline at SRRC. May 1996.
[37] He, Z., et al., Magnetic properties of Co2V2O7 single crystals grown by flux method. Journal of Solid State Chemistry, 2009. 182(9): p. 2526-2529.
[38] Khomskii, D.I. and G.A. Sawatzky, Interplay between spin, charge and orbital degrees of freedom in magnetic oxides. Solid State Communications, 1997. 102(2-3): p. 87-99.
[39] Johnson, R.D., et al., Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn7O12. Physical Review Letters, 2012. 108(6).
[40] Lu, X.Z., et al., Giant Ferroelectric Polarization of CaMn7O12 Induced by a Combined Effect of Dzyaloshinskii-Moriya Interaction and Exchange Striction. Physical Review Letters, 2012. 108(18).
[41] Inaba, K., X-ray thin-film measurement techniques. The Rigaku Journal, 2008. 24(1).
[42] D.K. Bowen and B.K. Tanner: “High Resolution X-ray Diffraction and Topography”, Taylor & Francis Inc. (1998)
[43] Parratt, L.G., Surface Studies of Solids by Total Reflection of X-Rays. Physical Review, 1954. 95(2): p. 359-369.
[44] Makhlin, Y., G. Schon, and A. Shnirman, Josephson-junction qubits with controlled couplings. Nature, 1999. 398(6725): p. 305-307.
[45] Makhlin, Y., G. Schon, and A. Shnirman, Quantum-state engineering with Josephson-junction devices. Reviews of Modern Physics, 2001. 73(2): p. 357-400.
[46] Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical Review, 1957. 108(5): p. 1175-1204.
[47] Sacepe, B., et al., Localization of preformed Cooper pairs in disordered superconductors. Nature Physics, 2011. 7(3): p. 239-244.
[48] Czernuszewicz, R.S., CLOSED-CYCLE REFRIGERATOR SOLUTION AND ROTATING SOLID SAMPLE CELLS FOR ANAEROBIC RESONANCE RAMAN-SPECTROSCOPY. Applied Spectroscopy, 1986. 40(4): p. 571-573.
[49] Erbil, A., et al., TOTAL-ELECTRON-YIELD CURRENT MEASUREMENTS FOR NEAR-SURFACE EXTENDED X-RAY-ABSORPTION FINE-STRUCTURE. Physical Review B, 1988. 37(5): p. 2450-2464.
[50] Stephenson, R.J., X-Ray Fluorescence Yields. Physical Review, 1937. 51(8): p. 637-642.
[51] Sole, V.A., et al., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B-Atomic Spectroscopy, 2007. 62(1): p. 63-68.
[52] S. Eisebitt, T. Böske, J.–E. Rubensson, and W. Eberhardt, Phys. Rev. B 47,14013 (1993).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code