Responsive image
博碩士論文 etd-0605117-025002 詳細資訊
Title page for etd-0605117-025002
論文名稱
Title
應用溶膠-凝膠氧化銦錫作為界面緩衝層之 P3HT:PCBM有機太陽能電池元件開發與特性研究
Developing and studying of P3HT:PCBM organic solar cells utilizing sol-gel ITO as an interfacial buffer layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-28
繳交日期
Date of Submission
2017-07-07
關鍵字
Keywords
有機光伏元件、本體異質接面結構、氧化銦錫、熱退火、緩衝層
buffer layer, organic photovoltaic, bulk heterojunction structure, indium oxide, thermal anneal
統計
Statistics
本論文已被瀏覽 5753 次,被下載 28
The thesis/dissertation has been browsed 5753 times, has been downloaded 28 times.
中文摘要
本論文以溶膠-凝膠製程製備之的多孔隙氧化銦錫薄膜 ( Sol-gel ITO ) 作為介面緩衝層開發本體異質接面結構之有機高分子太陽能電池元件,電荷施體材料為 Poly ( 3-hexylthiophene ) ( P3HT ) 、電荷受體材料為 [6,6]-phenyl-C61- butyric acid methyl ester ( PC61BM ),整體元件結構為 ITO / Sol-gel ITO / PEDOT:PSS / P3HT:PCBM / Ca / Al ,除開發太陽能電池元件外,亦藉由觀測其薄膜表面特性與元件光電特性曲線探討不同熱退火製程對此溶凝膠製程之 ITO 薄膜之特性影響及對太陽能電池元件的影響。
結果顯示加入了 Sol-gel ITO 緩衝層後, ITO 陽極變得較為平整,且在穿透光譜上也發現有著紅移及穿透度略為提升的情況,進而改善了太陽光的利用效率。此外,亦從單載子電洞傳輸元件的研究結果發現,溶膠-凝膠 ITO 緩衝層的加入後確實有效地增加元件等效電洞遷移率,進而改善元件電洞收集效率,大幅提升使用溶膠-凝膠 ITO 作為界面緩衝層元件的短路電流,相較於無此緩衝層的元件短路電流可提升55%以上,且此研究結果具高重現性,製備 12 個元件後,平均功率轉換效率為3.68 %,標準差為0.10 %;最佳元件特性為: VOC = 0.60 V 、JSC = 11.35 mA/cm2 、F.F. = 0.58 與 PCE = 3.80 %。
Abstract
In this thesis, a porous indium-tin-oxide film prepared by sol-gel process ( Sol-gel ITO ) is used as the interface buffer layer in bulk-heterojunction organic polymer solar cells. In the solar cells, the donor material is poly ( 3- hexylthiophene ) ( P3HT ) and the acceptor material is [6,6] -phenyl-C61-butyric acid methyl ester ( PC61BM ) with the following devices structure : ITO / Sol-gel ITO / PEDOT: PSS / P3HT: PCBM / Ca / Al. In addition to the development of solar cell devices, the studying of surface morphology and the optoelectrical properties of the devices with different post processed ITO substrates are also shown in this thesis.
The results show that the sol-gel ITO buffer layer atop ITO anode make the ITO substrate smoother. The sol-gel ITO red shifts the transmission spectrum and increases the transmission ration of the ITO substrates; thereby the solar cell devices use the sunlight in a more efficient way. Hole-only devices were also made to verify the function of the inserting sol-gel ITO layer. The equivalent hole mobility of the device was increased by the sol-gel ITO, indicating the hole collection efficiency of the solar cell would be increased as well. The short-circuit current of the device with sol-gel ITO as the interface buffer layer was increased up to 55% compared to it of the device without the buffer layer. The improvement of short-circuit current of the device by inserting sol-gel ITO layer is highly reproducible. In 12 devices with the sol-gel ITO layer, the average power conversion efficiency is 3.68% and the standard deviation is 0.10%. The best device exhibits VOC = 0.60 V, JSC = 11.35 mA / cm2, FF = 0.58 and PCE = 3.80%.
目次 Table of Contents
摘要 i
Abstract ii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池簡介 2
1-3 有機太陽能電池種類介紹與演進 4
1-4 研究動機與目的 8
1-5 各章提要 9
第二章 基礎理論 10
2-1太陽光譜 10
2-2有機太陽能電池之原理與機制 13
2-2-1激子產生 ( Exciton formation ) 13
2-2-2激子擴散 ( Exciton diffusion ) 13
2-2-3激子分離 ( Exction dissociation ) 13
2-2-4電荷收集 ( Charge transport and collection ) 14
2-3光電特性分析 16
2-3-1 開路電壓 ( Open circuit voltage , Voc ) 16
2-3-2 短路電流 ( Short circuit current density , Jsc ) 16
2-3-3 填充因子 ( Fill factor, F.F. ) 16
2-3-4 光電轉換效率( Power conversion efficiency , PCE ) 16
2-3-5 RS、RSH 17
第三章 實驗流程與儀器介紹 18
3-1實驗架構 18
3-2 材料簡介 19
3-2-1 PEDOT:PSS 簡介 19
3-2-2 P3HT 簡介 20
3-2-3 PC61BM簡介 20
3-3 溶液製備 21
3-3-1 PEDOT:PSS 21
3-3-2 主動層 21
3-4 實驗流程 22
3-4-1 ITO 基板圖樣化 22
3-4-2 ITO 基板清洗 23
3-4-3 PEDOT : PSS 成膜 24
3-4-4 主動層成膜 25
3-4-5 陰極蒸鍍 25
3-4-6 元件封裝 26
3-4-7 電性量測 26
3-5 實驗製程儀器介紹 27
3-5-1 超音波震盪機 27
3-5-2 紫外光臭氧清洗機 27
3-5-3 旋轉塗佈機 27
3-5-4 低水氧手套箱 27
3-5-5 高真空熱蒸鍍系統 27
3-6 實驗量測儀器介紹 28
3-6-1 紫外光-可見光吸收頻譜儀 ( UV-Vis absorption spectrum ) 28
3-6-2 X-射線繞射儀 ( X-ray diffraction ) 29
3-6-3 掃描式電子顯微鏡 ( Scanning electron microscope ) 30
3-6-4 原子力顯微鏡 ( Atomic force microscopy ) 31
3-6-5 霍爾量測儀 ( Hall measurement ) 32
3-6-6 太陽光譜模擬量測系統 ( Solar simulator system ) 33
3-6-7 表面輪廓儀 ( Surface profiler ) 34
3-6-8 入射光子轉換電子效率 ( Incident photon-electron conversion efficiency ) 35
第四章 結果與討論 36
4-1 ITO 導電薄膜分析 36
4-1-1電性分析 36
4-1-2 表面分析 39
4-1-3 光學分析 42
4-1-4 晶相分析 44
4-2 主動層薄膜分析 45
4-2-1 表面分析 45
4-2-2 光學分析 48
4-3 有機太陽能電池之元件光電特性分析 49
第五章 結論 55
參考文獻 56
參考文獻 References
[1] 張正華等編著,有機與塑膠太陽能電池,台北市,五南出版社 (2007).
[2] http://pv-leads.de/potential_der_photovoltaik_technik.html
[3] D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, 25 , 676 , (1954).
[4] National Renewable Energy Laboratory, NREL. (2017). “Best Research-Cell Efficiencies. ”Golden, CO: NREL.
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[5] D.Kearns and M.Calvin ,’’Photovoltaic Effect and photoconductivity in laminated organic system’’ Journal of Chemical Physics, 29 , 950-951 , (1958).
[6] C.W. Tang, “Two-layer organic photovoltaic cell,” Journal of Applied Physics Letters, 48 , 183(1986)
[7] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morlarty, K. Emery and Y.Yang, “High-efficiency solution processable polymer photovoltaiccells by self-organization of polymer blends”, Nature Materials , 4 , 864-869 , (2005).
[8] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance,” Journal of Applied Physics, 98, 124903 (2005)
[9] B. Leckner, “The spectral distribution of solar radiation at the earth's surface--elements of a model,” Journal of Solar Energy, 20 , 143-150 , (1978).
[10] http://www.twwiki.com/wiki/大氣質量
[11] M. A. Green, ”Solar Cells: Operating Principles, Technology, and System Application” (1982)
[12] 王長貴編著,太陽能光伏發電實用技術,北京,化學工業出版社(2009)
[13] website of wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
[14] N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Journal of Science, 315 , 798-801 , (2007).
[15] website of wikipedia (https://en.wikipedia.org/wiki/PEDOT:PSS)
[16] http://bouman.chem.georgetown.edu/S00/handout/spectrometer.htm
[17] 林麗娟編著,X光材料分析技術與應用專題,工業材料 86 期,(1994)
[18] 張達欣編著,利用化學氣相沉積法生長非極性之氧化鋅薄膜在鋁酸鋰基板上,碩士論文,國立中山大學材料科學研究所,(2008)
[19] 李其紘編著,原子力顯微鏡的基本介紹,科學研習,No. 52-5,(2013)
[20] 沈政宇編著,電場可調控之液晶與聚合物複合薄膜的表面性質探討,碩士論文,國立中山大學物理學系研究所,(2010)
[21] http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[22] 朱柏豪編著,表面輪廓儀的用途,奈米通訊,22卷 No.1, 31-33 ,(2015)
[23] www.mse.ttu.edu.tw/ezfiles/63/.../VeecoDEKTAK150Profilometer.pdf
[24] K. Sugiyama, H. Ishii, Y. Ouchi, K. Seki, ”Dependence of Indium-Tin-Oxide Work Function on Surface Cleaning Method As Studied By Ultraviolet And X-Ray Photoemission Spectroscopies”, Journal of Applied Physics, 87 , 295-298 , (2000).
[25] Dong-Ju Kim, Bong-sueg Kim, Han-Ki Kim, “Effect of thickness and substrate temperature on the properties of transparent Ti-doped In2O3 films grown by direct current magnetron sputtering” Journal of Thin Solid Films, 547 , 225–229 (2013)
[26] S. Q. Hussain, W.-K. Oh, S. Kim, S. Ahn, A. H. Tuan Le, H. Park, Y. Lee, V. A. Dao, S. Velumani, J. Yi, ”Study of Low Resistivity And High Work Function ITO Films Prepared By Oxygen Flow Rates And N2O Plasma Treatment For Amorphous/Crystalline Silicon Heterojunction Solar Cells”, Journal of Nanoscience and Nanotechnology, 14 , 1-5 , (2014).
[27] V. Shrotriya, G. Li, Y. Yao , Chih-Wei Chu, and Yang Yang., ”Transition metal oxides as the buffer layer for polymer photovoltaic cells”, Journal of Applied Physics Letters, 7 ,88 (2006).
[28] 林義凱編著,運用次微米尺度操控分子相分離技術製作有機太陽能電池,碩士論文,國立交通大學 光電工程學系 顯示科技研究所 (2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code