Responsive image
博碩士論文 etd-0605116-095541 詳細資訊
Title page for etd-0605116-095541
論文名稱
Title
白金於真空、水、四乙基正矽酸鹽環境中因為脈衝雷射剝熔蝕所造成的凝聚結晶行為
Condensation and crystallization behavior during pulsed laser ablation of platinum polycrystal in vacuum, water, and tetraethyl orthosilicate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-21
繳交日期
Date of Submission
2016-07-05
關鍵字
Keywords
水/四乙基正矽酸鹽/真空、脈衝雷射剝蝕、振動/吸收光譜、電子顯微鏡、奈米凝聚物、白金
nanocondensates, vibration and absorption spectroscopy, eletron microscope, pulsed laser ablation, water/tetraethyl orthosilicate/vacuum, platinum
統計
Statistics
本論文已被瀏覽 5717 次,被下載 10
The thesis/dissertation has been browsed 5717 times, has been downloaded 10 times.
中文摘要
本論文是關於多晶鉑於真空、水及四乙基正矽酸鹽(TEOS)中,經過脈衝雷射剝熔蝕(PLA) 製程,產生特定晶相凝固顆粒和奈米凝聚物之相變化與聚簇行為研究。X-光和電子繞射結果顯示,於真空及水中藉由PLA轟擊多晶鉑的主要產物,主要是具有二維層狀與類似面心立方結構,無多重孿晶,但具有發達的~{111}鄰近表面的鉑奈米凝聚物與較大粒徑的fcc結構鉑凝固顆粒,互相聚簇成為多晶體,此多晶體若在鍍碳火棉膠銅網上可催化形成亂層石墨烯。
至於在水中藉由PLA轟擊多晶鉑,則造成額外的α-PtO2片狀顆粒,然而在TEOS中則產生額外的Pt-Si介金屬化合物顆粒,包括具有(110)滑移聚片雙晶(遵循[111](110)雙晶軸面)的摻碳斜方晶系PtSi,和具有序化的體心正方超晶格的摻碳Pt2Si1-x或Pt2Si1+x凝固顆粒與周邊二維層狀鉑奈米凝聚物互相非磊晶聚簇,而PtSi與面心立方結構鉑顆粒,則傾向依照[100]PtSi//[011]Pt; (001)PtSi//(100)Pt的晶向關係進行磊晶團簇。上述PLA製程雷射幕的鉑原子在團簇凝聚和固化的過程中會與碳素競爭反應,以至於石墨和石墨烯退居介穩狀態,極少出現。
Abstract
This research is about the phase behavior of the particulates and condensates produced by a dynamic process of pulsed laser ablation (PLA) of platinum polycrystal in vacuum, water and tetraethyl orthosilicate (TEOS). X-ray and electron diffraction results indicated that the sample produced by PLA of Pt in vacuum and water consist of lamellae and fcc-based structure having negligible multiple twins yet with well-developed ~{111} vicinal surface for mutual coalescence as polycrystal which tended to activate the formation of turbostratic graphene on a C-coated collodion film. By contrast, PLA of Pt in water caused additional α-PtO2 platy particles whereas PLA of Pt in TEOS additional Pt-Si compounds, i.e. orthorhombic C-doped PtSi having (110) shuffled polysynthetic twinning by the [111](110) twin law and C-doped α-Pt2Si1-x or Pt2Si1+x having a body-centered tetragonal supercell. The C-doped PtSi and α-Pt2Si1-x or Pt2Si1+x particulates were formed separately for nonepitaxial coalescence with each other and with the lamellar Pt nanocodnesates; whereas the C-doped PtSi particulate was occasionally found to coalesce with the fcc-Pt particulate by the epitaxial relationship [100]PtSi//[011]Pt; (001)PtSi//(100)Pt with a fair 3-D lattice match. Due to competitive reaction of Pt and C, graphene and graphite hardly occurred by condensation and solidification of the laser plume in the above PLA processes.
目次 Table of Contents
壹、前言 1
貳、實驗流程 6
参、實驗步驟及方法 7
一、脈衝雷射剝蝕(PLA) 7
二、X光繞射分析(XRD) 7
三、UV-visible吸收光譜 8
四、穿透式電子顯微鏡(TEM) 8
五、偏光顯微鏡(POM) 8
六、X光-光電子能譜分析(XPS) 8
肆、實驗結果 10
一、XRD分析 10
二、UV-visible吸收光譜 10
三、穿透式電子顯微鏡(TEM) 10
四、X光-光電子能譜分析 15
伍、討論 16
陸、結論 21
柒、文獻參考 22
參考文獻 References
Aglio M.D., Gaudiuso R., O. Pascale D., Giacomo A.D., “Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production‚” Applied Surface Science 348 (2015) 4-9.
Bosomoiu M., Bozga G., Soare G., “Methane combustion over a commercial platinum on alumina catalyst: Kinetics and catalyst deactivation,” Revue Roumaine de Chimie, 53 (2008) 1105-1115.
Beckstein O., Klepeis J.E., Hart G.L.W., Pankratov O., ”First-principles elastic and electronic structure of α-Pt2Si and PtSi‚” Phys. Rev. B 63 (2001) 13411-1-12.
Buffat P.A., Flüelï M., Spycher R., Stadelmann P., Borel J.P., ”Crystallographic structure of small gold particles studied by high-resolution electron microscopy‚” Faraday Discuss. 92 (1991) 173-187.
Bulusu S., Li X., Wang L.S., Zeng X.C., ”Evidence of hollow golden cages‚” Proc. Natl. Acad. Sci. 103 (2006) 8326-8330.
Burbidge E.M., Burbidge G.R., Fowler W.A., Hoyle F., “Synthesis of the elements in stars,” Reviews of Modern Physics 29 (1957) 547-650.
Carothers, W. H.; Adams, R. “Platinum oxide as a catalyst in the reduction of organic compounds.VII. A study of the effects of numerous substances on the platinum catalysis of the reduction of benzaldehyde,” J. Am. Chem. Soc. 47 (1925) 1047-1063.
Chang H.W., Chang W. S., You J. S., Liu C. W. “ Syntheses and application of platinum nanomaterials,” Chemistry (The Chinese Chemical Society, Taipei), March 2007, 65,.27-33 (in Chinese: 張澔洧, 張文翔, 游竣翔, 劉鎮維 ”奈米級鉑材料的合成及應用,”)
Chaston J.C., “Reactions of oxygen with the platinum metals,” Platinum Metals Review 9 (1965) 51-56.
Chen J.R., Chang L.D.,Yeh F.S., ”Effects of the film thickness on the interfacial reaction of Pt/(111)Si‚” J. Vac. Sci. Technol. A, 7 (1989) 1345-1349.
Creighton JA, Eadon DG (1991). Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans., 87: 3881-3891.
Fan C.Z., Sun L.L., Wang Y.X., Liu R.P., Zeng S.Y., Wang W.K., “First-principles study on the structural, elastic and electronic properties of platinum carbide‚” Physica B 381 (2006) 174-178.
Gu X., Ji M., Wei S.H., Gong X.G., “AuN clusters (N=32, 33, 34, 35): Cage like structures of pure metal atoms‚” Phys. Rev. B: Condens. Matter, 70 (2004) 205401.
Hayes R.E., Kolaczkowski S.T., “Introduction to catalytic combustion,” Gordon and Breach Science Publishers, Australia, 1997
Huang C.N., Chen S.Y., Zheng Y., Shen P. “Structure and phase behavior of gold nanocondensates: effects of laser ablation parameters and carbon catalysis,” J. Phys. Chem. C 112 (2008) 14965-14972.
Huang C.N., Chen S.Y., Shen P., “Mesomorphic lamella rolling of Au in vacuum,” Nanoscale Research Lett. 4 (2009a) 1286-1296.
Huang C.N., Chen S.Y., Zheng Y., Shen P., “Water-driven assembly of laser ablation-induced Au condensates as mesomorphic nano- and micro-tubes,” Nanoscale Research Lett. 4 (2009b) 1064-1072.
Herzig H., ”Enhanced space astronomy using platinum group metals‚” Platinum Metals Rev. 27 (1983) 108-109.
Henglein A., Ershov B.G., Malow M., J. ”Absorption spectrum and some chemical reactions of colloidal Platinum in aqueous solution‚” Phys. Chem., 99 (1995) 14129.
Iijima S., Ichihashi T.‚ ”Structural instability of ultrafine particles of metals‚” Phys. Rev. Lett. 56 (1986) 616-619.
Johansson M.P., Sundholm D., Vaara J., ”Au32:a 24-carat golden fullerene‚”Angew. Chem., Int. Ed., 43 (2004) 2678-2681.
Kawarada H., Ohdomari I., Hariuchi S., ”Structural study of PtSi/(111)Si interface with high-resolution microscopy‚” Journal of Applied Physics 23 (1984) L799-L802.
Kiilunen M., Aitio A., Santonen T., “Handbook on the Toxicology of Metals 4E‚” Elsevier B.V., 2015. ISBN: 978-0-444-59453-2.
Klepeis J.E., beckstein O., Pankratov O., Hart G.L.W., “Chemical bonding, elasticity, and valence force field models: A case study for α-Pt2Si and PtSi,” Phys. Rev. B 64 (2001) 155110.
Koskinen P., Häkkinen H., Huber B., Issendorff B.V., Moseler M., ”Liquid-liquid phase coexistence in gold clusters: 2D or not 2D?‚” Phys. Rev. Lett. 98 (2007) 015701.
Kreibig U., Vollmer R.,” Optical properties of metal clusters‚” Springer, Berlin, 1995.
Kwak D., Lee Y.W., Han S.B., Lee J.Y., Zhoh C.K.‚ “Electrocatalyticoxidation reactions of Pt hexapod nanoparticles‚” ElectrochimicaActa 176 (2015) 790-796.
Li W., Sun Z., Tian D., Nevirkovets I.P., Dou S.X., “Platinum dendritic nanoparticles with magnetic behavior‚” Journal of Applied Physics 116 (2014) 033911.
Li L., Yu W., Jin C., “First-principles calculations of a high-pressure synthesized compound PtC‚”Journal of Physics: Condensed Matter 17 (2005) 5965-5970.
Li Q., Zhang X., Liu H., Wang H., Zhang M., Li Q., Ma Y., “Structural and mechanical properties of platinum carbide‚” Inorganic Chemistry 53 (2014) 5797-5802.
Lin B.C., Shen P., Chen S.Y., Core-shell cermet condensates by pulsed laser ablation on Zn in TEOS, J. Nanoparticle Res, 16 (2014) 2444-9.
Mahdieh B., Fattahi M.H., “Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence,” Applied Surface Science 329 (2015) 47-57.
Mafuné J., Kohno J., Takeda Y., Kondow T., “Formation of stable platinum nanoparticles by laser ablation in water,” J. Phys. Chem. B 107 (2003) 4218-4223.
McBride J.R., Graham G.W., Peters C.R., Weber W.H., “Growth and characterization of reactively sputtered thin-film platinum oxides,” J. Appl. Phys. 69 (1991) 1596-1604.
Nichols W.T., Sasaki T., Koshizaki N., “Laser ablation of a platinum target in water. I. Ablation mechanisms‚” Journal of Applied Physics 100 (2006a) 114911.
Nichols W.T., Sasaki T., Koshizaki N., “Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions‚” Journal of Applied Physics 100 (2006b) 114912.
Nichols W.T., Sasaki T., Koshizaki N., “Laser ablation of a platinum target in water. III. Laser-induced reactions‚” Journal of Applied Physics 100 (2006c) 114913.
Ono S., Kikegawa T., Ohishi.Y., “ A high-pressure and high-temperature synthesis of platinum carbide‚” Solid State Communications 133 (2005) 55-59.
Riabinina D., Irissou E., Drogoff B.L., Chaker M., Guay D., “Influence of pressure on the Pt nanoparticle growth modes during pulsed laser ablation‚” Journal of Applied Physics 108 (2010) 034332.
Saito K., Takatani K., Sakka T., Ogata Y.H., “Observation of the light emitting region produced by pulsed laser irradiation to a solid-liquid interface,” Appl. Surf. Sci. 197-198 (2002) 56-60.
Siegel R.W., “Exploring mesoscopia: the bold new world of nanostructures‚” Phys. Today 46 (1993) 64-68.
Tanner and Okamoto, The Pt-Si (platinum-silicon) system,” J. Phase Equilibria 12 (1991) 571-572.
Truran J.W., “A new interpretation of the heavy-element abundances in metal-deficient stars" Astronomy and Astrophysics 97 (1981) 391-393.
Tsuji T., Iryo K., Ohta H., Nishimura Y., ”Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the efficiencies of colloid formation‚” Jpn. J. Appl. Phys., Part 2, 39 (2000) L981-983.
Tsuji T., Iryo K., Ohta H., Nishimura Y., Tsuji M., ”Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II)‚”J. Photochem. Photobiol., A 145 (2001) 201-207.
Tsuji T., Iryo K., Watanabe N., Tsuji M., ”Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size‚”Appl. Surf. Sci. 202 (2002) 80-85.
Witcomb M.J., Dahmen U, Westmacott K.H., ”A study of precipitation in interstitial alloys-Ⅱ. A new metastable carbide phase in platinum‚”Acta Metall. 31 (1983) 743-747.
Wu C.H., Chen S.Y., Shen P., On the densification of cubic ZrO2 nanocondensates by capillarity force and turbostratic C-Si-H multiple shell, J. Solid State Chem. 200, (2013) 170-178.
Wu C.H., Chen S.Y., Shen P., C-H doped anatase nanospheres with disordered shell and planar defects by pulsed laser ablation of bulk Ti in tetraethyl orthosilicate, CrystEngComm. 16 (2014a) 2220-2229.
Wu C.H., Chen S.Y., Shen P., Special grain boundaries of anatase nanocondensates by oriented attachment, CrystEngComm 16 (2014b) 1459-1465.
Wu C.H., Chen S.Y., Shen P., Polyynes and flexible Si-H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate, Carbon, 67 (2014c) 27-37.
Yan Z., Chrisey D.B., “Pulsed laser ablation in liquid for micro-/nanostructure generation‚” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 204-223.
林柏丞, "脈衝雷射於液態或真空剝熔蝕鋅、鋅銅、金銅靶材造成的複合凝聚物與相變化," 國立中山大學101學年度博士論文 (2012)
張鈺菱, “鎳分別於四乙基正矽酸鹽和氨水中經脈衝雷射剝蝕後之相變化行為及缺陷微觀組織‚”國立中山大學103學年度碩士論文 (2013)
詹雅婷, "NiO-Al2O3二元成分系粉末於水中的雷射脈衝反應與大氣中的早期燒結-粗化-聚簇動力學," 國立中山大學102學年度碩士論文 (2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code