Responsive image
博碩士論文 etd-0605115-233300 詳細資訊
Title page for etd-0605115-233300
論文名稱
Title
基於行動裝置之三維模型重建系統
Automated Reconstruction of 3D Object on Embedded System for Mobile Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-16
繳交日期
Date of Submission
2015-07-06
關鍵字
Keywords
三維模型重建、影像校正、移動估算法、電腦視覺、行動裝置
mobile device, computer vision, Structure from Motion (SfM), image calibration, 3D reconstruction
統計
Statistics
本論文已被瀏覽 5694 次,被下載 38
The thesis/dissertation has been browsed 5694 times, has been downloaded 38 times.
中文摘要
3D 技術無虞是當今熱門的焦點,其相關應用在市場上佔有極重要的地位,是各產業爭相發展的技術。然受限於取像設備及3D建模龐大的計算量,目前行動裝置只能重現固定角度之3D影像,仍無法建立全角度之3D 模型,而大幅降低3D相關技術應用於行動裝置的可能性。本論文旨在發展一基於行動裝置之三維模型重建系統,針對行動裝置所截取的影像進行校正,使行動裝置所搭載的相機得以取代傳統3D建模所需使用的高階取像設備;同時開發適用於低階處理器的3D建模系統,並實驗於搭載Intel® Atom™ E3825低階處理器之開發平台。實驗結果顯示所提之3D建模技術能順暢運行於行動裝置平台,並重建出高品質之3D模型。
Abstract
In this paper, a light-weight 3D object reconstruction system is proposed. It aims to fulfill the increasing demand for fast and reliable 3D reconstruction in a mobile environment. Thereby, people can directly use their own device (e.g. mobile phone or tablet) to reconstruct desired objects into 3D models. The system is implemented and tested on an embedded board equipped with the mobile-based Intel® Atom™ series processor. With massive development of 3D technology, we believe the application proposed in this work would have rapidly expanding usages in the near future.
目次 Table of Contents
致謝…………………………………………………………………………………….iii
中文摘要.………………………………………………………………………………iv
Abstract………………………………………………………………………………...v
Contents……………………………………………………………………………….vi
List of Figures………………………………………………………………………...vii
List of Tables……………………………………………………………………...…..ix
Chapter 1 Introduction…………………….………………………………………….1
1.1 Overview of 3D Reconstruction………………………………………………..1
1.2 Motivation.………………………………………………………………………..7
1.3 Challenge Statements and Contribution……………………………………...8
1.4 Organization…………………………………………………………………….10
Chapter 2 Background Review……………………………………………………..11
2.1 Camera Model………………………………………………………………….11
2.1.1 Camera Intrinsic Parameters…………………………...………………12
2.1.2 Camera Extrinsic Parameters…………………………………………..14
2.2 Structure from Motion………………………………………………………….16
2.3 Clustering Views for Multi-view Stereo………………………………………18
Chapter 3 Automatic 3D Reconstruction System…………………………………21
3.1 Overview………………………………………………………………………...21
3.2 The Proposed Mobile App……………………………………………………..22
3.3 Image Sequences Calibration System……………………………………….25
3.4 Reconstruct 3D Models with Light-weight Processors……………………..32
3.5 Surface Reconstruction and Texture Mapping……………………………...35
Chapter 4 Experimental Results……………………………………………………38
4.1 Performance of Proposed 3D Reconstruction System……………………..39
4.2 Advantage of Image Sequences Calibration Model………………………...42
4.3 Analysis of Operating Time and Quality……………………………………..49
Chapter 5 Conclusions and Future Works…………………………………………51
Reference……………………………………………………………………………..53
參考文獻 References
[1] K. Kwak, D. F. Huber, H. Badino, and T. Kanade, “Extrinsic calibration of a single line scanning lidar and a camera,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 3283-3289, 2011.
[2] N. Muhammad and S. Lacroix, “Calibration of a rotating multi-beam lidar,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 5648-5653, 2010.
[3] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self calibration of a camera and a 3d laser range finder from natural scenes,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), pp. 4164-4169, 2007.
[4] R. Hartley and A. Zisserman, Multiple view geometry in computer vision: Cambridge university press, 2003.
[5] V. Fremont and R. Chellali, “Turntable-based 3D object reconstruction,” in Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1277-1282, 2004.
[6] J. Arnabat, S. Casanovas, and G. Medioni, “3D modeling from turntable sequences using dense stereo carving and multi-view consistency,” in Proceedings of 2004 IEEE Conference on Pattern Recognition (ICPR2004), pp. 36-39, 2004.
[7] L. Chena, C. W. Armstronga, and D. D. Raftopoulos, “An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique,” Journal of Biomechanics, vol. 27, no. 4, pp. 493– 500, April 1994.
[8] O. D. Faugeras, Q. T. Luong, and S. J. Maybank, “Camera Self-Calibration: Theory and Experiments,” in Proceedings of Second European Conference on Computer Vision, pp. 321-334, 1992.
[9] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment—a modern synthesis,” in Vision algorithms: theory and practice: Springer Berlin Heidelberg, 2000, pp. 298-372.
[10] C. Wu, “Towards linear-time incremental structure from motion,” in Proceedings of 2013 International Conference on 3DTV-Conference, pp. 127-134, 2013.
[11] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore Bundle Adjustment”, in Proceedings of IEEE 2011Conference on Computer Vision
and Pattern Recognition (CVPR 2011), 2011
[12] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys,
“Live metric 3D reconstruction on mobile phones,” in Proceedings of 2013
IEEE International Conference on Computer Vision (ICCV), pp. 65 - 72, 2013.
[13] F. Dellaert, S. M. Seitz, Ch. E. Thorpe,.and S. Thrun, “Structure from motion without correspondence,” in Proceedings of 200 IEEE International
Conference on Computer Vision and Pattern Recognition, pp. 557–564, 2010.
[14] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of 7th IEEE International Conference on Computer Vision, vol.
2., pp. 1150-1157, 1999.
[15] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,”c9th
European Conference on Computer Vision Graz (ECCV 2006), pp. 404-417,
2006.
[16] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of Alvey vision conference, vol. 15, pp. 50, 1988.
[17] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image
understanding, vol. 68, no. 2, pp. 146-157, Nov. 1997.
[18] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards internet-scale multi-view stereo,” in Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1434-1441, 2010.
[19] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, “Multi-view stereo for community photo collections,” in Proceedings of IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1-8, 2007.
[20] M. Jancosek, A. Shekhovtsov, and T. Pajdla, “Scalable multi-view stereo,” in Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1526 – 1533, 2009.
[21] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stereopsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1362-1376, Aug. 2010.
[22] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking personal cloud storage,” in Proceedings of the 2013 conference on Internet measurement conference, pp. 205-212, 2013.
[23] F. Crete-Roffet, T. Dolmiere, P. Ladret, and M. Nicolas, “The Blur Effect: Perception and Estimation with a New No-Reference Perceptual Blur Metric,” in Proceedings of SPIE Electronic Imaging Symposium Conference on Human Vision and Electronic Imaging, 2007.
[24] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and w. T. Freeman
,“Removing camera shake from a single photograph,” ACM Transactions on
Graphics (TOG), vol. 25, no. 3, pp. 787-794, 2006.
[25] J. S. Beis and D. G. Lowe, “Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces,” in Proceedings of IEEE
Conference on Computer Vision Pattern Recognition, pp. 1000–1006, 1997.
[26] O. Chum, J. Matas, and S. Obdrzalek, “Enhancing RANSAC by generalized model optimization,” in Proceedings of Asian Conference on Computer Vision
(ACCV), Vol. 2, pp. 812–817, 2004.
[27] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G.
Ranzuglia, “Meshlab: an open-source mesh processing tool,” in Eurographics
Italian Chapter Conference, pp. 129-136, 2008.
[28] A. Chits, “What methods are used to predict the probability of an earthquake?”
http://www.quora.com/What-methods-are-used-to-predict-the-probability-of-a
n-earthquake
[29] GLOBA TEK.3D: http://3d.globatek.ru/
[30] G. Bradski and A. Kaehler, Learning Opencv: O'Reilly Media, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code