Responsive image
博碩士論文 etd-0605116-152602 詳細資訊
Title page for etd-0605116-152602
論文名稱
Title
模板輔助合成金屬奈米簇及其螢光感測器應用
Template-assisted Synthesis of Metal Nanoclusters and their Application as a Fluorescent Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-01
繳交日期
Date of Submission
2016-07-07
關鍵字
Keywords
雙金屬奈米簇、邏輯閘、金奈米簇、核苷酸、螢光比例法、pH值、溫度
bimetallic nanoclusters, Temperature, pH value, Intracellular image, Nucleotide, Gold nanoclusters, Ratiometric sensor
統計
Statistics
本論文已被瀏覽 5756 次,被下載 49
The thesis/dissertation has been browsed 5756 times, has been downloaded 49 times.
中文摘要
本篇研究利用模板輔助所合成的金奈米簇,具有良好的螢光表現、較長的螢光生命週期與絕佳的生物相容性等優點來設計感測器。透過模板簡單的修飾,可結合螢光比例法進行感測,來獲得較為傑出的偵測效果,並應用於生物感測與細胞成像。而銀離子額外的添加,將可促使金奈米簇轉變為雙金屬奈米簇,利用其特性的轉變,發展出全新的核苷酸感測系統。

(一) 模板輔助合成金奈米簇:應用於偵測環境pH值、溫度與胰蛋白酶
以金奈米簇(gold nanoclusters,AuNCs)為基礎架構,設計一個可以同時決定微環境溫度和pH值變化的感測器。本篇研究採用標有異硫氰酸螢光素(FITC, (fluorescein isothiocyanate)的牛血清蛋白(BSA,bovine serum albumin)來合成金奈米簇,透過單一激發光488 nm,即可獲得具有525 nm及670 nm兩道放射光的探針,並將它稱之為FITC/BSA-AuNCs。由於FITC本身為一pH值敏感的染劑,而牛血清蛋白所包覆的金奈米簇則對溫度敏感,故透過I525 nm/I670 nm兩道螢光比值的改變可以同時偵測溫度(21~41 ℃,每5 ℃為間距)與pH值(6.0~8.0,每0.5個單位為間距)。若以溫度與pH值為輸入端,則可設計一個二輸入端的AND邏輯閘(two-input AND logic gate)。將此探針應用在細胞顯影(cell image)上,可以發現海拉細胞(HeLa cell)在不同酸鹼值與溫度的環境下,螢光比值表現有著明顯的差異性。此外,透過胰蛋白酶(trypsin)對牛血清蛋白專一性的水解作用,探針的I670 nm螢光強度將會隨酵素濃度提升而減弱,螢光比值因此改變,進而得以對胰蛋白酶進行偵測(50 ng/mL ~ 100 g/mL,偵測極限10 ng/mL),而本篇研究也已成功將此應用在成人尿液的檢測上。最後,透過溫度、pH值與胰蛋白酶三個輸入端的設定,即可設計一個三輸入端的AND邏輯閘(three-input AND logic gate)。

(二) 開發核苷酸包覆金屬奈米簇:應用於偵測核苷酸
本篇研究以多腺苷A30為模板,透過照光與加熱的輔助,可發展出一套簡單、快速、環保,且無須使用NaBH4即能夠大量生產多腺苷包覆金屬奈米團簇的合成方法。合成方式可簡單分成兩個部分:首先第一部分以多腺苷A30為模板,透過照射紫外光的方式,合成具有480 nm螢光放光性質的多腺苷金奈米簇A30-AuNCs;接著第二階段的合成以加熱輔助合成的方式,對額外添加的銀離子進行還原,並形成具有550 nm螢光放光性質的多腺苷雙金屬奈米簇A30-AuAgNCs。藉由此方式,可將A30-AuNCs的放光波長大幅紅位移70 nm,更利於生化方面相關的研究。由穿隧式電子顯微鏡可明確發現奈米團簇的生成,透過高解析電子能譜儀與感應藕荷電漿可進一步確認銀原子的存在與A30-AuAgNCs的形成,並獲得金銀元素比為4:1。由A30-AuAgNCs對氯化鈉鹽類效應的螢光可逆性,我們判斷銀原子應該包覆在A30-AuAgNCs的外圍。綜合Jellium model理論計算A30-AuNCs的結構為Au8的結果,我們推測A30-AuAgNCs應由Au8Ag2所組成。此外,藉由核苷酸序列辨識端的簡單設計,以核苷酸pDNA所合成的金銀奈米團簇pDNA-AuAgNCs,將可額外具備偵測目標核苷酸tDNA的能力。當環境存在tDNA的濃度逐漸提升時,pDNA-AuAgNCs的螢光將會逐漸藍位移,有效線性範圍0.25~2 μM。
Abstract
This study utilized templates to support the synthesis of gold nanoclusters. Having the advantages of high performance on fluorescence, longer fluorescence lifetime, and good biocompatibility, it is suitable for us to use this kind of materials to design biosensors. After templates modified, we could get a better detection results by a mothods of ratiometric fluorescence sensing system, and we apply this probe for biochemistry detection and cellular imaging on the first study. Besides, addition silver nitrate to gold nanoclusters gave the generation of bimetallic alloy nanoclusters. With the properties entirely changed, we designed a brand new sensing system for nucleotides detection on the second study.

(A) Gold Nanoclusters-Based Fluorescent Probe for Simultaneous Sensing of pH and Temperature and Its Application to Cellular Imaging and Logic Gates
This study describes the synthesis of a dual emission probe, FITC/BSA-AuNCs, for the fluorescent ratiometric sensing of temperature and pH change. Green-emitting fluorescein-5-isothiocyanate (FITC) was labeled on bovine serum albumin (BSA) by conjugating the isothiocyanate groups to the amino groups. This FITC-capped BSA acted as a template for the synthesis of red-emitting gold nanoclusters (AuNCs) under alkaline conditions. As a result, FITC/BSA-AuNCs could emit dual fluorescence at 525 and 670 nm at single wavelength excitation, which are sensitive to the pH and temperature change, respectively. The temperature-dependent fluorescence of the AuNCs enabled FITC/BSA-AuNCs to ratiometrically detect the temperature change with the resolution better than 1.5 ℃ as the FITC was used as an internal standard. Meanwhile, the pH-induced fluorescence change of FITC enabled to ratiometrically probe the pH change with the resolution of 0.5-pH unit as the fluorescence of the AuNCs remained almost constant under identical conditions. Based on this concept, this study firstly developed AuNC-based probe for simultaneous detection of pH and temperature change with a linear range from pH 6.0–8.0 and from 21 ℃–41 ℃, respectively. Since trypsin can digest BSA to peptide fragments, a dramatically decreased in the fluorescence intensity at 670 nm of FITC/BSA-AuNCs was observed in the presence of increasing the logarithmic concentration of trypsin. This finding enable us to ratiometrically detect trypsin with a detection limit of 131 pg/mL and a linear range of 10-8 to 10-4 g/mL. The successful quantification of trypsin in human urine demonstrated that FITC/BSA-AuNCs is capable of sensing trypsin in complex matrix. Three-input AND logic gates were then designed by using temperature, pH, and trypsin as inputs. Finally, the practicality of utilizing FITC/BSA-AuNCs to determine temperature and pH changes in HeLa cells is also achieved.

(B) Synthesis of DNA-templated bimetallic nanoclusters for fluorescent sensing of target nucleic acid by shift in maximum emission wavelength
Under UV light irradiation and heating, we develop a simple, nontoxic, and facile way to synthesize gold nanoclusters and bimetallic nanoclusters (A30-AuAgNCs) by using poly adenosine as the templates. The synthesis steps were divided into two parts: First, we put poly adenosine, HAuCl4 and citrate buffer together to serve as a precursor. After 24-h UV light irradiation, a fluorescent gold nanoclusters were generated, and name as A30-AuNCs. Under 290 nm excitation light, A30-AuNCs could emit 480 nm emission light. Next, we add silver nitrate into this gold nanoclusters, and then put it into 90 ℃ oven for incubation. After 2 hours, the final product A30-AuAgNCs was generated. Take the advantage of this method, the emission wavelength of this bimetallic nanoclusters could entirely red shift 70 nm against A30-AuNCs, which is more suitable for biochemical sensing. The production of A30-AuAgNCs could well confirm by transmission electron microscope (TEM), The generation of silver atoms was also validated by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray Photoelectron Spectrometer (XPS), the element ratio of gold and silver was 4:1. After understanding the fluorescence reversibility of salt effect from A30-AuAgNCs, we recommended that the silver atoms may surround the golden core. Since the theoretical calculation of A30-AuAgNCs fluorescence from Jellium model indicates the result of Au8, we infer the structure of A30-AuAgNCs should be Au8Ag2. Moreover, this nucleotide-templates bimetallic nanoclusters could show the ability of sensing target-DNA (tDNA) by changing the A30 to pDNA, which is consisted with A30 and a additional recognition part. As the concentration of pDNA rise, the pDNA-AuAgNCs fluorescence wavelength become smaller (blue shift). The linear range of quantification is 0.25~2 μM.
目次 Table of Contents
摘要.................................................................................................................................i
目錄...............................................................................................................................vii
圖次................................................................................................................................ix
表次...............................................................................................................................xii
第一章、模板輔助合成金奈米簇:應用於偵測環境pH值、溫度與胰蛋白酶................................1
一、前言.....................................................................................................................1
二、實驗部分...............................................................................................................4
2.1 實驗藥品............................................................................................................4
2.2 儀器設備............................................................................................................6
2.3 樣品備置與實驗方法..........................................................................................12
三、結果與討論..........................................................................................................13
3.1 偵測溫度..........................................................................................................13
3.2 活化能.............................................................................................................17
3.3 消光機制探討...................................................................................................21
3.4 同時偵測溫度與pH值以及二輸入端AND邏輯閘的設計...........................................24
3.5 偵測胰蛋白酶...................................................................................................27
3.6 三輸入端AND邏輯閘的設計...............................................................................32
3.7 以細胞顯影偵測癌細胞pH值與溫度.....................................................................34
四、結論...................................................................................................................37
五、參考文獻............................................................................................................38
第二章、開發核苷酸包覆金屬奈米簇:應用於偵測核苷酸..................................................43
一、前言..................................................................................................................43
二、實驗部分............................................................................................................48
2.1 實驗藥品.........................................................................................................48
2.2 儀器設備.........................................................................................................49
2.3 樣品備置與實驗方法.........................................................................................52
三、結果與討論.........................................................................................................56
3.1 光學性質與最適化............................................................................................56
3.2 不同金屬離子比例之探討..................................................................................62
3.3 不同合成方法之比較.........................................................................................65
3.4 合成機制探討與螢光生命週期............................................................................68
3.5 結構鑑定.........................................................................................................71
3.6 偵測目標核苷酸tDNA.......................................................................................79
四、結論..................................................................................................................85
五、未來工作............................................................................................................86
六、參考文獻............................................................................................................87
參考文獻 References
1. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble metal quantum dots. Annu. ReV. Phys. Chem. 2007, 58, 409.
2. Yu, Y.; Luo, Z.; Teo, C. S.; Tan, Y. N.; Xie, J., Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chem. Commun. 2013, 49, 9740-9742.
3. Sakanaga, I.; Inada, M.; Saitoh, T.; Kawasaki, H.; Iwasaki, Y.; Yamada, T.; Umezu, I.; Sugimura, A., Photoluminescence from excited energy bands in Au25 Nanoclusters. Appl. Phys. Express 2011, 4, 095001.
4. Wen, X.; Yu, P.; Toh, Y.-R.; Tang, J., Quantum Confined Stark Effect in Au8 and Au25 Nanoclusters. J. Phys. Chem. C 2013, 117, 3621-3626.
5. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T.; Ramakrishna, G., Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters. J. Phys. Chem. C 2010, 114, 22417-22423.
6. Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G. U., Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 2012, 8, 661-665.
7. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph‐Dependent synthesis of pepsin‐mediated gold nanoclusters with blue green and red fluorescent emission. Adv.
Funct. Mater. 2011, 21, 3508-3515.
8. Chen, T. H.; Tseng, W. L., (Lysozyme Type VI)‐Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919.
9. Zhang, J.; Fu, Y.; Conroy, C. V.; Tang, Z.; Li, G.; Zhao, R. Y.; Wang, G., Fluorescence Intensity and Lifetime Cell Imaging with Luminescent Gold Nanoclusters. J. Phys. Chem. C 2012, 116, 26561-26569.
10. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U., Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem., Int. Ed. 2013, 52, 11154-11157.
11. Chen, X.; Essner, J. B.; Baker, G. A., Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 2014, 6, 9594-9598.
12. Li, H.-W.; Yue, Y.; Liu, T.-Y.; Li, D.; Wu, Y., Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver (I) ions in aqueous solutions. J. Phys. Chem. C 2013, 117, 16159-16165.
13. Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 2012, 32, 297-299.
14. Guan, G.; Zhang, S.-Y.; Cai, Y.; Liu, S.; Bharathi, M.; Low, M.; Yu, Y.; Xie, J.; Zheng, Y.; Zhang, Y.-W., Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chem. Commun. 2014, 50, 5703-5705.
15. Li, Z.-Y.; Wu, Y.-T.; Tseng, W.-L., UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids. ACS Appl. Mater. Interfaces 2015, 7, 23708-23716.
16. Ke, C.-Y.; Wu, Y.-T.; Tseng, W.-L., Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme–substrate system. Biosens. Bioelectron. 2015, 69, 46-53.
17. Zhuang, M.; Ding, C.; Zhu, A.; Tian, Y., Ratiometric Fluorescence Probe for Monitoring Hydroxyl Radical in Live Cells Based on Gold Nanoclusters. Anal. Chem. 2014, 86, 1829-1836.
18. Wang, L.-L.; Qiao, J.; Liu, H.-H.; Hao, J.; Qi, L.; Zhou, X.-P.; Li, D.; Nie, Z.-X.; Mao, L.-Q., Ratiometric Fluorescent Probe Based on Gold Nanoclusters and Alizarin Red-Boronic Acid for Monitoring Glucose in Brain Microdialysate. Anal. Chem. 2014, 86, 9758-9764.
19. Qi, Y.-X.; Zhang, M.; Zhu, A.; Shi, G., Terbium(iii)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(ii) and a paper-based visual sensor. Analyst 2015, 140, 5656-5661.
20. Zhao, P.; He, K.; Han, Y.; Zhang, Z.; Yu, M.; Wang, H.; Huang, Y.; Nie, Z.; Yao, S., Near-Infrared Dual-Emission Quantum Dots–Gold Nanoclusters Nanohybrid via Co-Template Synthesis for Ratiometric Fluorescent Detection and Bioimaging of Ascorbic Acid In Vitro and In Vivo. Anal. Chem. 2015, 87, 9998-10005.
21. Qiao, J.; Hwang, Y.-H.; Chen, C.-F.; Qi, L.; Dong, P.; Mu, X.-Y.; Kim, D.-P., Ratiometric Fluorescent Polymeric Thermometer for Thermogenesis Investigation in Living Cells. Anal. Chem. 2015, 87, 10535-10541.
22. Ju, E.; Liu, Z.; Du, Y.; Tao, Y.; Ren, J.; Qu, X., Heterogeneous Assembled Nanocomplexes for Ratiometric Detection of Highly Reactive Oxygen Species in Vitro and in Vivo. ACS Nano 2014, 8, 6014-6023.
23. Murayama, K.; Tomida, M., Heat-Induced Secondary Structure and Conformation Change of Bovine Serum Albumin Investigated by Fourier Transform Infrared Spectroscopy. Biochemistry 2004, 43, 11526-11532.
24. Zhang, L.; Zhang, M.; Wu, Y., Temperature-induced optical property and conformational change of BSA-protected gold nanoclusters. Journal of Molecular Structure 2014, 1069, 245-250.
25. Chatterjee, S.; Mukherjee, T. K., Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study. Physical Chemistry Chemical Physics 2015, 17, 24078-24085.
26. Uchiyama, S.; Tsuji, T.; Ikado, K.; Yoshida, A.; Kawamoto, K.; Hayashi, T.; Inada, N., A cationic fluorescent polymeric thermometer for the ratiometric sensing of intracellular temperature. Analyst 2015, 140, 4498-4506.
27. Zhang, J.; Zhang, M.; Lin, L.; Wang, X., Angew. Chem., Int. Ed. 2015, 54, 6297.
28. Das, D.; Shinde, S. L.; Nanda, K. K., Temperature-Dependent Photoluminescence of g-C3N4: Implication for Temperature Sensing. ACS Appl. Mater. Interfaces 2016, 8, 2181-2186.
29. Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S., Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J. Am. Chem. Soc. 2009, 131, 2766-2767.
30. Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R., Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Lett. 2012, 12, 2107-2111.
31. Ke, G.; Wang, C.; Ge, Y.; Zheng, N.; Zhu, Z.; Yang, C. J., l-DNA Molecular Beacon: A Safe, Stable, and Accurate Intracellular Nano-thermometer for Temperature Sensing in Living Cells. J. Am. Chem. Soc. 2012, 134, 18908-18911.
32. Albers, A. E.; Chan, E. M.; McBride, P. M.; Ajo-Franklin, C. M.; Cohen, B. E.; Helms, B. A., Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells. J. Am. Chem. Soc. 2012, 134, 9565-9568.
33. Wang, Y.; Wang, Y.; Zhou, F.; Kim, P.; Xia, Y., Protein-Protected Au Clusters as a New Class of Nanoscale Biosensor for Label-Free Fluorescence Detection of Proteases. Small 2012, 8, 3769-3773.
34. Wu, Z.; Jin, R., On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10, 2568-2573.
35. Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015, 7, 15.
36. He, X.; Gao, L.; Ma, N., One-Step Instant Synthesis of Protein-Conjugated Quantum Dots at Room Temperature. Sci. Rep. 2013, 3, 2825.
1. Tao, Y.; Li, M.; Ren, J.; Qu, X., Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636-8663.
2. Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.
3. Shang, L.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 2011, 6, 401-418.
4. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble metal quantum dots. Annu. ReV. Phys. Chem. 2007, 58, 409.
5. Chevrier, D. M.; Chatt, A.; Zhang, P., Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J. Nanophotonics 2012, 6, 064504-1-064504-16.
6. Wu, Z.; Jin, R., On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
7. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson III, T.; Ramakrishna, G., Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J. Phys. Chem. C 2010, 114, 22417-22423.
8. Rayleigh, L., XX. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 1882, 14, 184-186.
9. Wang, T.; Hu, X.; Dong, S., The fragmentation of gold nanoparticles induced by small biomolecules. Chem. Commun. 2008, 4625-4627.
10. Habeeb Muhammed, M. A.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T., Luminescent Quantum Clusters of Gold in Bulk by Albumin‐Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal‐Enhanced Luminescence, and Biolabeling. Chemistry–A European Journal 2010, 16, 10103-10112.
11. Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: bridging the gap between gold (I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
12. Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett 2010, 1, 2903-2910.
13. Yuan, X.; Zhang, B.; Luo, Z.; Yao, Q.; Leong, D. T.; Yan, N.; Xie, J., Balancing the Rate of Cluster Growth and Etching for Gram‐Scale Synthesis of Thiolate‐Protected Au25 Nanoclusters with Atomic Precision. Angew. Chem., Int. Ed. 2014, 53, 4623-4627.
14. Ke, C.-Y.; Wu, Y.-T.; Tseng, W.-L., Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme–substrate system. Biosens. Bioelectron. 2015, 69, 46-53.
15. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 2011, 83, 1193-1196.
16. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
17. Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402.
18. Sun, J.; Yue, Y.; Wang, P.; He, H.; Jin, Y., Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+. J. Mater. Chem. C 2013, 1, 908-913.
19. Li, Z.-Y.; Wu, Y.-T.; Tseng, W.-L., UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids. ACS Appl. Mater. Interfaces 2015, 7, 23708-23716.
20. Liu, J., DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends in Anal. Chem. 2014, 58, 99-111.
21. TaiáLeong, D., Lighting up thiolated Au@ Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.
22. Jia, X.; Li, J.; Zhang, X.; Wang, E., Controlling the synthesis and assembly of fluorescent Au/Ag alloy nanoclusters. Chem. Commun. 2015, 51, 17417-17419.
23. Li, H.-W.; Yue, Y.; Liu, T.-Y.; Li, D.; Wu, Y., Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver (I) ions in aqueous solutions. J. Phys. Chem. C 2013, 117, 16159-16165.
24. Sun, J.; Wu, H.; Jin, Y., Synthesis of thiolated Ag/Au bimetallic nanoclusters exhibiting an anti-galvanic reduction mechanism and composition-dependent fluorescence. Nanoscale 2014, 6, 5449-5457.
25. Guan, G.; Cai, Y.; Liu, S.; Yu, H.; Bai, S.; Cheng, Y.; Tang, T.; Bharathi, M.; Zhang, Y. W.; Han, M. Y., High‐Level Incorporation of Silver in Gold Nanoclusters: Fluorescence Redshift upon Interaction with Hydrogen Peroxide and Fluorescence Enhancement with Herbicide. Chemistry–A European Journal 2015.
26. Zhang, J.; Yuan, Y.; Wang, Y.; Sun, F.; Liang, G.; Jiang, Z.; Yu, S.-H., Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Research 2015, 8, 2329-2339.
27. Wang, F.; Liu, B.; Huang, P.-J. J.; Liu, J., Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal. Chem. 2013, 85, 12144-12151.
28. Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T., Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450-9455.
29. Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H., A robust probe for lighting up intracellular telomerase via primer extension to open a nicked molecular beacon. J. Am. Chem. Soc. 2014, 136, 8205-8208.
30. Hou, Y.; Zhou, J.; Gao, Z.; Sun, X.; Liu, C.; Shangguan, D.; Yang, W.; Gao, M., Protease-Activated Ratiometric Fluorescent Probe for pH Mapping of Malignant Tumors. ACS nano 2015, 9, 3199-3205.
31. Wang, Q.; Wang, W.; Lei, J.; Xu, N.; Gao, F.; Ju, H., Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182-12188.
32. Porchetta, A.; Idili, A.; Vallée-Bélisle, A.; Ricci, F., General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands. Nano Lett. 2015, 15, 4467-4471.
33. Wu, C.; Chen, T.; Han, D.; You, M.; Peng, L.; Cansiz, S.; Zhu, G.; Li, C.; Xiong, X.; Jimenez, E., Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS nano 2013, 7, 5724-5731.
34. Zheng, J.; Yang, R.; Shi, M.; Wu, C.; Fang, X.; Li, Y.; Li, J.; Tan, W., Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev. 2015, 44, 3036-3055.
35. Tyagi, S.; Kramer, F. R., Molecular Beacons: Probes that Fluoresce upon Hybridization. Nat. Biotech. 1996, 14, 303-308.
36. Guo, W.; Yuan, J.; Dong, Q.; Wang, E., Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2009, 132, 932-934.
37. Chen, Y.; Tao, G.; Lin, R.; Pei, X.; Liu, F.; Li, N., On the Formation of DNA-templated Gold Nanoclusters: the Pre-incubation of Auric Acid with DNA Is Not Necessary. Chem., Asi. J. 2016.
38. Wu, X.; Redmond, P. L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L., Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc. 2008, 130, 9500-9506.
39. Xue, C.; Métraux, G. S.; Millstone, J. E.; Mirkin, C. A., Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc. 2008, 130, 8337-8344.
40. Lopez, A.; Liu, J., Light-activated metal-coordinated supramolecular complexes with charge-directed self-assembly. J. Phys. Chem. C 2013, 117, 3653-3661.
41. Jiang, H.; Zhang, Y.; Wang, X., Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters. Nanoscale 2014, 6, 10355-10362.
42. Lopez, A.; Liu, J., DNA-templated fluorescent gold nanoclusters reduced by Good’s buffer: from blue-emitting seeds to red and near infrared emitters. Can. J. Chem. 2015, 93, 615-620.
43. Wu, Z., Anti‐Galvanic Reduction of Thiolate‐Protected Gold and Silver Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 2934-2938.
44. Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R., Well‐Defined Nanoclusters as Fluorescent Nanosensors: A Case Study on Au25 (SG) 18. Small 2012, 8, 2028-2035.
45. Mohanty, J. S.; Xavier, P. L.; Chaudhari, K.; Bootharaju, M.; Goswami, N.; Pal, S.; Pradeep, T., Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. Nanoscale 2012, 4, 4255-4262.
46. Zhou, L.; Deng, H.; Deng, Q.; Zhao, S., A mixed matrix of 3‐hydroxypicolinic acid and pyrazinecarboxylic acid for matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of oligodeoxynucleotides. Rapid Commun. Mass Spectrom. 2004, 18, 787-794.
47. Verdolino, V.; Cammi, R.; Munk, B. H.; Schlegel, H. B., Calculation of p K a values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J. Phys. Chem. B 2008, 112, 16860-16873.
48. Petty, J. T.; Sergev, O. O.; Kantor, A. G.; Rankine, I. J.; Ganguly, M.; David, F. D.; Wheeler, S. K.; Wheeler, J. F., Ten-Atom Silver Cluster Signaling and Tempering DNA Hybridization. Analytical Chemistry 2015, 87, 5302-5309.
49. Ganguly, M.; Bradsher, C.; Goodwin, P.; Petty, J. T., DNA-Directed Fluorescence Switching of Silver Clusters. The Journal of Physical Chemistry C 2015, 119, 27829-27837.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code