Responsive image
博碩士論文 etd-0605109-162538 詳細資訊
Title page for etd-0605109-162538
論文名稱
Title
編碼效益提升:動作估測及視訊轉編碼
Coding Performance Enhancement: Motion Estimation and Video Transcoding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-05-22
繳交日期
Date of Submission
2009-06-05
關鍵字
Keywords
視訊轉編碼、動作估測
video transcoding, motion estimation
統計
Statistics
本論文已被瀏覽 5687 次,被下載 1240
The thesis/dissertation has been browsed 5687 times, has been downloaded 1240 times.
中文摘要
隨著多媒體資訊的快速增長,視頻編碼標準在傳遞大量的視訊資料時,已經變得非常重要。運動估計藉由去除視訊資料中的時間冗餘物,絕對是高性能視頻編碼的關鍵。視頻轉碼,也成為一個適用於不同頻寬變換的重要方法。因此,在運動估計和視頻轉編碼的研究工作目前已被廣泛展開。在此論文中,概述了視頻壓縮技術,並將重點放在運動估計方法上。然後,介紹最具有代表性的運動估計搜尋演算法和提出的運動估計演算法,並實作出一些著名的視頻序列的實驗,評價和分析這些演算法。除此之外,也提出一個基於視覺注意力模型的有效視頻轉編碼,它使用拉格朗日最佳化來得到最低的失真成本。最後,對未來趨勢視頻編碼進行討論。透過提出的運動估計演算法,計算複雜度可以大大的降低,而在客觀的表現上卻只有些許的衰退。另外,所提出的視頻轉編碼方法,可以有效的降低位元率以符合所要求的頻寬。
Abstract
With the rapid growth of multimedia information, video coding standards have become crucial when transmitting large amount of video data. Motion estimation promises to be the key to high performance in video coding by removing the temporal redundancy of video data for storage and transmission. Video transcoding also becomes a significant scheme applied in different bandwidth transform. Due to their fundamentality, research works on motion estimation and video transcoding have been conducted extensively. In this thesis, an overview of video compression technique is presented with emphasis on motion estimation. Then, a survey of most representative motion estimation search algorithms and the proposed motion estimation algorithms are introduced. The evaluation and analysis of these algorithms based on a number of experiments on several famous test video sequences is presented. In addition, an efficient video transcoding via visual attention model with Lagrange optimization to minimum rate-distortion cost is proposed. Finally, an investigation of the future trend of video coding is discussed. Through the proposed algorithms of motion estimation, the computational complexity can be significantly reduced despite the fact that the objective quality of motion compensated images is slightly degraded. Moreover, through the proposed video transcoding method, the bit rate can be reduced to fit the requirement of bandwidth.
目次 Table of Contents
CHAPTER 1 INTRODUCTION 1
1.1 Overview of Video Coding and Compression 1
1.2 Overview of Motion Estimation and Compensation 3
1.3 Overview of Video Transcoding 11
1.4 Motivation 12
1.5 Organization of the Thesis 14
CHAPTER 2 Related Work 16
2.1 Related Works of Motion Estimation 16
2.1.1 Search-point Reduction Method…………………………………..…17
2.1.1.1 Full Search………………………………………..…………....17
2.1.1.2 Three Step Search…………..……………………………..…...17
2.1.1.3 New Three Step Search……………..…………….…………...19
2.1.1.4 Four Step Search………………..……………………….…….20
2.1.1.5 Block-Based Gradient Descent Search…………..……..……...22
2.1.1.6 Diamond Search………………..………………….…………..23
2.1.1.7 Hexagon-based Search……………………..………...………..25
2.1.1.8 Quarter Pixel Interpolation Search………….…………………27
2.1.1.9 New Cellular Search………………..………………………….28
2.1.2 Calculation Reduction Method……………………….……………...31
2.1.2.1 Normalized Partial Distortion Search……………………….....31
2.1.2.2 Neighboring Block-Based Search………..……...…………….33
2.2 Discussion 35
2.2.1 Comparisons of Motion Estimation Algorithms………...…………..35
2.2.2 Future Trend of Video Coding………..…………………………….36
2.3 Experimental Results 39
2.4 Summary 40
CHAPTER 3 Coarse-to-Fine Normalized Partial Distortion Search and Successive Accumulating Partial Distortion Search Algorithms 45
3.1 Coarse-to-Fine Normalized Partial Distortion Search Algorithm… 45
3.1.1 Coarse-to-Fine Normalized Partial Distortion Search Algorithm… 45
3.1.2 Experimental Results 52
3.1.3 Summary 56
3.2 Successive Accumulating Partial Distortion Search Algorithm .. ……………………………………………………………………...57
3.2.1 Successive Accumulating Partial Distortion Search Algorithm…..……………………………………..………………...58
3.2.2 Experimental Results 64
3.2.3 Summary 66
CHAPTER 4 Correlation-Based Normalized Partial Distortion Search Algorithm 69
4.1 Correlation-Based Normalized Partial Distortion Search Algorithm… 71
4.2 Experimental Results 77
4.3 Summary 79
CHAPTER 5 Video Transcoding via Visual Attention Model with Lagrange Optimization 82
5.1 Related Works… 83
5.2 Video Transcoding via Visual Attention Model with Lagrange Optimization… 84
5.2.1 Visual Attention Model 85
5.2.1.1 Color Quantization 86
5.2.1.2 Color Space Transformation 87
5.2.1.3 Contrast Value Calculation 89
5.2.2 Visual Attention Region Extraction 90
5.2.3 Video Transcoding via Visual Attention Model with Lagrange Optimization 91
5.3 Experimental Results 93
5.4 Summary 96
CHAPTER 6 Conclusions and Future Work 98
BIBLIOGRAPHY……………………………………………………………………101
參考文獻 References
[1] CCITT SGXV, “Description of reference model 8 (RM8),” Document 525, Working Party XV/4, Specialists Group on Coding for Visual Telephony, 1989.
[2] ITU Telecommunication Standardization Sector LBC-95, Study Group 15, Working Party 15/1, Expert’s Group on Very Low Bitrate Visual Telephony, available from from Digital Video Coding Group, Telenor Research and Development; or via http://www.nta.no/brukere/DVC/tmn5, 1998.
[3] H. Yu, F. Pan and Z. Lin, “Content adaptive rate control for H.264,” Int. J. of Innovative Computing, Information and Control, vol. 1, no. 4, pp. 685-700, 2005.
[4] ISO/IEC CD 11172-2 (MPEG-1 Video), “Information technology—coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbits,” video, 1993.
[5] ISO/IEC CD 13818-2-ITU-T H.262 (MPEG-2 Video), “Information technology—generic coding of moving pictures and associated audio information,” video, 1995.
[6] International Telecommunication Union──Telecommunication (ITU-T). Draft text of draft international standard for advance video coding. Recommendation H.264 (draft), 2003.
[7] ITU-T Recommendation H.264 & ISO/IEC 14496-10 (MPEG-4) AVC. Advance video coding for generic audiovisual services. (version 1: 2003, version 2: 2004, version 3: 2005).
[8] Y. Kubo, S. Fujita and S. Sugimoto, “Estimation and Validation of Integer Ambiguity in Carrier Phase GPS Positioning,” Int. J. of Innovative Computing, Information and Control, vol. 4, no. 2, pp. 153-164, 2008.
[9] K. Najim, E. Ikonen and E. Gomez-Ramirez, “Trajectory Tracking Control Based on a Genealogical Decision Tree Controller for Robot Manipulators,” Int. J. of Innovative Computing, Information and Control, vol. 4, no. 1, pp. 53-62, 2008.
[10] Z.-B. Musa and J. Watada, “Multi-camera tracking system for human motions in different areas and situations,” Int. J. of Innovative Computing, Information and Control, vol. 4, no. 5, pp. 1213-1222, 2008.
[11] H. Fujioka, H. Kano and X. Chen, “Motion recovery under perspective stereo vision,” Int. J. of Innovative Computing, Information and Control, vol. 5, no. 1, pp. 167-182, 2009.
[12] M.-E. Al-Mualla, C.-N. Canagarajah and D.-R. Bull, “Video coding for mobile communications,” Academic Press, 2002.
[13] C. Stiller and J. Konrad, “Estimating motion in image sequences,” Signal Processing Magazine, vol. 16, no. 4, pp. 70–91, 1999.
[14] Sohm and P. Oliver: US20077260148 (2007).
[15] S. Kappagantula and K. R. Rao, “Motion compensated interframes image prediction,” IEEE Transactions on Communication, vol. 33, no. 9, pp. 1011–1015, 1985.
[16] C.-J. Kuo, C.-H. Yeh and S. F. Odeh, “Polynomial search algorithm for motion estimation,” Transactions on Circuits and Systems for Video Technology, vol.10, no. 5, pp. 813–818, 2000.
[17] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–290, 2000.
[18] C.-L. Lin and M.-C. Lee: US20087408990 (2008).
[19] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motioncompensated interframe coding for video conferencing,” in Proceedings of NTC81, G5.3.1–G5.3.5, 1981.
[20] B. Liu and A. Zaccarin, “New fast algorithm for estimation of block motion vectors,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, no. 2, pp. 148-157, 1993.
[21] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 313-317, 1996.
[22] L.-K. Liu and E. Feig, “A block-based gradient descent algorithm for fast block motion estimation in video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 4, pp. 419-422, 1996.
[23] J.-R. Jain and A.-K. Jain, “Displacement measurement and its application in interframes image coding,” IEEE Transactions on Communications, vol. 29, no. 5, pp. 1799-1808, 1981.
[24] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Transactions on Communications, vol. 38, no. 7, pp. 950-953, 1990.
[25] L.-W. Lee, J.-F. Wang, J.-Y. Lee and J.-D. Shie, “Dynamic search-window adjustment and interlaced search for block-matching algorithm,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, no.1, pp. 85-87, 1993.
[26] C. Zhu, X. Lin and L.-P. Chau, “Hexagon-based search pattern for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no.5, pp. 349–355, 2002.
[27] J.-Y. Tham, S. Ranganath, M. Ranganath and A. A. Kassim, “A novel unrestricted center-biased diamond search algorithm for block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no.4, pp. 369–377, 1998.
[28] J.-D. Lee, H.-H.Hsu : US20070223587 (2007).
[29] D.-M. Monro: US20080205505 (2008).
[30] C.-H. Yeh, M.-T. Wu and S.-J. Chern, “Coarse-to-fine partial distortion search algorithm for motion estimation,” Int. J. of Innovative Computing, Information and Control, vol. 5, no. 9, 2009.
[31] C.-D. Bei and R.-M. Gray, “An improvement of the minimum distortion encoding algorithm for vector quantization,” IEEE Transactions on Communications, vol. 33, no. 10, pp. 1132–1133, 1985.
[32] B. Montrucchio and D. Quaglia, “New sorting-based lossless motion estimation algorithms and a partial distortion elimination performance analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 2, pp. 210–220, 2005.
[33] C.-K. Cheung and L.-M. Po, “Normalized partial distortion search algorithm for block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 3, pp. 417–422, 2000.
[34] C.-K. Cheung and L.-M. Po, “Adjustable partial distortion search algorithm for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 1, pp. 100–110, 2003.
[35] A. Vetro, C. Christopoulos and H. Sun, “Video transcoding architectures and techniques: an overview,” IEEE Signal Processing Magazine, vol. 20, pp. 18-29, 2003.
[36] J. Xin, C.-W. Lin and M.-T. Sun, “Digital video transcoding,” in Proceedings of the IEEE, vol. 93, pp. 84-97, 2005.
[37] I. Ahmad, X. Wei, Y. Sun and Y.-Q. Zhang, “Video transcoding: an overview of various techniques and research issues,” IEEE Transactions on Multimedia, vol. 7, pp. 793-804, 2005.
[38] P. Assuncao and M. Ghanbari, “Transcoding of single-layer mpeg video into lower rates”, IEE Proceedings on vision, Image and Signal Processing, vol. 144, pp. 377-383, 1997.
[39] K.-T. Fung, Y.-L. Chan and W.-C. Siu, “New architecture for dynamic frame-skipping transcoder”, IEEE Transactions on Image Processing, vol. 11, pp. 886-900, 2002.
[40] P. Yin, A. Vetro, B. Liu, and H. Sun, “Drift compensation for reduced spatial resolution transcoding”, IEEE Transactions on Circuit and Systems on Video Technology, vol. 12, pp. 1009-1020, 2002.
[41] R. Li, B. Zeng and M.-L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 4, no. 8, pp. 438-422, 1994.
[42] M.-C. Lin, L.-R. Dung: US20080212679 (2008).
[43] X.Wang, M.Karczewicz, Y. Bao and J. Ridge: US20070053441 (2007).
[44] X. Wang, M. Karczewicz, Y.Bao, and J. Ridge: US20070009050 (2007).
[45] Z. Li, X. Yang, K.-P. Lim, X. Lin, S. Rahardja and F. Pan: EP1774793 (2007).
[46] M. Horowitz, A. Joch, F. Kossentinia and A. Hallapuro, “H.264/AVC baseline profile decoder complexity analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no.7, pp. 715–727, 2003.
[47] C.-L. Lin and M.-C. Lee: US7408990 (2008).
[48] J. Song, S.-H.-T. Yim: US20080002772 (2008).
[49] T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz and M. Wien, “Joint draft ITU-T Rec.H.264 | ISO/IEC 14496-10 / Amd.3 scalable video coding,” Joint Video Team (JVT)JVT-X201, 2007.
[50] H. Schwarz, D. Marpe and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, 2007.
[51] R. Reddy, “Advances in video compression standards: H.265,” 8th Texas Instruments Developer Conference, India, 2005.
[52] C.-H. Yeh, M.-T. Wu and S.-J. Chern, Correlation-based normalized partial distortion search algorithm for motion estimation, Optical Engineering, vol.47, no.7, pp.077003, 2008.
[53] Y. Nie and K.-K. Ma, “Adaptive rood pattern search for fast blockmatching motion estimation,” IEEE Transactions on Image Processing, vol. 11, no. 12, pp. 1442–1449, 2002.
[54] L.-J. Luo, C. Zou and X.-Q. Gao, “A new prediction search algorithm for block motion estimation in video coding,” IEEE Transactions on Consumer Electronics, vol. 43, no. 1, pp. 56–61, 1997.
[55] J.-B. Xu, L.-M. Po and C.-K. Cheng, “Adaptive motion tracking block matching algorithms for video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 7, pp. 1025–1029, 1999.
[56] C.-H. Hsieh, P.-C. Lu, J.-S. Shyn and E.-H. Lu, “Motion estimation algorithm using interblock correlation,” Electronics Letters, vol. 26, no.5, pp. 276–277, 1990.
[57] J.-C. Tsai, C.-H. Hsieh, S.-K. Weng and M.-F. Lai, “Block-matching motion estimating using correlation search algorithm,” Signal Processing: Image Communication, vol. 13, no. 2, pp. 119–133, 1998.
[58] W. James, The Principles of Psychology. Cambridge, MA: Harvard Univ. Press, 1890.
[59] K. Lee, H.-S. Chang, S.-S. Chun, H. Choi, and S. Sull, “Perception-based image transcoding for universal multimedia access,” in Proceedings of 8th Int. Conference Image Process, vol. 2, pp. 475–478, 2001.
[60] L.-Q. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang and H.-Q. Zhou, “A visual attention model for adapting images on small displays,” Multimedia Systems, vol. 9, no. 4, pp. 353–364, 2003.
[61] L. Itti, C. Koch and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Transactions Pattern Analysis Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.
[62] M.-M. Hannuksela, Y.-K. Wang and M. Gabbouj, “Isolated regions in video coding,” IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 259–267, 2004.
[63] Y.-F. Ma, X.-S. Hua, L. Lu and H.-J. Zhang, “A generic framework of user attention model and its application in video summarization,” IEEE Transactions on multimedia, vol. 7, no. 5, 2005.
[64] Y.-F. Ma and H.-J. Zhang, “Contrast-based image attention analysis by using fuzzy growing,” in Proceedings of Association for Computing Machinery Multimedia conference, pp.374-381, 2003.
[65] L. Zusne, “Contemporary theory of visual form perception: III,” The global Theories, chapter 4, p108-174, 1970.
[66] Joint Video Team reference, http://iphome.hhi.de/suehring/tm1/download/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code