Responsive image
博碩士論文 etd-0605118-104355 詳細資訊
Title page for etd-0605118-104355
論文名稱
Title
立體規則型高分子材料之自組裝行為研究以及結構性質關聯探討
Self-Assembling Behavior and Structure-Property Relationship of Stereoregular Polymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
240
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-04
繳交日期
Date of Submission
2018-07-06
關鍵字
Keywords
光致發光、嵌段共聚物、微相分離、結晶、立體規則型高分子、奈米螺旋相、侷限效應
Microphase Separation, Nanohelical Phase, Stereoregular Polymer, Block Copolymer, Crystalline, Confinement, Photoluminescence
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本研究針對立體規則型高分子材料之自組裝行為研究以及結構性質關聯進行探討。首先,探討具層板微結構之新穎對排聚(4-甲基-1-戊烯)−聚左旋乳酸之雙結晶性嵌段共聚物藉由結晶驅動力用以調控微結構之尺寸,對排聚(4-甲基-1-戊烯)嵌段於微相分離侷限空間下先進行結晶形成堅硬結晶層板模板並伴隨引起聚左旋乳酸鏈段顯著延伸導致其聚左旋乳酸嵌段之微相結構厚度增加,經由提升結晶溫度之調控,可製備出層板厚度之最大延伸尺度變化(~34%)。第二部分,單一嵌段結晶、雙嵌段結晶以及共同結晶在軟或硬相侷限空間下可透過特殊設計之對排聚(p-甲基苯乙烯)−聚左旋乳酸高分子嵌段共聚物來同時來實現並有系統地研究。主相為對排聚(p-甲基苯乙烯)於軟相侷限空間下進行結晶導致擾亂六角堆積聚左旋乳酸柱體之排列,相比之下,不論聚左旋乳酸在軟或硬相侷限空間下進行結晶其層板微結構皆被保留不變。第一次觀察到結晶引起相當有趣的微結構型態轉變從侷限的單一尺度之層板微結構至介穩定態之雙重尺度之層板微結構,最終形成破壞之形態之特殊行為,而雙重尺度之層板的形成歸因於動力學和熱力學控制之奈米尺度之結晶在有序微結構中的成長。然而,無論結晶順序性如何,即使在軟相侷限情況下,雙結晶性之形態主要受到先結晶之嵌段所支配。藉由調控相互侷限作用得到長程有序微結構之結晶層板和柱狀以提供新的手段來製備奈米孔洞結晶性模板。第三部分,探討強相分離之同排聚(1-丁烯)−聚(2-乙烯基吡啶)高分子嵌段共聚物其自組裝與結晶行為。利用結晶的優勢,具層板微結構之同排聚(1-丁烯)−聚(2-乙烯基吡啶)可以達到2奈米世代微結構。另外在具六角排列柱狀結構之低分子量同排聚(1-丁烯)−聚(2-乙烯基吡啶)中展現7.6奈米的柱子直徑。此外,第四部份也探討組態的規則性對於光致發光高分子其發光性質的影響,雖然同排、對排和亂排展現相似吸收特徵,但是放光性質強烈地受立體規則性影響。由於不同構形之分子鏈,導致高同排規則性與高對排規則性分別產生相異的光致放光。因此,立體規則型高分子具有相樣化學結構展現不同之發光性質而言,立體規則度確實扮演重要的角色。最後,利用嶄新的方式透過非掌性聚苯乙烯−聚(2-乙烯基吡啶)與掌性小分子形成錯和物產生三級螺旋超分子結構。掌性轉移從掌性小分子轉移至非掌性之聚(2-乙烯基吡啶)主鏈誘導螺產生旋性進一步形成螺旋自組裝形態。這可以提供新的方式來產生螺旋相,不需要再複雜地合成掌性高分子嵌段共聚物。
Abstract
In this study, the self-assembling behavior and structure-property relationship of stereoregular polymers are investigated. First, the control of nanostructural dimension by crystallization-induced chain stretching was investigated in a novel lamellar double-crystalline syndiotactic poly(4-methyl-1-pentene)-block-poly(L-lactide) (sPMP−PLLA) block copolymer (BCP). The first-crystallized sPMP block was templated by microphase separation and may induce significant stretching of the PLLA chains, resulting in the increase of microdomain thickness of the PLLA block. With the increase of crystallization temperature, this chain stretching may become more significant, resulting in a large increase (~34 %) of the lamellar long period. Second, single, double, and coincident crystallizations under hard or soft confinement are all carried out in a specific designed syndiotactic poly(p-methylstyrene)-block-poly(L-lactide) (sPPMS−PLLA) BCPs. The single crystallization of sPPMS matrix can lead to the disordered arrangement of hexagonally packed PLLA cylinders under soft confinement. In contrast, the lamellar nanostructure is remained unchanged regardless of the PLLA crystallization under hard or soft confinement. Most interestingly, crystallization-induced morphological transitions from the confined mono-sized lamella to the metastable dual-sized lamella and finally to the breakout morphology were first obtained. The dual-sized lamella is attributed to the thermodynamically- and kinetically-controlled nanocrystallite growth templating along the ordered microphase separation. Despite crystalline sequences, the double-crystallized morphologies are determined by the first-crystallized event even though the subsequent crystallization temperature is performed under soft confinement. By the control of interactive confinement, ordered crystalline nanosheets and cylindrical monoliths are obtained, providing a novel means for the fabrication of nanoporous crystalline templates. Third, the self-assembled and crystallization behavior of strongly-segregated isotactic poly(1-butene)-block-poly(2-vinylpyridine) (iPB−P2VP) BPCs were examined. Taking advantage of crystallization, lamella-structured iPB−P2VP BCPs could reach the sub-2 nm nanostructure. In addition, cylindrical microdomains of low-Mw iPB−P2VP display 7.6 nm of cylinder diameter. Also, effect of configurational regularity on photoluminescence (PL) properties of photoluminescent polymers was explored. Although these syndiotactic, isotactic, and atactic stereoregular polymers exhibited similar absorption features, their corresponding PL properties were strongly dependent on the stereoregularity. Owing to conformational differences between the syndiotactic and isotactic chains, syndiotacticity-rich and isotacticity-rich polymers could exhibit distinct emissions. As a result, stereoregular polymers having otherwise identical chemical structures can exhibit PL properties that differ based solely on the tacticity of their pendant fluorophore units. Finally, a new approach to generate helical phase superstructures were carried out in achiral polystyrene-block-poly(2-vinylpyridine) (PS−P2VP) BCPs complexed with chiral molecules. The chiral transfer from the attached chiral molecules into the achiral P2VP backbone could result in the helical phase after self-assembly. As a result, this could provide a new methodology to generate the helical phase without the need of complicated synthesis of chiral BCPs.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents viii
List of Figures xiii
List of Tables xxvi
Chapter 1: Introduction 1
1.1 Stereoregular Polymers 1
1.1.1 Tacticity 1
1.2 Self-Assembly Block Copolymer 5
1.2.1 Self-Assembly of Stereoregular Block Copolymers 7
1.3 Block Copolymer Self-Assembly for Next-Generation Nanolithography 10
1.3.1 High χ – Low N Block Copolymers 11
1.4 Crystallization of Crystalline−Amorphous Block Copolymers (Semi-Crystalline Block Copolymers) 17
1.4.1 Crystallization Effect on Microphase-Separated Morphology of Semi-Crystalline BCPs 17
1.4.2 Segregation Strength Effect 21
1.4.3 Hard and Soft Confinement/Glass Transition Temperature Effect 23
1.4.4 Crystalline Orientation under Confinement 25
1.5 Crystallization of Crystalline−Crystalline Block Copolymers (Double-Crystalline Block Copolymers) 29
1.5.1 Two-Stage Double Crystallization 30
1.5.2 One-Stage Double Crystallization 33
1.6 Nanoporous Materials from Block Copolymer Precursors 35
1.6.1 Amorphous Nanoporous Template 36
1.6.2 Robust Crystalline Nanoporous Template 39
1.7 Photoluminescence of Polymeric Materials 40
1.7.1 Side-Chain Conjugated Polymers 41
1.7.2 Photoluminescence of Stereoregular Polymers 43
1.8 Chiral Polymer 48
1.8.1 Self-Assembly of Chiral Block Polymer 51
1.9 Tunable Block Copolymer Morphology via Post-Modified 53
1.9.1 Addition of Small Additives 54
1.9.2 Quaternized with Counterions 55
Chapter 2: Objectives 57
Chapter 3: Materials and Experimental Section 60
3.1 Syndiotactic poly(4-methy-1-pentene)-block-poly(L-lactide) (sPMP−PLLA) 60
3.1.1 Materials and Sample Preparation 60
3.1.2 Differential Scanning Calorimetry (DSC) 61
3.1.3 Transmission Electron Microscopy (TEM) 62
3.1.4 X-ray Experiments 62
3.2 Syndiotactic poly(p-methylstyrene)-block-poly(L-lactide) (sPPMS−PLLA) 63
3.2.1 Materials and Sample Preparation 63
3.2.2 Fabrication of Nanoporous sPPMS−PLLA 64
3.2.3 Differential Scanning Calorimetry (DSC) 64
3.2.4 Transmission Electron Microscopy (TEM) 65
3.2.5 Field-Emission Scanning Electron Microscopy (FESEM) 65
3.2.6 X-ray Experiments 66
3.2.7 Normalized 1D correlation function 66
3.3 Isotactic Poly(1-butene)-block-Poly(2-vinylpyridine) (iPB−P2VP) 67
3.3.1 Materials and Sample Preparation 67
3.3.2 Differential Scanning Calorimetry (DSC) 69
3.3.3 Transmission Electron Microscopy (TEM) 70
3.3.4 X-ray Experiments 70
3.3.5 Normalized 1D correlation function 71
3.4 Stereoregular poly(9,9-dibutyl-2-(4-vinylphenyl)-9H-fluorene) (PDBVPF) 72
3.4.1 General Procedure 72
3.4.2 Synthesis of 9,9-dibutyl-2-phenyl-9H-fluorene (DBPF) 73
3.4.3 Synthesis of 9,9-dibutyl-2-(4-vinylphenyl)-9H-fluorene (DBVPF) 74
3.4.4 Synthesis of poly(9,9-dibutyl-2-(4-vinylphenyl)-9H-fluorene) (PDBVPF) 74
3.4.5 Polymer Analyses 76
3.4.6 Thermogravimetric Analysis (TGA) 77
3.4.7 Differential Scanning Calorimetry (DSC) 77
3.4.8 Ultraviolet–Visible (UV–Vis) Absorption Spectrometry 78
3.4.9 Photoluminescence Spectrometry (PL) 78
3.4.10 Photoinduced Oxidation 78
3.5 Quaternization of Polystyrene-block-Poly(2-vinylpyridine) (PS−P2VP) with Chiral Counterion 79
3.5.1 Materials and Sample Preparation 79
3.5.2 Ultra-Small Angle X-ray Scattering (USAXS) 80
3.5.3 Transmission Electron Microscopy (TEM) 81
Chapter 4: Results and Discussion 82
4.1 Control of Nanostructural Dimension by Crystallization in a Double-Crystalline Syndiotactic Poly(4-methyl-1-pentene)-block-Poly(L-lactide) Block Copolymer 82
4.1.1 Characterization of Double-Crystalline sPMP−PLLA BCP 83
4.1.2 Effect of Sequential Crystallization on Microphase-Separated Morphology. 88
4.1.3 Crystalline Orientation in the Lamellar Nanostructures 105
4.2 Nanoporous Crystalline Templates from Double-Crystalline Block Copolymers by Control of Interactive Confinement 113
4.2.1 Microphase Separation of sPPMS−PLLA BCPs Prior to Crystallization 114
4.2.2 Single Crystallization in sPPMS−PLLA BCPs 120
4.2.3 Two-Stage and Coincident Double Crystallizations 130
4.2.4 Nanoporous Crystalline Templates from Double-Crystalline BCPs 134
4.3 Self-Assembling Sub-2 nm Lamellar Nanostructures using Isotactic Poly(1-butene)-block-Poly(2-vinylpyridine) Stereoregular Block Copolymers 137
4.3.1 Nanostructures of Strong-Segregated iPB−P2VP BCPs 137
4.3.2 Crystalline Lamellar Morphology under Confinement 142
4.3.3 Flory-Huggins Interaction Parameter χ 143
4.3.4 Sub-2 nm Feature Size Based on the Synergistic Cooperation of Microphase Separation and Crystallization 146
4.3.5 Nanostructures of Cylinder-Structured iPB−P2VP BCPs 151
4.4 Tacticity-Controlled Fluorescence in Stereoregular Polymers Featuring Pendant Fluorophores 155
4.4.1 Microstructure and Tacticity Analyses of PDBVPF 156
4.4.2 Thermal Behavior of Stereoregular PDBVPF Polymers 159
4.4.3 Photoluminescence of the Stereoregular PDBVPF Polymers in Dilution Solution 160
4.4.4 Photoluminescence of the Stereoregular PDBVPF Polymers in Concentration Solution 163
4.4.5 Photoluminescence of the Stereoregular PDBVPF Polymers in Thin Film 166
4.5 Nanohelices of Achiral Macromolecules Driven by Chirality Transfer 173
4.5.1 Microphase-Separation of PS−P2VP BCP in Bulk State 173
4.5.2 PS−P2VP Quaternized with Chiral Counterion in Bulk State 174
4.5.3 PS−P2VP Quaternized with Achiral Counterion in Bulk State 176
4.5.4 Effect Initial Morphology on Formation of Nanohelices 177
Chapter 5: Conclusions 180
Chapter 6: References 183
Resume 208
參考文獻 References
1. Odian, G. Stereochemistry of Polymerization. In Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2004; pp 619−713.
2. Sperling, L. H. Chain Structure and Configuration. In Introduction to Physical Polymer Science, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2006; pp 29−65.
3. Bovey, F. A. NMR and Macromolecules. ACS Symposium Series 1984, 247, 3−17.
4. Bates, F. S.; Fredrickson, G. H.; Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41, 525−557.
5. Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Phys. Today 1999, 52, 32−38.
6. Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44, 6725−6760.
7. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic Area-Minimizing Surfaces in Block Copolymers. Nature 1988, 334, 598−601.
8. Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641−7644.
9. Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091−1098.
10. Tsai, J. C.; Kuo, J. C.; Ho, R. M.; Chung, T. M. Syntheses of Stereoregular Amorphous−Crystalline Diblock Copolymers and Their Self-Assembly Studies. Macromolecules 2006, 39, 7520−7526.
11. Ho, R. M.; Chung, T. M.; Tsai, J. C.; Kuo, J. C.; Hsiao, B. S.; Sics, I. Crystallization of Polystyrene‐block‐[Syndiotactic Poly(propylene)] Block Copolymers from Confinement to Breakout. Macromol. Rapid Commum. 2005, 26, 107−111.
12. Chung, T. M.; Ho, R. M.; Kuo, J. C.; Tsai, J. C.; Hsiao, B. S.; Sics, I. Trilayer Crystalline Lamellar Morphology under Confinement. Macromolecules 2006, 39, 2739−2742.
13. Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. J. Am. Chem. Soc. 2004, 126, 2704−2705.
14. Chu, C. Y.; Lin, W. F.; Tsai, J. C.; Lai, C. S.; Lo, S. C.; Chen, H. L.; Hashimoto, T. Order–Order Transition between Equilibrium Ordered Bicontinuous Nanostructures of Double Diamond and Double Gyroid in Stereoregular Block Copolymer. Macromolecules 2012, 45, 2471−2477.
15. Chu, C. Y.; Jiang, X.; Jinnai, H.; Pei, R. Y.; Lin, W. F.; Tsai, J. C.; Chen, H. L. Real-Space Evidence of the Equilibrium Ordered Bicontinuous Double Diamond Structure of a Diblock Copolymer. Soft Matter 2015, 11, 1871−1876.
16. Lin, C. H.; Higuchi, T.; Chen, H. L.; Tsai, J. C.; Jinnai, H.; Hashimoto, T. Stabilizing the Ordered Bicontinuous Double Diamond Structure of Diblock Copolymer by Configurational Regularity. Macromolecules 2018, 51, 4049−4058.
17. Nickmans, K.; Schenning, A. Directed Self-Assembly of Liquid-Crystalline Molecular Building Blocks for Sub-5 nm Nanopatterning. Adv. Mater. 2018, 30, 1703713−1703728.
18. Sinturel, C.; Bates, F. S.; Hillmyer, M. A. High χ−Low N Block Polymers: How Far Can We Go? ACS Macro Lett. 2015, 4, 1044−1050.
19. Jeong, J. W.; Park, W. I.; Kim, M.-J.; Ross, C. A.; Jung, Y. S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095−4101.
20. Luo, Y.; Montarnal, D.; Kim, S.; Shi, W.; Barteau, K. P.; Pester, C. W.; Hustad, P. D.; Christianson, M. D.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. Poly(dimethylsiloxane-b-methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules 2015, 48, 3422−3430.
21. Nowak, S. R.; Hwang, W.; Sita, L. R. Dynamic Sub-10 nm Nanostructured Ultrathin Films of Sugar−Polyolefin Conjugates Thermoresponsive at Physiological Temperatures. J. Am. Chem. Soc. 2017, 139, 5281−5284.
22. Isono,T.; Ree, B. J.; Tajima, K.; Borsali, R.; Satoh, T. Highly Ordered Cylinder Morphologies with 10 nm Scale Periodicity in Biomass-Based Block Copolymers. Macromolecules, 2018, 51, 428−437.
23. Van Genabeek, B.; de Waal, B. F. M.; Gosens, M. M. J.; Pitet, L. M.; Palmans, A. R. A.; Meijer, E. W. Synthesis and Self-Assembly of Discrete Dimethylsiloxane-Lactic Acid Diblock Co-Oligomers: The Dononacontamer and Its Shorter Homologues. J. Am. Chem. Soc. 2016, 138, 4210−4218.
24. Van Genabeek, B.; Lamers, B.; de Waal, B. F. M.; Van Son, M.; Palmans, A. R. A.; Meijer, E. W. Amplifying (Im)Perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-Oligomers. J. Am. Chem. Soc. 2017, 139, 14869−14872.
25. Yue, K.; Liu, C.; Huang, M.; Huang, J.; Zhou, Z.; Wu, K.; Liu, H.; Lin, Z.; Shi, A. C.; Zhang, W. B.; Cheng, S. Z. D. Self-Assembled Structures of Giant Surfactants Exhibit a Remarkable Sensitivity on Chemical Compositions and Topologies for Tailoring Sub-10 nm Nanostructures. Macromolecules 2017, 50, 303−314.
26. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. Macroscopic 10-Terabit−per−Square-Inch Arrays from Block Copolymers with Lateral Order. Science 2009, 323, 1030−1033.
27. Kwak, J.; Mishra, A. K.; Lee, J.; Lee, K. S.; Choi, C.; Maiti, S.; Kim, M.; Kim, J. K. Fabrication of Sub-3 nm Feature Size Based on Block Copolymer Self-Assembly for Next-Generation Nanolithography. Macromolecules 2017, 50, 6813−6818.
28. Jeong, G.; Yu, D. M.; Mapas, J. K. D.; Sun, Z.; Rzayev, J.; Russell, T. P. Realizing 5.4 nm Full Pitch Lamellar Microdomains by a Solid-State Transformation. Macromolecules 2017, 50, 7148−7154.
29. Douzinas, K. C.; Cohen, R. E.; Halasa, A. F. Evaluation of Domain Spacing Scaling Laws for Semicrystalline Diblock Copolymers. Macromolecules 1991, 24, 4457−4459.
30. Douzinas, K. C.; Cohen, R. E. Chain Folding in EBEE Semicrystalline Diblock Copolymers. Macromolecules 1992, 25, 5030−5035.
31. Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Spatial Organization of Polymer Chains in a Crystallizable Diblock Copolymer of Polyethylene and Polystyrene. Macromolecules 1994, 27, 2321−2323.
32. Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Structure Development in Semicrystalline Diblock Copolymers Crystallizing from the Ordered Melt. Macromolecules 1995, 28, 3860−3868.
33. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Crystallization in Oriented Semicrystalline Diblock Copolymers. Macromolecules 1996, 29, 8835−8843.
34. Quiram, D. J.; Register, R. A.; Marchand, G. R. Crystallization of Asymmetric Diblock Copolymers from Microphase-Separated Melts. Macromolecules 1997, 30, 4551−4558.
35. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Chain Orientation in Block Copolymers Exhibiting Cylindrically Confined Crystallization. Macromolecules 1998, 31, 4891−4898.
36. Reiter, G.; Castelein, G.; Hoerner, P.; Riess, G.; Blumen, A.; Sommer, J. U. Nanometer-Scale Surface Patterns with Long-Range Order Created by Crystallization of Diblock Copolymers. Phys. Rev. Lett. 1999, 83, 3844−3847.
37. Loo, Y. L.; Register, R. A.; Ryan, A. J. Polymer Crystallization in 25-nm Spheres. Phys. Rev. Lett. 2000, 84, 4120−4123.
38. Loo, Y. L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Polymer Crystallization Confined in One, Two, or Three Dimensions. Macromolecules 2001, 34, 8968−8977.
39. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Microdomain-Tailored Crystallization Kinetics of Block Copolymers. Macromolecules 2001, 34, 671−674.
40. Reiter, G.; Castelein, G.; Sommer, J. U.; Rottele, A.; Thurn-Albrecht, T. Direct Visualization of Random Crystallization and Melting in Arrays of Nanometer-Size Polymer Crystals. Phys. Rev. Lett. 2001, 87, 226101-1−226101-4.
41. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Phase Structures and Morphologies Determined by Self-Organization, Vitrification, and Crystallization: Confined Crystallization in an Ordered Lamellar Phase of PEO-b-PS Diblock Copolymer. Polymer 2001, 42, 5829−5839.
42. Loo, Y. L.; Register, R. A.; Ryan, A. J. Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined. Macromolecules 2002, 35, 2365−2374.
43. Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Z. Nanoconfined Polymer Crystallization in the Hexagonally Perforated Layers of a Self-Assembled PS-b-PEO Diblock Copolymer. Adv. Mater. 2002, 14, 3−34.
44. Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Hsiao, B. S.; Sics, I. Crystallization-Induced Undulated Morphology in Polystyrene-b-Poly(L-lactide) Block Copolymer. Macromolecules 2004, 37, 5985−5994.
45. Koo, C. M.; Wu, L. F.; Lim, L. S.; Mahanthappa, M. K.; Hillmyer, M. A.; Bates, F. S. Microstructure and Mechanical Properties of Semicrystalline-Rubbery-Semicrystalline Triblock Copolymers. Macromolecules 2005, 38, 6090−6098.
46. Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. T.; Jeng, U. S.; Lotz, B. Crystalline Polymers in Nanoscale 1D Spatial Confinement. Macromolecules 2006, 39, 5782−5788.
47. Chiang, Y. W.; Ho, R. M.; Thomas, E. L.; Burger, C.; Hsiao, B. S. A Spring-Like Behavior of Chiral Block Copolymer with Helical Nanostructure Driven by Crystallization. Adv. Funct. Mater. 2009, 19, 448−459.
48. Castillo, R. V.; Müller, A. J. Crystallization and Morphology of Biodegradable or Biostable Single and Double Crystalline Block Copolymers. Prog. Polym. Sci. 2009, 34, 516−560.
49. Chung, T. M.; Wang, T. C.; Ho, R. M.; Sun, Y. S.; Ko, B. T. Polymeric Crystallization under Nanoscale 2D Spatial Confinement. Macromolecules 2010, 43, 6237−6240.
50. He, W. N.; Xu, J. T. Crystallization Assisted Self-Assembly of Semicrystalline Block Copolymers. Prog. Polym. Sci. 2012, 37, 1350−1400.
51. Takeshita, H.; Shiomi, T.; Takenaka, K.; Arai, F. Crystallization and Higher-Order Structure of Multicomponent Polymeric Systems. Polymer 2013, 54, 4776−4789.
52. Huang, S.; Jiang, S. Structures and Morphologies of Biocompatible and Biodegradable Block Copolymers. RSC Adv. 2014, 4, 24566−24583.
53. Nakagawa, S.; Marubayashi, H.; Nojima, S. Crystallization of Polymer Chains Confined in Nanodomains. Eur. Polym. J. 2015, 70, 262−275.
54. Michell, R. M.; Müller, A. J. Confined Crystallization of Polymeric Materials. Prog. Polym. Sci. 2016, 54−55, 183−213.
55. Zha, L.; Hu, W. Molecular Simulations of Confined Crystallization in the Microdomains of Diblock Copolymers. Prog. Polym. Sci. 2016, 54−55, 232−258.
56. Lin, M. C.; Nandan, B.; Chen, H. L. Mediating Polymer Crystal Orientation Using Nanotemplates from Block Copolymer Microdomains and Anodic Aluminium Oxide Nanochannels. Soft Matter 2012, 8, 7306−7322.
57. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a Self-Assembled Crystalline-Amorphous Diblock Copolymer. J. Am. Chem. Soc. 2000, 122, 5957−5967.
58. Huang, P.; Zhu, L.; Cheng, S. Z. D.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Liu, L.; Yeh, F. Crystal Orientation Changes in Two-Dimensionally Confined Nanocylinders in a Poly(ethylene oxide)-b-Polystyrene/Polystyrene Blend. Macromolecules 2001, 34, 6649−6657.
59. Register, R. A.; Loo, Y. L.; Adamson, D. H. Polyethylene Crystal Orientation Induced by Block Copolymer Cylinders. Macromolecules 2000, 33, 8361−8366.
60. Müller, A. J.; Balsamo, V.; Arnal, M. L. In Lecture Notes in Physics: Progress in Understanding of Polymer Crystallization; Reiter, G., Strobl, G., Eds.; Springer: Berlin, 2007; Vol. 714, pp 229−259.
61. Kim, K. S.; Chung, S.; Chin, I. J.; Kim, M. N.; Yoon, J. S. Crystallization Behavior of Biodegradable Amphiphilic Poly(ethylene glycol)-Poly(L-lactide) Block Copolymers. J. Appl. Polym. Sci. 1999, 72, 341−348.
62. Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal Properties of Di- and Triblock Copolymers of Poly(L-lactide) with Poly(oxyethylene) or Poly(ε-caprolactone). Polymer 2003, 44, 369−375.
63. Sun, L.; Liu, Y.; Zhu, L.; Hsiao, B. S.; Avila-Orta, C. A. Self-Assembly and Crystallization Behavior of a Double-Crystalline Polyethylene-block-Poly(ethylene oxide) Diblock Copolymer. Polymer 2004, 45, 8181−8193.
64. Nojima, S.; Akutsu, Y.; Washino, A.; Tanimoto, S. Morphology of Melt-Quenched Poly(ε-caprolactone)-block-Polyethylene Copolymers. Polymer 2004, 45, 7317−7324.
65. Nojima, S.; Akutsu, Y.; Akaba, M.; Tanimoto, S. Crystallization Behavior of Poly(ε-caprolactone) Blocks Starting from Polyethylene Lamellar Morphology in Poly(ε-caprolactone)-block-Polyethylene Copolymers. Polymer 2005, 46, 4060−4067.
66. Hamley, I. W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, P. Crystallization in Poly(L-lactide)-b-Poly(ε-caprolactone) Double Crystalline Diblock Copolymers: A Study Using X-ray Scattering, Differential Scanning Calorimetry, and Polarized Optical Microscopy. Macromolecules 2005, 38, 463−47.
67. Nojima, S.; Kiji, T.; Ohguma, Y. Characteristic Melting Behavior of Double Crystalline Poly(ε-caprolactone)-block-Polyethylene Copolymers. Macromolecules 2007, 40, 7566−7572.
68. Castillo, R. V.; Arnal, M. L.; Müller, A. J.; Hamley, I. W.; Castelletto, V.; Schmalz, H.; Abetz, V. Fractionated Crystallization and Fractionated Melting of Confined PEO Microdomains in PB-b-PEO and PE-b-PEO Diblock Copolymers. Macromolecules 2008, 41, 879−889.
69. Weiyu, C.; Tashiro, K.; Hanesaka, M.; Takeda, S.; Masunaga, H.; Sasaki, S.; Takata, M. Relationship between Morphological Change and Crystalline Phase Transitions of Polyethylene-Poly(ethylene oxide) Diblock Copolymers, Revealed by the Temperature-Dependent Synchrotron WAXD/SAXS and Infrared/Raman Spectral Measurements. J. Phys. Chem. B 2009, 113, 2338−2346.
70. Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Crystallization Kinetics and Morphology of Biodegradable Double Crystalline PLLA-b-PCL Diblock Copolymers. Macromolecules 2010, 43, 4149−4160.
71. Cong, Y. H.; Liu, H.; Wang, D. L.; Zhao, B. J.; Yan, T. Z.; Li, L. B.; Chen, W.; Zhong, Z. Y.; Lin, M. C.; Chen, H. L.; Yang, C. L. Stretch-Induced Crystallization through Single Molecular Force Generating Mechanism. Macromolecules 2011, 44, 5878−5882.
72. Li, S.; Myers, S. B.; Register, R. A. Solid-State Structure and Crystallization in Double-Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene. Macromolecules 2011, 44, 8835−8844.
73. Yang, J. J.; Liang, Y. R.; Luo, J.; Zhao, C. Z.; Han, C. C. Multilength Scale Studies of the Confined Crystallization in Poly(L-lactide)-block-Poly(ethylene glycol) Copolymer. Macromolecules 2012, 45, 4254−4261.
74. Lin, M. C.; Chen, H. L.; Su, W. B.; Su, C. J.; Jeng, U. S.; Tzeng, F. Y.; Wu, J. Y.; Tsai, J. C.; Hashimoto, T. Interactive Crystallization Kinetics in Double-Crystalline Block Copolymer. Macromolecules 2012, 45, 5114−5127.
75. Shi, W.; McGrath, A. J.; Li, Y.; Lynd, N. A.; Hawker, C. J.; Fredrickson, G. H.; Kramer, E. J. Cooperative and Sequential Phase Transitions in it-Poly(propylene oxide)-b-Poly(ethylene oxide)-b-it-Poly(propylene oxide) Triblock Copolymers Macromolecules 2015, 48, 3069−3079.
76. Nojima, S.; Ono, M.; Ashida, T. Crystallization of Block Copolymers II. Morphological Study of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymers. Polym. J. 1992, 24, 1271−1280.
77. Gan, Z. H.; Jiang, B. Z.; Zhang, J. Poly(ε-caprolactone)/Poly(ethylene oxide) Diblock Copolymer. I. Isothermal Crystallization and Melting Behavior. J. Appl. Polym. Sci. 1996, 59, 961−967.
78. Bogdanov, B.; Vidts, A.; Schacht, E.; Berghmans, H. Isothermal Crystallization of Poly(ε-caprolactone-ethylene glycol) Block Copolymers. Macromolecules 1999, 32, 726−731.
79. Shiomi, T.; Imai, K.; Takenaka, K.; Takeshita, H.; Hayashi, H.; Tezuka, Y. Appearance of Double Spherulites Like Concentric Circles for Poly(ε-caprolactone)-block-Poly(ethylene glycol)-block-Poly(ε-caprolactone). Polymer 2001, 42, 3233−3239.
80. Albuerne, J.; Marquez, L.; Müller, A. J.; Raquez, J. M.; Degee, P.; Dubois, P.; Castelletto, V.; Hamley, I. W. Nucleation and Crystallization in Double Crystalline Poly(p-dioxanone)-b-Poly(ε-caprolactone) Diblock Copolymers. Macromolecules 2003, 36, 1633−1644.
81. Ruokolainen, J.; Mezzenga, R.; Fredrickson, G. H.; Kramer, E. J.; Hustad, P. D.; Coates, G. W. Morphology and Thermodynamic Behavior of Syndiotactic Polypropylene-Poly(ethylene-co-propylene) Block Polymers Prepared by Living Olefin Polymerization. Macromolecules 2005, 38, 851−860.
82. Takeshita, H.; Fukumoto, K.; Ohnishi, T.; Ohkubo, T.; Miya, M.; Takenaka, K.; Shiomi, T. Formation of Lamellar Structure by Competition in Crystallization of Both Components for Crystalline-Crystalline Block Copolymers. Polymer 2006, 47, 8210−8218.
83. Castillo, R. V.; Müller, A. J.; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Hillmyer, M. A. Confined Crystallization and Morphology of Melt Segregated PLLA-b-PE and PLDA-b-PE Diblock Copolymers. Macromolecules 2008, 41, 6154−6164.
84. Myers, S. B.; Register, R. A. Crystalline-Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene. Macromolecules 2008, 41, 6773−6779.
85. Tzeng, F. Y.; Lin, M. C.; Wu, J. Y.; Kuo, J. C.; Tsai, J. C.; Hsiao, M. S.; Chen, H. L.; Cheng, S. Z. D. Stereoregular Diblock Copolymers of Syndiotactic Polypropylene and Polyesters: Syntheses and Self-Assembled Nanostructures. Macromolecules 2009, 42, 3073−3085.
86. Nojima, S.; Fukagawa, Y.; Ikeda, H. Interactive Crystallization of a Strongly Segregated Double Crystalline Block Copolymer with Close Crystallizable Temperatures. Macromolecules 2009, 42, 9515−9522.
87. Voet, V. S.; van Ekenstein, G. O. A.; Meereboer, N. L.; Hofman, A. H.; ten Brinke, G.; Loos, K. Double-Crystalline PLLA-b-PVDF-b-PLLA Triblock Copolymers: Preparation and Crystallization. Polym. Chem. 2014, 5, 2219−2230.
88. Nagarajan, S.; Gowd, E. B. Cold Crystallization of PDMS and PLLA in Poly (L-lactide-b-dimethylsiloxane-b-L-lactide) Triblock Copolymer and Their Effect on Nanostructure Morphology. Macromolecules 2015, 48, 5367−5377.
89. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Nanoscopic Templates from Oriented Block Copolymer Films. Adv. Mater. 2000, 12, 787−791.
90. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block Copolymer Lithography: Periodic Arrays of ~ 1011 Holes in 1 Square Centimeter. Science 1997, 276, 1401−1404.
91. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. Mesoporous Polystyrene Monoliths. J. Am. Chem. Soc. 2001, 123, 1519−1520.
92. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 2002, 124, 12761−12773.
93. Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B. T.; Huang, B. H. Solvent-Induced Microdomain Orientation in Polystyrene-b-Poly (L-lactide) Diblock Copolymer Thin Films for Nanopatterning. Polymer 2005, 46, 9362−9377.
94. Uehara, H.; Yoshida, T.; Kakiage, M.; Yamanobe, T.; Komoto, T.; Nomura, K.; Nakajima, K.; Matsuda, M. Nanoporous Polyethylene Film Prepared from Bicontinuous Crystalline/Amorphous Structure of Block Copolymer Precursor. Macromolecules 2006, 39, 3971−3974.
95. Uehara, H.; Kakiage, M.; Sekiya, M.; Sakuma, D.; Yamonobe, T.; Takano, N.; Barraud, A.; Meurville, E.; Ryser, P. Size-Selective Diffusion in Nanoporous but Flexible Membranes for Glucose Sensors. ACS Nano 2009, 3, 924−932.
96. Pitet, L. M.; Amendt, M. A.; Hillmyer, M. A. Nanoporous Linear Polyethylene from a Block Polymer Precursor. J. Am. Chem. Soc., 2010, 132, 8230−8231.
97. Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley−VCH: Weinheim, Germany, 2002.
98. Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 29, 4332−4353.
99. Kim, H. N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent Progress on Polymer-Based Fluorescent and Colorimetric Chemosensors. Chem. Soc. Rev. 2011, 40, 79−93.
100. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718−11940.
101. Lu, L.; Jenekhe, S. A. Poly(vinyl diphenylquinoline):  A New pH-Tunable Light-Emitting and Charge-Transport Polymer Synthesized by a Simple Modification of Polystyrene. Macromolecules 2001, 34, 6249−6254.
102. Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Carbazole-Containing Polymers: Synthesis, Properties and Applications. Prog. Polym. Sci. 2003, 28, 1297−1353.
103. Sugiyama, K.; Hirao, A.; Hsu, J. C.; Tung, Y. C.; Chen, W. C. Living Anionic Polymerization of Styrene Derivatives para-Substituted with π-Conjugated Oligo(fluorene) Moieties. Macromolecules 2009, 42, 4053−4062.
104. Breul, A. M.; Hager, M. D.; Schubert, U. S. Fluorescent Monomers as Building Blocks for Dye Labeled Polymers: Synthesis and Application in Energy Conversion, Biolabeling and Sensors Chem. Soc. Rev. 2013, 42, 5366−5407.
105. Basile, L. J. Effect of Styrene Monomer on the Fluorescence Properties of Polystyrene. J. Chem. Phys. 1962, 36, 2204−2210.
106. Yanari, S. S.; Bovey, F. A.; Lumry, R. Fluorescence of Styrene Homopolymers and Copolymers. Nature 1963, 200, 242−244.
107. Vala, M. T.; Haebig, J.; Rice, S. A. Experimental Study of Luminescence and Excitation Trapping in Vinyl Polymers, Paracyclophanes, and Related Compounds. J. Chem. Phys. 1965, 43, 886−897.
108. Irie, M.; Kamijo, T.; Aikawa, M.; Takemura, T.; Hayashi, K.; Baba, H. Absorption and Fluorescence Spectra of the Intramolecular Dimer in Poly(vinylnaphthalene). J. Phys. Chem. 1977, 81, 1571−1574.
109. Hoyle, C. E.; Nemzek, T. L.; Mar, A.; Guillet, J. E. Time Resolved Fluorescence Studies of Poly(N-vinylcarbazole), Poly(1-vinylnaphthalene), and 1,3-Bis(N-carbazolyl)propane. Macromolecules 1978, 11, 429−431.
110. de Sainte Claire, P. Molecular Simulation of Excimer Fluorescence in Polystyrene and Poly(vinylcarbazole). J. Phys. Chem. B 2006, 110, 7334−7343.
111. Longworth, J. W.; Bovey, F. A. Conformations and Interactions of Excited Stales. I. Model Compounds for Polymers. Biopolymers 1966, 4, 1115−1129.
112. Longworth, J. W. Conformations and Interactions of Excited States. II. Polystyrene, Polypeptides, and Proteins. Biopolymers 1966, 4, 1131−1148.
113. Evers, F.; Kobs, K.; Memming, R.; Terrell, D. R. Intramolecular Excimer Emission of Poly(N-vinylcarbazole) and Rac- and Meso-2,4-di-N-carbazolylpentane. Model Substances for Its Syndiotactic and Isotactic Dyads. J. Am. Chem. Soc. 1983, 105, 5988−5995.
114. Uryu, T.; Ohkawa, H.; Oshima, R. Synthesis and High Hole Mobility of Isotactic poly(2-N-carbazolylethyl acrylate). Macromolecules 1987, 20, 712−716.
115. Sakai, H.; Itaya, A.; Masuhara, H.; Sasaki, K.; Kawata, S. Fluorescence Dynamics of Poly(N-vinylcarbazole) in Solution as Revealed by Multicomponent Analysis of Picosecond Time-resolved Fluorescence Spectra: Dependence on Tacticity and Molecular Weight. Polymer 1996, 37, 31−43.
116. Natori, I.; Natori, S.; Sekikawa, H.; Takahashi, T.; Ogino, K.; Tsuchiya, K.; Sato, H. Poly(4-diphenylaminostyrene) with a Well-defined Polymer Chain Structure: Controllable Optical and Electrical Properties. Polymer 2010, 51, 1501−1506.
117. Botta, A.; Pragliola, S.; Capacchione, C.; Rubino, A.; Liguori, R.; Del Mauro, A. D. G.; Venditto, V. Synthesis of Poly(4-(N-carbazolyl)methyl styrene)s: Tailoring Optical Properties through Stereoregularity. Eur. Polym. J. 2017, 88, 246−256.
118. Watanabe, H.; Kanazawa, A.; Aoshima, S. Stereospecific Living Cationic Polymerization of N‑Vinylcarbazole through the Design of ZnCl2‑Derived Counteranions. ACS Macro Lett. 2017, 6, 463−467.
119. Nakano, T.; Yade, T. Synthesis, Structure, and Photophysical and Electrochemical Properties of a π-Stacked Polymer. J. Am. Chem. Soc. 2003, 125, 15474−15484.
120. Graham Solomons, T. W.; Fryhle, C. B.; Snyder, S. A. Stereochemistry: Chiral Molecules. In Organic Chemistry, 11th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2013, pp 191−237.
121. Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. Block Copolymers with a Twist. J. Am. Chem. Soc. 2009, 131, 18533−18542.
122. Yao, L.; Lu, X.; Chen, S.; Watkins, J. J. Formation of Helical Phases in Achiral Block Copolymers by Simple Addition of Small Chiral Additives. Macromolecules 2014, 47, 6547−6553.
123. Hashimoto, T.; Harada, M.; Sakamoto, N. Incorporation of Metal Nanoparticles into Block Copolymer Nanodomains via in-Situ Reduction of Metal Ions in Microdomain Space. Macromolecules 1999, 32, 6867−6870.
124. Goodwin, A.; Goodwin, K. M.; Wang, W.; Yu, Y. G.; Lee, J. S.; Mahurin, S. M.; Dai, S.; Mays, J. W.; Kang, N. G. Anionic Polymerization of Oxadiazole-Containing 2-Vinylpyridine by Precisely Tuning Nucleophilicity and the Polyelectrolyte Characteristics of the Resulting Polymers. Macromolecules 2016, 49, 6213−6225.
125. Carrasco, P. M.; Ruiz de Luzuriaga, A.; Constantinou, M.; Georgopanos, P.; Rangou, S.; Avgeropoulos, A.; Zafeiropoulos, N. E.; Grande, H. J.; Cabañero, G.; Mecerreyes, D.; Garcia, I. Influence of Anion Exchange in Self-Assembling of Polymeric Ionic Liquid Block Copolymers. Macromolecules 2011, 44, 4936−4941.
126. Schmidt, S. C.; Hillmyer, M. A. Synthesis and Characterization of Model Polyisoprene-Polylactide Diblock Copolymers. Macromolecules 1999, 32, 4794−4801.
127. Asanuma, T; Nishimori, Y.; Ito, M.; Uchikawa, N.; Shiomura, T. Preparation of Syndiotactic Polyolefins by Using Metallocene Catalysts. Polymer Bulletin 1991, 25, 567−570.
128. Kuo, J. C.; Lin, W. F.; Yu, C. H.; Tsai, J. C.; Wang, T. C.; Chung, T. M.; Ho, R. M. Isotactic Polypropylene-Based Stereoregular Diblock Copolymers: Syntheses and Self-Assembly. Macromolecules 2008, 41, 7967−7977.
129. Tzeng, F. Y.; Lin, M. C.; Wu, J. Y.; Kuo, J. C.; Tsai, J. C.; Hsiao, M. S.; Chen, H. L.; Cheng, S. Z. D. Stereoregular Diblock Copolymers of Syndiotactic Polypropylene and Polyesters: Syntheses and Self-Assembled Nanostructures. Macromolecules 2009, 42, 3073−3085.
130. Lee, J. Y.; Shiao, M. C.; Tzeng, F. Y.; Chang, C. H.; Tsai, C. K.; Lo, K. S.; Lin, S. C.; Ho, R. M. Syndiotactic Polyallyltrimethylsilane-Based Stereoregular Diblock Copolymers: Syntheses and Self-Assembled Nanostructures. Macromolecules 2012, 45, 2720−2730.
131. Jeng, U. S.; Su, C. H.; Su, C. J.; Liao, K. F.; Chuang, W. T.; Lai, Y. H.; Chang, J. W.; Chen, Y. J.; Huang, Y. S.; Lee, M. T.; et al. A Small/Wide-Angle X-ray Scattering Instrument for Structural Characterization of Air–Liquid Interfaces, Thin Films and Bulk Specimens. J. Appl. Crystallo. 2010, 43, 110−121.
132. Hsiao, T. J.; Lee, J. Y.; Mao, Y. C.; Chen, Y. C.; Tsai, J. C.; Lin, S. C.; Ho, R. M. Stereoregular Diblock Copolymers of Syndiotactic Polystyrene Derivatives and Polylactide: Syntheses and Self-Assembled Nanostructures. Macromolecules 2010, 44, 286−298.
133. Strobl, G. R.; Schneider, M. Direct Evaluation of the Electron Density Correlation Function of Partially Crystalline Polymers. J. Polym. Sc., Polym. Phys. Ed. 1980, 18, 1343−1359.
134. Roe, R. J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000.
135. Li, Z. H.; Wong, M. S.; Tao, Y.; Lu, J. Diphenylamino End‐Capped Oligofluorenes with Enhanced Functional Properties for Blue Light Emission: Synthesis and Structure–Property Relationships. Chem. Eur. J. 2005, 11, 3285−3293.
136. Zhu, T.; He, G.; Chang, J.; Zhao, D.; Zhu, X.; Zhu, H. The Synthesis, Photophysical and Electrochemical Properties of a Series of Novel 3,8,13-Substituted Triindole Derivatives. Dyes and Pigments 2012, 95, 679−688.
137. Sakai, F.; Nishikawa, K.; Inoue, Y.; Yazawa, K. Nucleation Enhancement Effect in Poly(L-lactide) (PLLA)/Poly(ɛ-caprolactone) (PCL) Blend Induced by Locally Activated Chain Mobility Resulting from Limited Miscibility. Macromolecules 2009, 42, 8335−8342.
138. De Ross, C.; Venditto, V.; Guerra, G.; Corradini, P. Chain Conformation and Unit Cell in the Crystalline Phase of Syndiotactic Poly(4methyl-1-pentene). Macromolecules 1992, 25, 6938−6942.
139. Yazici, O.; Cakar, F.; Cankurtaran, O.; Karaman, F. Determination of Dielectric Properties by Solubility Parameter of Poly(4-methyl-1-pentene). Optoelectronics and Advanced Materials Rapid Communications 2008, 2, 655−658.
140. Blomqvist, J.; Mannfors, B.; Pietilä, L. O. Amorphous Cell Studies of Polyglycolic, Poly(L-lactic), Poly(L,D-lactic) and Poly(glycolic/L-lactic) Acids. Polymer 2002, 43, 4571−4583.
141. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial Crystallization and Crystalline Polymorphism of Polylactides. Polymer 2000, 41, 8909−8919.
142. Aleman, C.; Lotz, B.; Puiggali, J. Crystal Structure of the α-Form of Poly(l-lactide). Macromolecules 2001, 34, 4795−4801.
143. De Rosa, C.; Venditto, V.; Guerra G.; Corradini, P. Crystal Structure of Syndiotactic Poly (4-methyl-1-pentene). Polymer 1995, 36, 3619−3624.
144. Ishihara, N.; Kuramoto, M.; Uoi, M. Stereospecific Polymerization of Styrene Giving the Syndiotactic Polymer. Macromolecules 1988, 21, 3356−3360.
145. Brandrup. J.; Immergut, E. H.; Grulke, E.A.; Abe, A.; Bloch, D. R. Polymer Handbook, 4th ed.; John Wiley & Sons, Inc.: New York, 1999.
146. Esposito, G.; Tarallo, O.; Petraccone, V. Crystal Structure of Form I of Syndiotactic Poly (para-methylstyrene). Macromolecules 2006, 39, 5037−5042.
147. De Rosa, C.; Petraccone, V.; Dal Poggetto, F.; Guerra, G.; Pirozzi, B.; Di Lorenzo, M. L.; Corradini, P. Crystal Structure of Form III of Syndiotactic Poly (p-methylstyrene). Macromolecules 1995, 28, 5507−5511.
148. Iuliano, M.; Guerra, G., Petraccone, V.; Corradini, P.; Pellecchia, C. Polymorphism of Syndiotactic Poly (p-methylstyrene) Unoriented Samples. New Polym. Mater. 1992, 3, 133−144.
149. Kallitsis, J. K.; Kalfoglou, N. K. Physical Characterization of Blends of Isotactic Poly (butene-1) with Ethylene-Propylene Copolymer. Eur. Polym. J. 1987, 23, 117−124.
150. Tashiro, K.; Hu, J.; Wang, H.; Hanesaka, M.; Saiani, A. Refinement of the Crystal Structures of Forms I and II of Isotactic Polybutene-1 and a Proposal of Phase Transition Mechanism between Them. Macromolecules 2016, 49, 1392−1404.
151. Kawamura, T.; Toshima, N.; Matsuzaki, K. Comparison of 13C NMR Spectra of Polystyrenes Having Various Tacticities and Assignment of the Spectra. Macromol. Rapid Commun. 1994, 15, 479−486.
152. Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z. Aggregation-Enhanced Emissions of Intramolecular Excimers in Disubstituted Polyacetylenes. J. Phys. Chem. B 2008, 112, 9281−9288.
153. Lai, C. T.; Hong, J. L. Aggregation-Induced Emission in Tetraphenylthiophene-Derived Organic Molecules and Vinyl Polymer. J. Phys. Chem. B 2010, 114, 10302−10310.
154. Sims, M.; Bradley, D. D. C.; Ariu, M.; Koeberg, M.; Asimakis, A.; Grell, M.; Lidzey, D. G. Understanding the Origin of the 535 nm Emission Band in Oxidized Poly(9,9‐dioctylfluorene): The Essential Role of Inter‐Chain/Inter‐Segment Interactions. Adv. Funct. Mater. 2004, 14, 765−781.
155. Liu, L.; Tang, S.; Liu, M.; Xie, Z.; Zhang, W.; Lu, P.; Hanif, M.; Ma, Y. Photodegradation of Polyfluorene and Fluorene Oligomers with Alkyl and Aromatic Disubstitutions. J. Phys. Chem. B 2006, 110, 13734−13740.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.201.71
論文開放下載的時間是 校外不公開

Your IP address is 3.145.201.71
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code