Responsive image
博碩士論文 etd-0605104-183446 詳細資訊
Title page for etd-0605104-183446
論文名稱
Title
INF1蛋白引發菸草葉片過敏反應時對木質素生化合成之影響
Effect of INF1 on Lignin Biosynthesis in Tobacco Leaves during the Hypersensitive Response
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
35
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-05-21
繳交日期
Date of Submission
2004-06-05
關鍵字
Keywords
INF1、菸草、木質素、過敏反應、peroxidase、過氧化氫、laccase.
lignin, hydrogen peroxide, peroxidase, INF1, tobacco, laccase., hypersensitive response
統計
Statistics
本論文已被瀏覽 5728 次,被下載 2145
The thesis/dissertation has been browsed 5728 times, has been downloaded 2145 times.
中文摘要
選擇完全展開的菸草葉片處理INF1蛋白,在12小時內就可以看到HR損傷面積,隨著處理時間延長至48小時損傷面積已擴散至整個接種區域。利用等電點聚焦電泳,可觀察到在INF1處理的菸草葉片中POD活性的增強和木質素的增加相關,尤其是陽性PODs (pI 9.5, pI 8.7, pI8.3, pI7.8, pI7.4)。INF1處理的菸草葉片中可看出陽性(pI 9.5)和陰性(pI 4.4)POD transcripts增加和POD活性的增加相關。而陽性(pI 9.6)laccase transcripts的增加也和laccase活性增加相關。過氧化氫含量的減少可能是被引發的POD所消耗掉。在我們的結果中,推測laccase作用在INF1處理的早期,而當接種處理時間延長,POD(特別是陽性POD)和laccase則共同作用在木質素的合成上。
Abstract
Infection of fully expanded leaves of tobacco with INF1 causes the appearance of HR lesions within 12 h and progressive to all infection sites after 48 h treatment. Among the POD isozymes, the increase of cationic PODs and anionic PODs is correlated with the rise of lignin contents in INF1-treated leaves, especially cationic PODs (pI 9.5, pI 8.7, pI 8.3, pI 7.8, pI 7.4). It was suggested that the induction of POD activity resulted in part of H2O2 reduction. The increase of cationic (pI 9.5) and anionic (pI 4.4) POD transcripts was correlated with the increased cationic and anionic PODs activity in INF1-treated leaves. Therefore, the increased POD activity is due to the de novo synthesis of the cationic (pI 9.5) and anionic (pI 4.4) PODs in INF1-treated leaves. The increase in cationic pI 9.6 laccase transcript was also correlated with the increased cationic laccase activity in INF1-treated leaves. Our results suggest that laccase might play a major role on lignin biosynthesis at the early stage (6 h), and as the inoculation time was prolonged, peroxidases (especially cationic POD) and laccases will work together on lignin biosynthesis.
目次 Table of Contents
Abstract in Chinese ------------------------------I

Abstract in English -------------------------------II

Table of contents -------------------------------III

List of figures -----------------------------------IV

Introduction ------------------------------------- 1

Materials and Methods ------------------------ 5

Results ------------------------------------------- 10

Discussion --------------------------------------- 14

References --------------------------------------- 18

Figures -------------------------------------------- 22
參考文獻 References
S. Baccouch, A. Chaoui, E.E. Ferjani, Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots, Plant Physiol. Biochem. 36 (1998) 689-694.
A.R. Barceló, G.J. Aznar-Asensio, Coniferyl alcohol oxidase activity of a cell-wall-located class III peroxidase, Aust. J. Plant Physiol. 26 (1999) 411-419.
C.S. Bestwick, I.R. Brown, J.W. Mansfield, Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce, Plant Physiol. 118 (1998) 1067-1078.
K.A. Blee, J.W. Choi, A.P. O’Connell, W. Schuch, N.G. Lewis, G.P. Bolwell, A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification, Phytochemistry 64 (2003) 163-176
W. Boerjan, J. Ralph, M. Baucher, Lignin biosynthesis, Annu. Rev. Plant Biol. 54 (2003) 519-546.
D.J. Bradley, P. Kjellbom, C.J. Lamb, Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response, Cell 70 (1992) 21-30.
R.J. Bruce, C.A. West, Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean, Plant Physiol. 91 (1989) 889-897.
A.C. Cazalé, M.A. Rouet-Mayer, H. Barbier-Brygoo, Y. Mathieu, L. Christiane, Oxidative burst and hypoosmotic stress in tobacco cell suspensions, Plant Physiol. 116 (1998) 659-669.
C.H. Chen, H.J. Lin, M.J. Ger, D. Chow, T.Y. Feng, cDNA cloning and characterization of a plant protein that may be associated with the harpinpss-mediated hypersensitive response, Plant Mol. Biol. 43 (2000) 429-438.
J.H. Christensen, G. Bauw, K.G. Welinder, M. van Montagu,W. Boerjan,
Purification and characterization of peroxidases correlated with lignification in Poplar xylem, Plant Physiol.118 (1998) 125-135.
M.D. Curtis, J.P. Nourse, J.M. Manners, Nucleotide sequence of a cationic peroxidase gene form the tropical forage legume Stylosanthes humilis, Plant Physiol. 108 (1995) 1303-1304.
S. Dorey, M. Kopp, P. Geoffroy, B. Fritig, S. Kauffmann, Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin, Plant Physiol. 121 (1999) 163-171.
C.H. Foyer, H. Lopez-Delgado, J.F. Dat, I.M. Scott, Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling, Physiologia Plantarum 100 (1997) 241–254.
S.M. Gallego, M.P. Benavides, M.I. Tomaro, Effect of heavy metal ion excess on sunflower leaces: evidence for involvement of oxidative stress, Plant Sci. 121 (1996) 151-159.
B. Gavnholta, K. Larsenb, Molecular biology of plant laccases in relation to lignin formation, Physiologia Plantarum 116 (2002) 273–280.
M.J. Ger, C.H. Chen, S.Y. Hwang, H.E. Huang, A.R. Podile, B.V. Dayakar, T.Y. Feng, Constitutive expression of hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response, Mol. Plant-Miocrobe Inter. 15 (2002) 764-773.
Y. Ichinose, S. Andi, R. Doi, R. Tanaka, F. Taguchi, M. Sasabe,K. Toyoda, T. Shiraishi, T.Yamada, Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture, Plant Physiol. Biochem. 39 (2001) 771–776.
S. Kamon, P. van West, V.G.A.A. Vleeshouwers, K.E. de Groot, F. Govers, A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato, Mol. Plant-Microb. Inter. 10 (1997) 13-20.
S. Kamon, H. Lindqvist, F. Govers, A novel class of elicitin-like genes from Phytophthora infestans, Mol. Plant-Microb. Inter. 10 (1997) 1028-1030.
S. Kamon, P. van West, V.G.A.A. Vleeshouwers, K.E.de Groot, F. Govers, Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1, Plant Cell 10 (1998) 1413-1425.
A. Kärkönen, S. Koutaniemi, M. Mustonen, K. Syrjänen, G. Brunow, I. Kilpeläinen, T.H. Teeri, L.K. Simola, Lignification related enzymes in Picea abies suspension cultures, Physiol. Plant. 114 (20002) 343-353.
A. Kawaoka, E. Matsunaga, S. Endo, S. Kondo, K. Yoshida, A. Shinmyo, H. Ebinuma, Ectopic expression of a horseradish peroxidase enhances growth rate and increase oxidative stress resistance in Hybrid Aspen, Plant Physiol. 132 (2003) 1177-1185.
A. Levine, R. Tenhaken, R. Dixon, C. Lamb, H2O2 from oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79 (1994) 583-593.
N.G. Lewis, L.B. Davin, S. Sarkanen, The nature and function of lignins, in: Barton DHR, Nakasaki K, Methcohn O (Eds.), Comprehensive Natural Products Chemistry, Vol. 3, Elsevier Science, New York, 1999, pp. 617–745.
L.M. Lagrimini, S. Rothstein, Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection, Plant Physiol. 84 (1987) 438-442.
L.M. Lagrimini, W. Burkhart, M. Moyer, S. Rothstein, Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression, Proc. Natl. Acad. Sci. USA 84 (1987) 7542-7546.
L.M. Lagrimini, Wound-induced deposition of polyphenols in transgenic plants overepressing peroxidase, Plant Physiol. 96 (1991) 577-583.
L.M. Lagrimini, V. Gingas, F. Finger, S. Rothstein, T.T.Y. Liu, Characteriztion of antisense transformed plants deficient in the tobacco anionic peroxidase, Plant Physiol. 114 (1997) 1187-1196.
M. Mäder, Compartmentation of peroxidase isoenzymes in plant cells, in: C. Penel, T. Gaspar, H. Greppin (Eds), Plant Peroxidases 1980-1990, University of Geneva, Switzerland, 1992, pp. 37-46.
A.M. Mayer, R. C. Staples, Laccase: new functions for an old enzyme, Phytochemistry 60 (2002) 551-565.
P.D. Olson, J.E. Varner, Hydrogen peroxide, Plant J. 4 (1993) 887-892.
F. Pomar, N. Caballero, M.A. Pedreño, A.R. Barceló, H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis, FEBS Lett. 519 (2002) 198-202.
M. Quiroga, C. Guerrero, M.A. Botella, A. Barceló, I. Amaya, M.I. Medina, F.J. Alonso, S.M. Forchetti, H. Tigier, V. Valpuesta, A tomato peroxidase involved in the synthesis of lignin and suberin, Plant Physiol. 122 (2000) 1119-1127.
P. Ranocha, G. McDougall, S. Hawkins, R. Sterjiades, G. Borderies, D. Stewart, M. Cabanes-Macheteau, A.M. Boudet, D. Goffner, Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar, Eur. J. Biochem. 259 (1999) 485–495.
P. Ranocha, M. Chabannes, S. Chamayou, S. Danoun, A. Jauneau, A-M. Boudet, D. Goffner, Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar, Plant Physiol. 129 (2002) 145-155.
K.D. Richards, E.J. Schott, Y.K. Sharma, K.R. Davis, R.C. Gardner, Aluminum induces oxidatives stress genes in Arabidopsis thaliana, Plant Physiol. 116 (1998) 409-418.
A. Richardson, G.J. McDougall, A laccase-type polyphenol oxidase from lignifying xylem of tobacco, Phytochemistry 44 (1997) 229-235.
M. Sasabe, K. Takeuchi, S. Kamoun, Y. Ichinose, F. Govers, K. Toyoda, T. Shiraishi, T.Yamada, Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspensions culture, Eur. J. Biochem. 267 (2000) 5005–5013.
R. Sterjiades, J.F.D. Dean, K.E.L. Eriksson, Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols, Plant Physiol. 99 (1992) 1162-1168.
R. Stejiades, J.F.D. Dean, G. Gamble, D.S. Himmelsbach, K.E.L. Eriksson, Extracellular laccase and peroxidase from sycamore maple (Acer pseudoplatanus) cell suspension cultures, Planta 190 (1993) 75-87.
F. Taguchi, R. Shimizu, R. Nakajima, K. Toyoda,T. Shiraishi,Y. Ichinose, Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response, Plant Physiol. Biochem. 41 (2003) 165–174.
R. Tenhaken, A. Levine, L.F. Brisson, R.A. Dixon, C. Lamb, Function of the oxidative burst in hypersensitive disease resistance, Proc. Natl. Acad. Sci. USA 92 (1995) 4158-4163.
W.C. Wang, Z.H. Liu, Harpinpss-induced peroxidase and lignin accumulation in tobacco during the hypersensitive response, Aust. J. Plant Physiol. 26 (1999) 265-272.
R. Whetten, R. Sederoff, Lignin biosynthesis, Plant cell 7 (1995) 1001-1013.
T. Yahraus, S. Chandra, L. Legendre, P.S. Low, Evidence for a mechanically induced oxidative burst, Plant Physiol. 109 (1995) 1259-1266.
X.S. Ye, S.Q. Pan, J. Kuc, Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus, Phytopathology 80 (1990) 1295-1299.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code