Responsive image
博碩士論文 etd-0604118-102908 詳細資訊
Title page for etd-0604118-102908
論文名稱
Title
在7T下使用PRESS偵測Glutamate與Glutamine:針對回訊時間之探討
Detection of Glutamate and Glutamine using PRESS at 7T : a Study on Echo Timings.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-08
繳交日期
Date of Submission
2018-07-04
關鍵字
Keywords
磁共振頻譜、高磁場、回訊時間、麩胺酸、麩醯胺酸
Magnetic Resonance Spectroscopy(MRS), Glutamine, Glutamate, echo time(TE), high magnetic field
統計
Statistics
本論文已被瀏覽 5670 次,被下載 0
The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times.
中文摘要
隨著技術的進步,磁共振頻譜(Magnetic Resonance Spectroscopy , MRS)對於代謝物的定量與分析愈加準確,臨床上的應用也愈加廣泛。大腦中代謝物的變化可以作為許多中樞神經性疾病(Central Nervous System diseases, CNS)的診斷依據,如阿茲海默症(Alzheimer’s Disease, AD)、自閉症(Autism Spectrum Disorder, ASD)、帕金森氏症(Parkinson’s Disease)等。
本篇研究主要探討於高磁場7特斯拉(Tesla, T)環境下,使用PRESS (Point RESolved Spectroscopy) 序列針對在固定回訊時間(Echo Time, TE)下,TE1、TE2的改變,觀察Glutamate (麩胺酸)與Glutamine (麩醯胺酸)的變化以及其濃度定量的準確性。由於耦合系統的關係,加上大腦中Glutamate與Glutamine濃度較低,導致在頻譜上難以區分兩個代謝物。因此,此次運用回訊時間的設置,獲取代謝物訊號並利用LCModel分析定量該時間下獲得的Glutamate與Glutamine濃度比例與文獻相關性及回訊時間對代謝物的影響。
此次研究使用了三種不同的實驗方法,觀察之間的關聯性及其變化。在模擬實驗、仿體實驗及小鼠實驗中,結果顯示7T下使用PRESS序列可以成功獲得Glutamate 與Glutamine的訊號,透過不同的實驗方式驗證了在相同 TE 下,不同的 TE 組合會對量化分析造成不同的結果。尤其是 J-evolution 現象的出現,會造成後續的頻譜量化分析上的不準確。我們發現 Glutamine 在 TE = 32 ms 下,在濃度定量上使用(TE1,TE2) = (25.2 , 6.8) ms較(TE1 , TE2) = (16 , 16) ms準確。因此,希望透過此實驗了解回訊時間對耦合代謝物的頻譜變化及濃度定量上的影響,提高定量分析上的準確性,進而在中樞神經性疾病診斷上可以提供更多可觀察的生物標記。
Abstract
As technology advances, magnetic resonance spectroscopy (MRS) has become more accurate for metabolite quantification and useful for clinical application. Metabolites can be used as for the diagnosis of many central nervous system diseases (CNS), such as Alzheimer's Disease (AD) , Autism Spectrum Disorder (ASD), Parkinson's Disease , etc.

Base on the changes of sub echo timings at high magnetic field 7 Tesla with PRESS (Point RESolved Spectroscopy) sequence, we want to observe the effects Glutamate and Glutamine sub echo timings and quantitative concentration accurately. Because of the complex J-coupling resonances, Glu and Gln in brain is difficult to be detected individually via MRS techniques. Therefore, metabolite signals were obtained by using the sub echo timings and LCModel analysis was used to quantify the concentrations in this study. The concentration ratio of Glutamate to Glutamine obtained by our proposed method is similar with those values published in the literatures.

In this study, spectral simulation, phantom and in vivo (mouse) experiments were performed. The results showed that the signal of Glutamate and Glutamine could be successfully detected by using PRESS sequence at 7T. According to the combination of different TE1 and TE2, it was found that both metabolites had J- evolution phenomenon, and Glutamine more obvious than Glutamate. In addition, the results on mouse experiments and phantom experiments showed that the sub echo timings have significant influence on the results, which may cause quantitative error. According to the published literatures, the concentration ratio of Glutamate to Glutamine in the mouse brain is similar with the values we obtained. Therefore, this experiment will help to understand the effect of sub echo timings on the spectral and concentration of coupled metabolites. Our results benefit the improvement of accuracy quantitative analysis, so as to provide more reliable biomarkers in the diagnosis of CNS diseases.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abrstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 5
1.4 組織架構 8
第二章 原理 9
2.1 磁共振頻譜 9
2.2 化學位移 10
2.3 J-耦合與耦合代謝物 11
2.4 PRESS頻譜編輯技術 14
第三章 方法與步驟 16
3.1 VeSPA 16
3.2 LCModel 18
3.3 實驗設計 21
3.3.1 回訊時間設定 23
3.4 利用TE組合偵測 Glutamate、Glutamine 27
3.4.1 模擬實驗(Simulation) 27
3.4.2 仿體實驗(Phantom) 28
3.4.3 小鼠實驗(In-vivo) 30
3.5 LCModel量化分析 31
3.5.1 Basis sets 設定 31
3.5.2 Control Parameters設定 35
第四章 結果 37
4.1 VeSPA 頻譜模擬 (Simulation) 37
4.2 仿體實驗 (Phantom) 40
4.3 小鼠實驗 (In-vivo) 43
4.4 頻譜量化分析比較 46
第五章 討論與結論 54
5.1 討論 54
5.2 結論 57
第六章 參考文獻 59
參考文獻 References
1. Hurd, R., et al., Measurement of brain glutamate using TE‐averaged PRESS at 3T. Magnetic resonance in medicine, 2004. 51(3): p. 435-440.
2. Thompson, R.B. and P.S. Allen, A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate. Magnetic resonance in medicine, 1998. 39(5): p. 762-771.
3. Near, J., et al., J‐difference editing of gamma‐aminobutyric acid (GABA): Simulated and experimental multiplet patterns. Magnetic resonance in medicine, 2013. 70(5): p. 1183-1191.
4. Snyder, J., R.B. Thompson, and A.H. Wilman, Difference spectroscopy using PRESS asymmetry: application to glutamate, glutamine, and myo‐inositol. NMR in biomedicine, 2010. 23(1): p. 41-47.
5. Doblas, S., et al., In vivo characterization of several rodent glioma models by 1H MRS. NMR in biomedicine, 2012. 25(4): p. 685-694.
6. Lei, H., et al., Evolution of the neurochemical profile after transient focal cerebral ischemia in the mouse brain. Journal of Cerebral Blood Flow & Metabolism, 2009. 29(4): p. 811-819.
7. Chassain, C., et al., Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson’s disease, the MPTP‐intoxicated mouse. Journal of neurochemistry, 2008. 105(3): p. 874-882.
8. Albrecht, J., M. Zielińska, and M.D. Norenberg, Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochemical pharmacology, 2010. 80(9): p. 1303-1308.
9. Lavoie, J., et al., Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Journal of neurochemistry, 1987. 49(3): p. 692-697.
10. Laubenberger, J., et al., Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology, 1997. 112(5): p. 1610-1616.
11. Kreis, R., N. Farrow, and B. Ross, Diagnosis of hepatic encephalopathy by proton magnetic resonance spectroscopy. The Lancet, 1990. 336(8715): p. 635-636.
12. Hattori, N., et al., Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer's disease. Neuroreport, 2002. 13(1): p. 183-186.
13. Horder, J., et al., Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H] MRS study. Translational psychiatry, 2013. 3(7): p. e279.
14. Kulak, A., et al., Neurochemical profile of the developing mouse cortex determined by in vivo1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. Journal of neurochemistry, 2010. 115(6): p. 1466-1477.
15. Córdoba, J., et al., 1H magnetic resonance in the study of hepatic encephalopathy in humans. Metabolic brain disease, 2002. 17(4): p. 415-429.
16. Albrecht, J., et al., Roles of glutamine in neurotransmission. Neuron glia biology, 2010. 6(4): p. 263-276.
17. Zwingmann, C. and R. Butterworth, An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Neurochemistry international, 2005. 47(1): p. 19-30.
18. Miller, J.C., Magnetic Resonance Spectroscopy in the Brain. Radiology Rounds, 2012. 10(7).
19. Provencher, S.W., LCModel & LCMgui user’s manual.
20. Prescot, A.P., et al., In vivo T2 relaxation time measurement with echo‐time averaging. NMR in Biomedicine, 2014. 27(8): p. 863-869.
21. Pfeuffer, J., et al., Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. Journal of magnetic resonance, 1999. 141(1): p. 104-120.
22. De Graaf, R.A., In vivo NMR spectroscopy: principles and techniques. 2013: John Wiley & Sons.
23. das Neves Duarte, J.M., et al., N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biological psychiatry, 2012. 71(11): p. 1006-1014.
24. Duarte, J.M., et al., The neurochemical profile quantified by in vivo 1 H NMR spectroscopy. Neuroimage, 2012. 61(2): p. 342-362.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code