Responsive image
博碩士論文 etd-0605114-225021 詳細資訊
Title page for etd-0605114-225021
論文名稱
Title
探討甲基胞嘧啶、羥甲基胞嘧啶與表觀遺傳修飾者的表現量與舌部鱗狀細胞癌的發展及預後之關聯性
The Association of 5-methylation, 5-hydroxymethylation and Epigenetic Modifiers’ Expression with the Development and Prognosis of Tongue Squamous Cell Carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-03
繳交日期
Date of Submission
2014-07-07
關鍵字
Keywords
十十一易位蛋白、5-羥甲基胞嘧啶、組織微陣列晶片、異檸檬酸脫氫酶、5 -甲基胞嘧啶、舌部鱗狀細胞癌、存活、免疫組織化學分析
5hmc, TET, tissue microarray, IDH, tongue squamous cell carcinoma, immunohistochemistry, 5mc, survival
統計
Statistics
本論文已被瀏覽 5665 次,被下載 342
The thesis/dissertation has been browsed 5665 times, has been downloaded 342 times.
中文摘要
  背景: 口腔癌在台灣為男性癌症死亡率第四名並且是台灣年輕男性中最常見的癌症之一。舌部鱗狀細胞癌是頭頸部的口腔惡性腫瘤最常見的部位之一,且一般預後較差。5 -甲基胞嘧啶(5mc)是癌症發生常見的表觀遺傳特徵。5-羥甲基胞嘧啶(5hmc)是5mc去甲基化過程的中間產物,在多種癌症中(包括口腔癌)中也有下降的趨勢。最近的證據表明TET蛋白(十十一易位蛋白)依賴α-酮戊二酸的氧化反應可以進一步催化5mc轉變成為5hmC。此外,IDH蛋白(異檸檬酸脫氫酶)可以催化異檸檬酸鹽轉換成為α-酮戊二酸,而α-酮戊二酸是催化5mc轉變成5hmc重要的輔助因子。
 
  方法: 本研究的目的是利用免疫組織化學法,染色在組織微陣列晶片上248例手術切除之舌癌組織與癌旁正常黏膜組織,分析5mc、5hmc、TET1(N)、TET1(C)、TET2(N)、TET2(C)、IDH1、IDH2的表現量與舌癌患者的疾病發生和存活的關係。
 
  結果: 結果發現5mc、5hmc、TET1(N)、TET2(N) 和IDH2蛋白在舌癌組織中的表現量與癌旁正常黏膜組織比較均顯著減少(p< 0.001),相反的,IDH1、TET1(C)、TET2(C)的表現量反而增加(p = 0.01,p <0.001,p = 0.036)。舌癌患者中女性比男性的5mc表現量較低,另外發現IDH1表現量的增加易發生於高分化程度的舌癌患者(p = 0.027)。舌癌患者的疾病特定存活曲線在廣泛性低度甲基化組顯著較低(p = 0.048),尤其是發生在性別為女性(p = 0 .028)、較小的腫瘤T1~T2 (P = 0.004)、無淋巴結轉移患者(P = 0.049) 和術後接受放射線治療的患者(P = 0.005)。此外,在女性患者中,凡5hmc (p = 0.015)和IDH1(p = 0.021)表現量高者,具顯著較低之復發率。最後,發現在女性(p = 0 .021)、病理分期晚期(Ⅲ〜Ⅳ期,p = 0 .047)或術後接受放射線治療患者(p = 0.025),具高表現量TET2(C)的患者呈現顯著較差的疾病特定存活曲線。
 
  結論: 5mc、5hmc、TET1、TET2、IDH1、IDH2可能是舌部鱗狀細胞癌發生之生物標誌。此外,5mc是舌部鱗狀細胞癌的獨立預後指標。
Abstract
  Backgrounds: In Taiwan, oral cancer is the 4th leading cause of cancer death for males and the top common cancer in young adult males. Tongue squamous cell carcinoma (SCC) is one of the most common oral cancers and generally associated with poor prognosis. DNA methylation at the 5 position of cytosine (5mC) is a well-known epigenetic feature of cancer. In addition, 5-hydroxymethylcytosine (5hmc), an intermediator of gene demethylation, is reduced in cancer, including oral cancer. Recent evidences suggest that a group of enzymes of the ten-eleven translocation proteins (TET) can further convert 5mC to 5hmC in an α-ketoglutarate (α-KG) dependent oxidation reaction. In addition, isocitrate dehydrogenase (IDH) can catalyze the interconversion of isocitrate to α-KG, which is the cofactor to catalyze 5mC to 5hmC.
 
  Methods: The purpose of this study was to investigate the relationship of the levels of 5mc, 5hmc, TET1, TET2, IDH1 and IDH2 with the tumorigenesis and survival in 248 surgically resected tongue SCC tissues by immunohistochemistry using tissue microarray slides.
 
  Results: We found that expression levels of 5mc, 5hmc, TET1(N) , TET2(N) and IDH2 proteins in tongue SCC tissues were significantly reduced (all p < 0.001) as compared to the corresponding tumor adjacent normal tissues (CTAN), except for the increase of IDH1, TET1(C) , TET2(C) (p= 0.01, p < 0.001, p=0.036, respectively). Among tongue SCC tissues, decreased expression of 5mc was associated with female gender, and increased expression of IDH1 was associated with low-grade (well) differentiation (p= 0.027). In addition, the global hypomethylation was associated with the poor disease-specific survival in tongue SCC patients (p= 0.048), especially for patients in female gender (p =0 .028), with small tumor size (T1-T2, p=0.004), without nodal metastasis (N0, p =0 .049), and ever received post-operative radiotherapy (p=0.005). For female patients, those with high levels of 5hmc (p =0.015) and IDH1 expression (p =0 .021) had significantly better disease-free survival. Finally, high level of TET2(C) expression was correlated with the poor disease-specific survival for patients with female gender (p =0 .021), late pathologic stage (III-IV, p =0 .047), or ever received post-operative radiotherapy (p=0.025).
 
  Conclusions: 5mc, 5hmc, TET1, TET2, IDH1 and IDH2 may be biomarkers for development of tongue SCC. Additionally, 5mc might be the independent prognostic biomarkers for tongue SCC.
目次 Table of Contents
Abbreviations i
Abstract in Chinese ii
Abstract in English iii
Contents iv-v
Introduction
 1. Epidemiology of Tongue Squamous Cell Carcinoma 1-3
 2. 5-methylcytosine (5mC) 3
 3. Nonspecific (or global) DNA hypomethylation of cancer 4-5
 4. 5-hydroxymethylcytosine (5hmC) 5-6
 5. Ten-eleven translocation protein (TET) 6-8
 6. Isocitrate dehydrogenase protein (IDH) 9-10
Specific Aims 11
Materials and Methods 12-15
Results
 1. The demographic and clinicopathologic characteristics and their impact on survival of patients with tongue SCC 16-18
 2. The expression levels of 5mc, 5hmc, and Epigenetic Modifiers in normal tissue, tumor adjacent normal tissue and tumor tissue 18-20
 3. The association of the expression levels of 5mc with the clinicopathological outcomes and survival of patients with tongue SCC 21-22
 4. The association of the expression levels of 5hmc with the clinicopathological outcomes and survival of patients with tongue SCC 22-23
 5. The association of the expression levels of epigenetic modifiers with the clinicopathological outcomes and survival of patients with tongue SCC 23-24
 6. The association of the expression levels of 5hmc and epigenetic modifiers in tongue SCC 24-25
Discussion 26-39
Conclusion 40
References 41-57
Tables 58-67
Figures 68-94
Indexes 95-96
參考文獻 References
Reference
Adams, R.R., Maiato, H., Earnshaw, W.C., and Carmena, M. (2001). Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153, 865-880.
Atai, N.A., Renkema-Mills, N.A., Bosman, J., Schmidt, N., Rijkeboer, D., Tigchelaar, W., Bosch, K.S., Troost, D., Jonker, A., Bleeker, F.E., et al. (2011). Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma. J Histochem Cytochem 59, 489-503.
Avery, A.M., Willetts, S.A., and Avery, S.V. (2004). Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J Biol Chem 279, 46652-46658.
Baba, Y., Huttenhower, C., Nosho, K., Tanaka, N., Shima, K., Hazra, A., Schernhammer, E.S., Hunter, D.J., Giovannucci, E.L., Fuchs, C.S., et al. (2010). Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 9, 125.
Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870.
Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848-851.
Bertolotti, A., Bell, B., and Tora, L. (1999). The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties. Oncogene 18, 8000-8010.
Bettendorf, O., Piffko, J., and Bankfalvi, A. (2004). Prognostic and predictive factors in oral squamous cell cancer: important tools for planning individual therapy? Oral Oncol 40, 110-119.
Branco, M.R., Ficz, G., and Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13, 7-13.
Bristow, R.G., Benchimol, S., and Hill, R.P. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 40, 197-223.
Brown, J.M. (2000). Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6, 157-162.
Burmeister, T., Meyer, C., Schwartz, S., Hofmann, J., Molkentin, M., Kowarz, E., Schneider, B., Raff, T., Reinhardt, R., Gokbuget, N., et al. (2009). The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. Blood 113, 4011-4015.
Cancer Registry annual Report in Taiwan Area, T.D.o.H.T.E.Y., Taiwan ROC, 2009.
Chalitchagorn, K., Shuangshoti, S., Hourpai, N., Kongruttanachok, N., Tangkijvanich, P., Thong-ngam, D., Voravud, N., Sriuranpong, V., and Mutirangura, A. (2004). Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23, 8841-8846.
Chen, Y., Zhang, L., Pan, Y., Ren, X., and Hao, Q. (2012). Over-expression of semaphorin4D, hypoxia-inducible factor-1alpha and vascular endothelial growth factor is related to poor prognosis in ovarian epithelial cancer. Int J Mol Sci 13, 13264-13274.
Cheng, P., Schmutte, C., Cofer, K.F., Felix, J.C., Yu, M.C., and Dubeau, L. (1997). Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis. Br J Cancer 75, 396-402.
Choi, C.M., Seo, K.W., Jang, S.J., Oh, Y.M., Shim, T.S., Kim, W.S., Lee, D.S., and Lee, S.D. (2009). Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ hybridization analysis of paraffin-embedded tissue from Korean patients. Lung Cancer 64, 66-70.
Chow, V., Yuen, A.P., Lam, K.Y., Tsao, G.S., Ho, W.K., and Wei, W.I. (2001). A comparative study of the clinicopathological significance of E-cadherin and catenins (alpha, beta, gamma) expression in the surgical management of oral tongue carcinoma. J Cancer Res Clin Oncol 127, 59-63.
Cunningham, M.J., Johnson, J.T., Myers, E.N., Schramm, V.L., Jr., and Thearle, P.B. (1986). Cervical lymph node metastasis after local excision of early squamous cell carcinoma of the oral cavity. Am J Surg 152, 361-366.
Dai, C.X., Gao, Q., Qiu, S.J., Ju, M.J., Cai, M.Y., Xu, Y.F., Zhou, J., Zhang, B.H., and Fan, J. (2009). Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer 9, 418.
Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J.K., and Liloglou, T. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124, 81-87.
de Moraes, R.V., Oliveira, D.T., Landman, G., de Carvalho, F., Caballero, O., Nonogaki, S., Nishimoto, I., and Kowalski, L.P. (2008). E-cadherin abnormalities resulting from CPG methylation promoter in metastatic and nonmetastatic oral cancer. Head Neck 30, 85-92.
Diniz-Freitas, M., Garcia-Caballero, T., Antunez-Lopez, J., Gandara-Rey, J.M., and Garcia-Garcia, A. (2006). Reduced E-cadherin expression is an indicator of unfavourable prognosis in oral squamous cell carcinoma. Oral Oncol 42, 190-200.
El-Maarri, O., Becker, T., Junen, J., Manzoor, S.S., Diaz-Lacava, A., Schwaab, R., Wienker, T., and Oldenburg, J. (2007). Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet 122, 505-514.
Erpolat, O.P., Gocun, P.U., Akmansu, M., Ozgun, G., and Akyol, G. (2013). Hypoxia-related molecules HIF-1alpha, CA9, and osteopontin : predictors of survival in patients with high-grade glioma. Strahlenther Onkol 189, 147-154.
Esteller, M., Corn, P.G., Baylin, S.B., and Herman, J.G. (2001). A gene hypermethylation profile of human cancer. Cancer Res 61, 3225-3229.
Fakih, A.R., Rao, R.S., Borges, A.M., and Patel, A.R. (1989a). Elective versus therapeutic neck dissection in early carcinoma of the oral tongue. Am J Surg 158, 309-313.
Fakih, A.R., Rao, R.S., and Patel, A.R. (1989b). Prophylactic neck dissection in squamous cell carcinoma of oral tongue: a prospective randomized study. Semin Surg Oncol 5, 327-330.
Feinberg, A.P., Gehrke, C.W., Kuo, K.C., and Ehrlich, M. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48, 1159-1161.
Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398-402.
Frauer, C., Rottach, A., Meilinger, D., Bultmann, S., Fellinger, K., Hasenoder, S., Wang, M., Qin, W., Soding, J., Spada, F., et al. (2011). Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6, e16627.
Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11, 6883-6894.
Gaudet, F., Hodgson, J.G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J.W., Leonhardt, H., and Jaenisch, R. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489-492.
Geigl, J.B., Obenauf, A.C., Schwarzbraun, T., and Speicher, M.R. (2008). Defining 'chromosomal instability'. Trends Genet 24, 64-69.
Giaretti, W., Monteghirfo, S., Pentenero, M., Gandolfo, S., Malacarne, D., and Castagnola, P. (2013). Chromosomal instability, DNA index, dysplasia, and subsite in oral premalignancy as intermediate endpoints of risk of cancer. Cancer Epidemiol Biomarkers Prev 22, 1133-1141.
Globisch, D., Munzel, M., Muller, M., Michalakis, S., Wagner, M., Koch, S., Bruckl, T., Biel, M., and Carell, T. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5, e15367.
Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R.A., Jr., Kastrinakis, N.G., Levy, B., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913.
Graff, J.R., Herman, J.G., Lapidus, R.G., Chopra, H., Xu, R., Jarrard, D.F., Isaacs, W.B., Pitha, P.M., Davidson, N.E., and Baylin, S.B. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55, 5195-5199.
Grandi, C., Alloisio, M., Moglia, D., Podrecca, S., Sala, L., Salvatori, P., and Molinari, R. (1985). Prognostic significance of lymphatic spread in head and neck carcinomas: therapeutic implications. Head Neck Surg 8, 67-73.
Ha, P.K., and Califano, J.A. (2006). Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7, 77-82.
Haffner, M.C., Chaux, A., Meeker, A.K., Esopi, D.M., Gerber, J., Pellakuru, L.G., Toubaji, A., Argani, P., Iacobuzio-Donahue, C., Nelson, W.G., et al. (2011). Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2, 627-637.
Hansen, K.D., Timp, W., Bravo, H.C., Sabunciyan, S., Langmead, B., McDonald, O.G., Wen, B., Wu, H., Liu, Y., Diep, D., et al. (2011). Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43, 768-775.
Hashimoto, H., Liu, Y., Upadhyay, A.K., Chang, Y., Howerton, S.B., Vertino, P.M., Zhang, X., and Cheng, X. (2012). Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40, 4841-4849.
He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307.
Herman, J.G., Merlo, A., Mao, L., Lapidus, R.G., Issa, J.P., Davidson, N.E., Sidransky, D., and Baylin, S.B. (1995). Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55, 4525-4530.
Ho, C.M., Lam, K.H., Wei, W.I., Lau, S.K., and Lam, L.K. (1992). Occult lymph node metastasis in small oral tongue cancers. Head Neck 14, 359-363.
Hsiung, D.T., Marsit, C.J., Houseman, E.A., Eddy, K., Furniss, C.S., McClean, M.D., and Kelsey, K.T. (2007). Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 16, 108-114.
Huang, G.W., Yang, L.Y., and Lu, W.Q. (2005). Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in hepatocellular carcinoma: Impact on neovascularization and survival. World J Gastroenterol 11, 1705-1708.
Hughes, C.J., Gallo, O., Spiro, R.H., and Shah, J.P. (1993). Management of occult neck metastases in oral cavity squamous carcinoma. Am J Surg 166, 380-383.
Igarashi, S., Suzuki, H., Niinuma, T., Shimizu, H., Nojima, M., Iwaki, H., Nobuoka, T., Nishida, T., Miyazaki, Y., Takamaru, H., et al. (2010). A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res 16, 5114-5123.
Ishida, E., Nakamura, M., Ikuta, M., Shimada, K., Matsuyoshi, S., Kirita, T., and Konishi, N. (2005). Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41, 614-622.
Ito, S., D'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129-1133.
Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303.
Iwagami, S., Baba, Y., Watanabe, M., Shigaki, H., Miyake, K., Ida, S., Nagai, Y., Ishimoto, T., Iwatsuki, M., Sakamoto, Y., et al. (2012). Pyrosequencing assay to measure LINE-1 methylation level in esophageal squamous cell carcinoma. Ann Surg Oncol 19, 2726-2732.
Iyer, L.M., Tahiliani, M., Rao, A., and Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698-1710.
Jawert, F., Hasseus, B., Kjeller, G., Magnusson, B., Sand, L., and Larsson, L. (2013). Loss of 5-hydroxymethylcytosine and TET2 in oral squamous cell carcinoma. Anticancer Res 33, 4325-4328.
Jin, G., Reitman, Z.J., Spasojevic, I., Batinic-Haberle, I., Yang, J., Schmidt-Kittler, O., Bigner, D.D., and Yan, H. (2011a). 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 6, e16812.
Jin, S.G., Jiang, Y., Qiu, R., Rauch, T.A., Wang, Y., Schackert, G., Krex, D., Lu, Q., and Pfeifer, G.P. (2011b). 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71, 7360-7365.
Jin, S.G., Wu, X., Li, A.X., and Pfeifer, G.P. (2011c). Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39, 5015-5024.
Jo, S.H., Son, M.K., Koh, H.J., Lee, S.M., Song, I.H., Kim, Y.O., Lee, Y.S., Jeong, K.S., Kim, W.B., Park, J.W., et al. (2001). Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276, 16168-16176.
Jones, P.A., and Baylin, S.B. (2007). The epigenomics of cancer. Cell 128, 683-692.
Kaelin, W.G., Jr. (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2, 673-682.
Kargul, J., and Laurent, G.J. (2009). Epigenetics and human disease. Int J Biochem Cell Biol 41, 1.
Karpf, A.R., and Matsui, S. (2005). Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65, 8635-8639.
Kasid, U., Pfeifer, A., Weichselbaum, R.R., Dritschilo, A., and Mark, G.E. (1987). The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science 237, 1039-1041.
Katayama, A., Bandoh, N., Kishibe, K., Takahara, M., Ogino, T., Nonaka, S., and Harabuchi, Y. (2004). Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin Cancer Res 10, 634-640.
Kaya, A.O., Gunel, N., Benekli, M., Akyurek, N., Buyukberber, S., Tatli, H., Coskun, U., Yildiz, R., Yaman, E., and Ozturk, B. (2012). Hypoxia inducible factor-1 alpha and carbonic anhydrase IX overexpression are associated with poor survival in breast cancer patients. J BUON 17, 663-668.
Kim, S., Kim, S.Y., Ku, H.J., Jeon, Y.H., Lee, H.W., Lee, J., Kwon, T.K., Park, K.M., and Park, J.W. (2014). Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice. Biochim Biophys Acta 1842, 135-143.
Kishimoto, K., Sasaki, A., Yoshihama, Y., Mese, H., Tsukamoto, G., and Matsumura, T. (2003). Expression of vascular endothelial growth factor-C predicts regional lymph node metastasis in early oral squamous cell carcinoma. Oral Oncol 39, 391-396.
Kliasheva, R.I. (1990). [DNA methylation in human lung tumors]. Vopr Onkol 36, 1186-1189.
Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R., et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839-843.
Kraus, T.F., Globisch, D., Wagner, M., Eigenbrod, S., Widmann, D., Munzel, M., Muller, M., Pfaffeneder, T., Hackner, B., Feiden, W., et al. (2012). Low values of 5-hydroxymethylcytosine (5hmC), the "sixth base," are associated with anaplasia in human brain tumors. Int J Cancer 131, 1577-1590.
Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929-930.
Kudo, Y., Tateishi, K., Yamamoto, K., Yamamoto, S., Asaoka, Y., Ijichi, H., Nagae, G., Yoshida, H., Aburatani, H., and Koike, K. (2012). Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci 103, 670-676.
Kupferman, M.E., Fini, M.E., Muller, W.J., Weber, R., Cheng, Y., and Muschel, R.J. (2000). Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am J Pathol 157, 1777-1783.
Laird, P.W., and Jaenisch, R. (1996). The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 30, 441-464.
Langemeijer, S.M., Aslanyan, M.G., and Jansen, J.H. (2009a). TET proteins in malignant hematopoiesis. Cell Cycle 8, 4044-4048.
Langemeijer, S.M., Kuiper, R.P., Berends, M., Knops, R., Aslanyan, M.G., Massop, M., Stevens-Linders, E., van Hoogen, P., van Kessel, A.G., Raymakers, R.A., et al. (2009b). Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41, 838-842.
Levine, A.J., and Puzio-Kuter, A.M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344.
Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., and Altieri, D.C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580-584.
Li, S., Yao, D., Wang, L., Wu, W., Qiu, L., Yao, M., Yao, N., Zhang, H., Yu, D., and Ni, Q. (2011). Expression characteristics of hypoxia-inducible factor-1alpha and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepat Mon 11, 821-828.
Lian, C.G., Xu, Y., Ceol, C., Wu, F., Larson, A., Dresser, K., Xu, W., Tan, L., Hu, Y., Zhan, Q., et al. (2012). Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135-1146.
Lidgren, A., Hedberg, Y., Grankvist, K., Rasmuson, T., Vasko, J., and Ljungberg, B. (2005). The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11, 1129-1135.
Lim, S.C., Zhang, S., Ishii, G., Endoh, Y., Kodama, K., Miyamoto, S., Hayashi, R., Ebihara, S., Cho, J.S., and Ochiai, A. (2004). Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res 10, 166-172.
Limoli, C.L., Corcoran, J.J., Jordan, R., Morgan, W.F., and Schwartz, J.L. (2001). A role for chromosomal instability in the development of and selection for radioresistant cell variants. Br J Cancer 84, 489-492.
Linehan, W.M., Walther, M.M., and Zbar, B. (2003). The genetic basis of cancer of the kidney. J Urol 170, 2163-2172.
Loenarz, C., and Schofield, C.J. (2009). Oxygenase catalyzed 5-methylcytosine hydroxylation. Chem Biol 16, 580-583.
Lorsbach, R.B., Moore, J., Mathew, S., Raimondi, S.C., Mukatira, S.T., and Downing, J.R. (2003). TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637-641.
Lu, C., Ward, P.S., Kapoor, G.S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C.R., Khanin, R., Figueroa, M.E., Melnick, A., et al. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478.
Lydiatt, D.D., Robbins, K.T., Byers, R.M., and Wolf, P.F. (1993). Treatment of stage I and II oral tongue cancer. Head Neck 15, 308-312.
Maeda, T., Matsumura, S., Hiranuma, H., Jikko, A., Furukawa, S., Ishida, T., and Fuchihata, H. (1998). Expression of vascular endothelial growth factor in human oral squamous cell carcinoma: its association with tumour progression and p53 gene status. J Clin Pathol 51, 771-775.
Majmundar, A.J., Wong, W.J., and Simon, M.C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40, 294-309.
Margulis, A., Zhang, W., Alt-Holland, A., Crawford, H.C., Fusenig, N.E., and Garlick, J.A. (2005). E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Res 65, 1783-1791.
Mariani, C.J., Vasanthakumar, A., Madzo, J., Yesilkanal, A., Bhagat, T., Yu, Y., Bhattacharyya, S., Wenger, R.H., Cohn, S.L., Nanduri, J., et al. (2014). TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma. Cell Rep 7, 1343-1352.
Martinez, J., Vahdat, F., and Redonnet, J. (1976). [Interpretation of the right bundle-branch block appearing after repair of ventricular septal defect]. Arch Mal Coeur Vaiss 69, 581-587.
Martinez, J.G., Perez-Escuredo, J., Castro-Santos, P., Marcos, C.A., Pendas, J.L., Fraga, M.F., and Hermsen, M.A. (2012). Hypomethylation of LINE-1, and not centromeric SAT-alpha, is associated with centromeric instability in head and neck squamous cell carcinoma. Cell Oncol (Dordr) 35, 259-267.
McKenna, W.G., Iliakis, G., Weiss, M.C., Bernhard, E.J., and Muschel, R.J. (1991). Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res 125, 283-287.
McKenna, W.G., Weiss, M.C., Bakanauskas, V.J., Sandler, H., Kelsten, M.L., Biaglow, J., Tuttle, S.W., Endlich, B., Ling, C.C., and Muschel, R.J. (1990). The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys 18, 849-859.
Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
Mohn, F., and Schubeler, D. (2009). Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25, 129-136.
Mohr, F., Dohner, K., Buske, C., and Rawat, V.P. (2011). TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39, 272-281.
Morgan, W.F., and Murnane, J.P. (1995). A role for genomic instability in cellular radioresistance? Cancer Metastasis Rev 14, 49-58.
Muller, T., Gessi, M., Waha, A., Isselstein, L.J., Luxen, D., Freihoff, D., Freihoff, J., Becker, A., Simon, M., Hammes, J., et al. (2012). Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181, 675-683.
Mussini, E., Hutton, J.J., Jr., and Udenfriend, S. (1967). Collagen proline hydroxylase in wound healing, granuloma formation, scurvy, and growth. Science 157, 927-929.
Nakamura, H., Saji, H., Idiris, A., Kawasaki, N., Hosaka, M., Ogata, A., Saijo, T., and Kato, H. (2003). Chromosomal instability detected by fluorescence in situ hybridization in surgical specimens of non-small cell lung cancer is associated with poor survival. Clin Cancer Res 9, 2294-2299.
Nestor, C.E., Ottaviano, R., Reddington, J., Sproul, D., Reinhardt, D., Dunican, D., Katz, E., Dixon, J.M., Harrison, D.J., and Meehan, R.R. (2012). Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22, 467-477.
Nishida, N., Kudo, M., Nishimura, T., Arizumi, T., Takita, M., Kitai, S., Yada, N., Hagiwara, S., Inoue, T., Minami, Y., et al. (2013). Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma. PLoS One 8, e72312.
Ogino, S., Nosho, K., Kirkner, G.J., Kawasaki, T., Chan, A.T., Schernhammer, E.S., Giovannucci, E.L., and Fuchs, C.S. (2008). A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100, 1734-1738.
Olasz, J., Juhasz, A., Remenar, E., Engi, H., Bak, M., Csuka, O., and Kasler, M. (2007). RAR beta2 suppression in head and neck squamous cell carcinoma correlates with site, histology and age. Oncol Rep 18, 105-112.
Ono, R., Taki, T., Taketani, T., Taniwaki, M., Kobayashi, H., and Hayashi, Y. (2002). LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62, 4075-4080.
Outten, C.E., and Culotta, V.C. (2004). Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279, 7785-7791.
Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394-397.
Pattamadilok, J., Huapai, N., Rattanatanyong, P., Vasurattana, A., Triratanachat, S., Tresukosol, D., and Mutirangura, A. (2008). LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer 18, 711-717.
Penn, N.W., Suwalski, R., O'Riley, C., Bojanowski, K., and Yura, R. (1972). The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126, 781-790.
Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., and Comoglio, P.M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347-361.
Petersen, P.E. (2005). Strengthening the prevention of oral cancer: the WHO perspective. Community Dent Oral Epidemiol 33, 397-399.
Piyathilake, C.J., Bell, W.C., Jones, J., Henao, O.L., Heimburger, D.C., Niveleau, A., and Grizzle, W.E. (2005). Pattern of nonspecific (or global) DNA methylation in oral carcinogenesis. Head Neck 27, 1061-1067.
Plaut, G.W., Cook, M., and Aogaichi, T. (1983). The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim Biophys Acta 760, 300-308.
Raimundo, N., Baysal, B.E., and Shadel, G.S. (2011). Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 17, 641-649.
Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425-432.
Righini, C.A., de Fraipont, F., Timsit, J.F., Faure, C., Brambilla, E., Reyt, E., and Favrot, M.C. (2007). Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res 13, 1179-1185.
Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., Cervantes, F., Sanchez, J., Garate, L., Barrios, M., Castillejo, J.A., Navarro, G., Colomer, D., et al. (2005). Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24, 7213-7223.
Rusthoven, K., Ballonoff, A., Raben, D., and Chen, C. (2008). Poor prognosis in patients with stage I and II oral tongue squamous cell carcinoma. Cancer 112, 345-351.
Saito, K., Kawakami, K., Matsumoto, I., Oda, M., Watanabe, G., and Minamoto, T. (2010). Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16, 2418-2426.
Saito, T., Hama, S., Izumi, H., Yamasaki, F., Kajiwara, Y., Matsuura, S., Morishima, K., Hidaka, T., Shrestha, P., Sugiyama, K., et al. (2008). Centrosome amplification induced by survivin suppression enhances both chromosome instability and radiosensitivity in glioma cells. Br J Cancer 98, 345-355.
Scheffler, I.E. (2008). Mitochondria, (2nd edn), John Wiley & Sons, Inc. 1.
Schimke, R.T., Beverley, S., Brown, P., Cassin, R., Federspiel, N., Gasser, C., Hill, A., Johnston, R., Mariani, B., Mosse, E., et al. (1984). Gene amplification and drug resistance in cultured animal cells. Cancer Treat Rev 11 Suppl A, 9-17.
Schmutte, C., and Fishel, R. (1999). Genomic instability: first step to carcinogenesis. Anticancer Res 19, 4665-4696.
Schwartz, J.L., Murnane, J., and Weichselbaum, R.R. (1999). The contribution of DNA ploidy to radiation sensitivity in human tumour cell lines. Br J Cancer 79, 744-747.
Semenza, G.L. (2010). HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20, 51-56.
Shigaki, H., Baba, Y., Watanabe, M., Murata, A., Iwagami, S., Miyake, K., Ishimoto, T., Iwatsuki, M., and Baba, H. (2013). LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer 16, 480-487.
Shintani, S., Li, C., Ishikawa, T., Mihara, M., Nakashiro, K., and Hamakawa, H. (2004). Expression of vascular endothelial growth factor A, B, C, and D in oral squamous cell carcinoma. Oral Oncol 40, 13-20.
Simon, F., Bockhorn, M., Praha, C., Baba, H.A., Broelsch, C.E., Frilling, A., and Weber, F. (2010). Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue--influence of a modulated host stroma on the prognosis of HCC. Langenbecks Arch Surg 395, 395-405.
Sklar, M.D. (1988). The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 239, 645-647.
Smith, B.D., Smith, G.L., Carter, D., Sasaki, C.T., and Haffty, B.G. (2000). Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol 18, 2046-2052.
Smith, I.M., Mydlarz, W.K., Mithani, S.K., and Califano, J.A. (2007). DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer 121, 1724-1728.
Song, C.X., Szulwach, K.E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C.H., Zhang, W., Jian, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29, 68-72.
Suzuki, K., Suzuki, I., Leodolter, A., Alonso, S., Horiuchi, S., Yamashita, K., and Perucho, M. (2006). Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9, 199-207.
Suzuki, M., Shiraishi, K., Eguchi, A., Ikeda, K., Mori, T., Yoshimoto, K., Ohba, Y., Yamada, T., Ito, T., Baba, Y., et al. (2013). Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep 29, 1308-1314.
Szumiel, I. (1978). [Intrinsic radiosensitivity of proliferating mammalian cells]. Postepy Hig Med Dosw 32, 35-60.
Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935.
Takahashi, T., Shivapurkar, N., Riquelme, E., Shigematsu, H., Reddy, J., Suzuki, M., Miyajima, K., Zhou, X., Bekele, B.N., Gazdar, A.F., et al. (2004). Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chronic cholecystitis. Clin Cancer Res 10, 6126-6133.
Tanaka, N., Odajima, T., Ogi, K., Ikeda, T., and Satoh, M. (2003). Expression of E-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer 89, 557-563.
Tanigaki, Y., Nagashima, Y., Kitamura, Y., Matsuda, H., Mikami, Y., and Tsukuda, M. (2004). The expression of vascular endothelial growth factor-A and -C, and receptors 1 and 3: correlation with lymph node metastasis and prognosis in tongue squamous cell carcinoma. Int J Mol Med 14, 389-395.
Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30, 406-410.
Towle, R., and Garnis, C. (2012). Methylation-mediated molecular dysregulation in clinical oral malignancy. J Oncol 2012, 170172.
Towle, R., Truong, D., Hogg, K., Robinson, W.P., Poh, C.F., and Garnis, C. (2013). Global analysis of DNA methylation changes during progression of oral cancer. Oral Oncol 49, 1033-1042.
Turcan, S., Rohle, D., Goenka, A., Walsh, L.A., Fang, F., Yilmaz, E., Campos, C., Fabius, A.W., Lu, C., Ward, P.S., et al. (2012). IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479-483.
Uehara, M., Sano, K., Ikeda, H., Sekine, J., Irie, A., Yokota, T., Tobita, T., Ohba, S., and Inokuchi, T. (2004). Expression of vascular endothelial growth factor and prognosis of oral squamous cell carcinoma. Oral Oncol 40, 321-325.
Valinluck, V., and Sowers, L.C. (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67, 946-950.
Vaupel, P., Briest, S., and Hockel, M. (2002). Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr 152, 334-342.
Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49, 6449-6465.
Viswanathan, M., Tsuchida, N., and Shanmugam, G. (2003). Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 105, 41-46.
Volm, M., and Koomagi, R. (2000). Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 20, 1527-1533.
Wada, H., Nagano, H., Yamamoto, H., Yang, Y., Kondo, M., Ota, H., Nakamura, M., Yoshioka, S., Kato, H., Damdinsuren, B., et al. (2006). Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int 26, 414-423.
Weinberg, F., Hamanaka, R., Wheaton, W.W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G.M., Budinger, G.R., and Chandel, N.S. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107, 8788-8793.
Williams, K., Christensen, J., Pedersen, M.T., Johansen, J.V., Cloos, P.A., Rappsilber, J., and Helin, K. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343-348.
Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.Y., Pfeiffer, H.K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S.B., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105, 18782-18787.
Wu, H., and Zhang, Y. (2011). Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25, 2436-2452.
Wyatt, G.R., and Cohen, S.S. (1953). The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J 55, 774-782.
Xiang, Z.L., Zeng, Z.C., Fan, J., Tang, Z.Y., He, J., Zeng, H.Y., and Chang, J.Y. (2012). The expression of HIF-1alpha in primary hepatocellular carcinoma and its correlation with radiotherapy response and clinical outcome. Mol Biol Rep 39, 2021-2029.
Xiang, Z.L., Zeng, Z.C., Fan, J., Tang, Z.Y., Zeng, H.Y., and Gao, D.M. (2011). Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1alpha, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma. Clin Cancer Res 17, 5463-5472.
Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., et al. (2012). Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26, 1326-1338.
Xie, H., Song, J., Liu, K., Ji, H., Shen, H., Hu, S., Yang, G., Du, Y., Zou, X., Jin, H., et al. (2008). The expression of hypoxia-inducible factor-1alpha in hepatitis B virus-related hepatocellular carcinoma: correlation with patients' prognosis and hepatitis B virus X protein. Dig Dis Sci 53, 3225-3233.
Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G.J., et al. (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med 360, 765-773.
Yang, H., Liu, Y., Bai, F., Zhang, J.Y., Ma, S.H., Liu, J., Xu, Z.D., Zhu, H.G., Ling, Z.Q., Ye, D., et al. (2013). Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663-669.
Yu, D., Zhuang, L., Sun, X., Chen, J., Yao, Y., Meng, K., and Ding, Y. (2007). Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma. BMC Cancer 7, 122.
Yuen, A.P., Lam, K.Y., Chan, A.C., Wei, W.I., Lam, L.K., Ho, W.K., and Ho, C.M. (1999). Clinicopathological analysis of elective neck dissection for N0 neck of early oral tongue carcinoma. Am J Surg 177, 90-92.
Yuen, A.P., Wei, W.I., Wong, Y.M., and Tang, K.C. (1997). Elective neck dissection versus observation in the treatment of early oral tongue carcinoma. Head Neck 19, 583-588.
Zhang, F.F., Cardarelli, R., Carroll, J., Fulda, K.G., Kaur, M., Gonzalez, K., Vishwanatha, J.K., Santella, R.M., and Morabia, A. (2011). Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6, 623-629.
Zinszner, H., Albalat, R., and Ron, D. (1994). A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 8, 2513-2526.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code